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Abstract: The MORLAB (Model Order Reduction Laboratory) toolbox is a software solution
in MATLAB for the model reduction of linear time-invariant continuous-time systems. It
contains several methods to deal with unstructured medium-scale descriptor systems. In order to
illustrate the use of MORLAB in this context, in this paper, a damped mass-spring system with
a holonomic constraint is reduced by the generalized balanced truncation subroutine from the
MORLAB toolbox. The basic ideas of the MORLAB implementation are shown by introducing
the used spectral projection methods based on the matrix sign and matrix disk function. To show
the numerical behavior, the MORLAB routine and all the corresponding subroutines are used
for computations applied to the introduced example. An overview about further model reduction
methods for descriptor systems in MORLAB is given, on which similar implementational ideas
as for the generalized balanced truncation method are used.
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1. INTRODUCTION

Many different real-world applications, like chemical pro-
cesses, electrical circuits, or computational fluid dynamics,
can be modeled by systems of differential equations. Since
experiments can be very expensive and time-consuming,
these models are used for simulations and the design of
controllers. The modeling processes often result in linear
time-invariant continuous-time descriptor systems
Ei(t) = Az(t) + Bu(t), 1
y(t) = Ca(t) + Du(t), W

with £, A € R™*" B e R"™™ (C € RP*™ and D € RP*™,
Here, u(t) € R™ are the inputs of the system which
influence the internal states z(t) € R™ to get the desired
outputs y(t) € RP. Throughout this paper it is assumed
that the matrix pencil AF — A is regular, i.e., there exists
at least one A € C such that det(AE — A) # 0. Then with
the initial condition Ex(0) = 0, the input-output behavior
of (1) in the frequency domain can be described by the
system’s transfer function

G(s)=C(sE—A)™'B+D, (2)
s € C, where the matrices E, A, B,C, D from (1) define a
realization of G. Usually, the number of inputs and outputs
is small compared to the number of internal states of (1).
For this reason, using the full-order model (1) quickly
reaches the limits of computational resources. The aim of
model reduction is now to compute a surrogate model for
(1) of order r < n such that
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Eriip(t) = Ay, (t) + Bru(t), (3)
yr(t) = Crap(t) + Dyul(t)

approximates the input-output behavior of (1) in a given
system norm. Now, the reduced-order model (3) can be
used instead of the original model for simulations and the
design of controllers.

For the construction of (3) there are many different tech-
niques, for some overviews see, e.g., Antoulas (2005), Ben-
ner et al. (2005) and Baur et al. (2014). These techniques
are often implemented in several different versions. An
overview about used model reduction software was set
up by the MORwiki Community (2017). A MATLAB
toolbox for model reduction of medium-scale unstructured
dynamical systems of the form (1) is the MORLAB, Model
Order Reduction Laboratory, toolbox; see Benner and
Werner (2017); Benner (2006). The toolbox comes with
appropriate solvers for the occurring matrix equations and
methods for the decomposition of transfer functions. These
algorithms are based on spectral projection methods like
the matrix sign and matrix disk function; see, for example,
(Benner et al., 2005, Chapter 1) and Benner (2011).

In this paper, the functionality of MORLAB subroutines
for descriptor systems is illustrated reducing a benchmark
example, introduced in Section 2. For the reduction of
the example system, the generalized balanced truncation
(GBT) method will be used as shown in Section 3, refor-
mulated in the version from the MORLAB toolbox. Also,
the used spectral projection methods are presented in this
section. The computational results can be found in Section
4. In Section 5, a short overview about further model
reduction routines for descriptor systems in MORLAB is
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given. Finally, the conclusions of this paper can be found
in Section 6.

2. THE BENCHMARK EXAMPLE

b1

Fig. 1. A damped mass-spring system with a holonomic
constraint.

