Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Nature of the Dielectric Response of Methanol Revealed by the Terahertz Kerr Effect

MPG-Autoren
/persons/resource/persons21693

Kampfrath,  Tobias
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Physics, Freie Universität Berlin;

/persons/resource/persons37877

Campen,  R. Kramer
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons79062

Sajadi,  Mohsen
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kampfrath, T., Campen, R. K., Wolf, M., & Sajadi, M. (2018). The Nature of the Dielectric Response of Methanol Revealed by the Terahertz Kerr Effect. The Journal of Physical Chemistry Letters, 9(6), 1279-1283. doi:10.1021/acs.jpclett.7b03281.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-1C52-4
Zusammenfassung
The dielectric response of liquids in the terahertz (THz) and sub-THz frequency range arises from low-energy collective molecular motions, which are often strongly influenced by intermolecular interactions. To shed light on the microscopic origin of the THz dielectric response of the simplest alcohol, methanol, we resonantly excite this liquid with an intense THz electric-field pulse and monitor the relaxation of the induced optical birefringence. We find a unipolar THz-Kerr-effect signal which, in contrast to aprotic polar liquids, shows a weak coupling between the THz electric field and the permanent molecular dipole moment of the liquid. We assign this weak coupling to the restricted translational rather than rotational nature of the excited mode. Our approach opens a new avenue to the assignment of the dielectric spectrum of liquids to a microscopic origin.