As benchmark example for a descriptor system, a damped
mass-spring system with a holonomic constraint is consid-
ered. Therefore, the i-th mass is connected to the (i+1)-st
mass by a spring and a damper with the coefficients k; and
d;. Also, the i-th mass is connected to an additional spring
and damper with coefficients k; and §;. Moreover, the first
mass is connected to the last one by a rigid bar. This
system, as shown in Figure 1, can be found in (Benner
et al., 2005, Chapter 3).

The vibrations of the resulting system are described by
the following second-order equations
Mp(t) = Kp(t) + Dp(t) — L) + Buu(t),
0= Lp(t), (4)
y(t) = Cpp(t),

where p(t) is the position vector, A(t) € R is the Lagrange
multiplier, M = diag(mi,...,my) is the mass matrix,
K,D € R9%9 are the tridiagonal stiffness and damping
matrices and £ = [1,0,...,0,—1] is the constraint matrix.
According to Figure 1, B, = e; is the input matrix
and three positions of masses are measured by C, =
le1, e, egfl]T, where e; is the i-th column of I,.

The system (4) is given in second-order form. For applying
the routines of the MORLAB toolbox, the system has to
be rewritten in first-order form. Therefore, the velocity
vector v(t) = p(t) is introduced and all states are collected

in z(t) = [p(t):’j,v(t)T,/\(t)]T7 such that the system (4)
can be rewritten in the form
I, 00 01, 0 0
[0 M 0] i(t)= |K D —L"| 2(t) + | Bu| u(t),
0 00 L0 0 0
— —_— ~—~— (5)
E A B
y(t) = [Cp 0 0] z(2).
c

This first-order formulation is an index-3 descriptor sys-
tem. Furthermore, the system parameters are set like in
(Benner et al., 2005, Chapter 3), which means the masses
are all taken as m; = ... = my = 100 and the spring and
damper coefficients are set to

k‘1:...:]{ig_lzligz...zlig_1=2, KJ1=/§1924,

di=...=dg_1=02=...=04_1=5, 6 =09, =10.
By construction, the system (5) is c-stable, i.e., the ma-
trix pencil AE — A is regular and Hurwitz. Most of the

published software like the model reduction routines in
the MATLAB Control System Toolbox® or the SLICOT
Model and Controller Reduction Toolbox, see Benner et al.
(2010), is not applicable for such systems due to the prob-
lem of the singular £ matrix. MORLAB provides appro-
priate algorithms to reduce such descriptor systems. Also,
the DSTOOLS provide a generalized balanced truncation
method, that is currently only applicable for non-singular
E matrices; see Varga (2016).

3. MODEL REDUCTION IN MORLAB
3.1 The Generalized Balanced Truncation

For the reduction of the system (5), the implementation
of the generalized balanced truncation method will be
used. This method is the generalization of the well-known
balanced truncation method to the case of descriptor
systems (1) with singular F matrices. For a detailed
derivation of the theory, the corresponding theorems and
the method itself, see Stykel (2004) or (Benner et al., 2005,
Chapter 3).

For asymptotically stable systems, the proper controlla-
bility and observability Gramians G,. and G,, are de-
fined as the unique solutions of the projected generalized
continuous-time Lyapunov equations
EGp.A" + AG, E" + PLBB" P} =0,
PrgpcP;T = gpc7
ETG, A+ ATG,E + PICTCP, =0, o
ngpopf = gpov
with P, and P, the left and right spectral projectors
onto the deflating subspace corresponding to the finite
eigenvalues of the matrix pencil A\E — A. The square roots
of the eigenvalues of the matrix product G,.ETG,,F are
the proper Hankel singular values of the system, which
are a measure for the controllability and observability of
the corresponding states. Zero and small proper Hankel
singular values are truncated in the generalized balanced
truncation to get the reduced-order model. For descriptor
systems, also improper controllability and observability
Gramians G,;. and G;, are defined. These are the unique
solutions of the projected generalized discrete-time Lya-
punov equations

AGi. A" - EGi.E" — QBB Q[ =0,
QrgicQZ = gica
ATGiA— BTG, E — Q[ CTCQ, =0, )
Q{gioQﬁ - giov
with @y and @, the left and right spectral projectors
onto the deflating subspace corresponding to the infinite
eigenvalues of the matrix pencil A\E — A. The square roots
of the eigenvalues of the matrix product G;. AT G;, A are the
improper Hankel singular values. Zero improper Hankel

singular values correspond to unnecessary algebraic con-
straints, which can be truncated.

(6)

(8)

For asymptotically stable systems, all the Gramians are
positive semi-definite. Therefore, they can be rewritten in
factorized form G,. = RPRZ;, Gpo = LpLg, Gic = RiR;fF
and G, = L;LT. Consider the skinny singular value
decompositions (SVDs)



Peter Benner et al. / [FAC PapersOnLine 51-2 (2018) 547-552 549

T 21 0 VT

A

LTAR, = Us0V,
where X1,Y, are diagonal matrices with the non-zero
proper Hankel singular values and © is diagonal with the
non-zero improper Hankel singular values. The partition-
ing in the first SVD results from the choice of the small
Hankel singular values, which will be truncated. In the
square root method, the following projection matrices

W= [L,,Ulz;%, LiU3®’%} :

_1
T= [valzl z) RZ-V?,@—%]
are used, such that the realization of the reduced-order
model (3) is computed as

(Er, Ay, B,,Cy., D) = (WTET, WP AT, W B, CT, D)
Er 0 Ar 0 Br
_ ({ & ETJ { o ATJ : {Bri] [Cy, C, },D)_

The idea in the MORLAB implementation is to exploit
the resulting block structure of this system to avoid the
explicit computation of the spectral projectors for solving
the projected Lyapunov equations (6)—(9). This is done by
decoupling the system (1) into its slow subsystem

Epap(t) = Agp(t) + Bru(t),
ys(t) = Cs (1),

where A\Ey — Ay contains all the finite eigenvalues of the
original pencil A\E — A, and its fast subsystem
Eioo(t) = AooToo(t) + Boou(t),

Yoo (t) = Coo(t) + Du(t),
where AF,, — Ay has only infinite eigenvalues. In this
case, the projected Lyapunov equations (6)—(9) simplify
on the subsystems. For the proper part containing the
potentially non-zero proper Hankel singular values, only

the generalized continuous-time Lyapunov equations
ErXpeAf + ApXpE] + ByBf =0, (12)
ETXpoAr + AT XpoEy + C{Cy =0, (13)
with a non-singular F; matrix, have to be solved. The
solutions Xy and X,,, correspond to the proper controlla-
bility and observability Gramians, respectively. The same
simplification also holds for the discrete-time Lyapunov

equations

A X AL — EL X, .EL — BoBL =0, (14)
AT X;,Ase — EL X;,E, — CL.C, =0, (15)
with a nilpotent E, where X, and X, correspond to
the improper controllability and observability Gramians,
respectively. The reconstruction of the complete system

Gramians from the solutions of the unprojected equations
is shown in (Stykel, 2002, Chapter 5).

(10)

(11)

3.2 Decoupling of Subsystems

The decoupling into the slow and fast subsystems is
equivalent to an additive decomposition of the transfer
function (2) as

G(s) = Gsp(s) + P(s),
with G, the strictly proper part, which corresponds to
the slow subsystem (10), and P the polynomial part, cor-
responding to the fast subsystem (11). This decomposition

is done by a block diagonalization of the matrix pencil
AE — A and the partitioning of the other system matrices
accordingly, such that

G(s)=C(sE—A)"'B+D

-1
_ E; 0 Ar 0 By
(o[ 2[4 1)) ]
=Ct(sEf — Ap) 'Bf + Co(8F0 — Aso) 'Beo+D.
Gap(s) P(s)

In MORLAB, block orthogonal transformations are used
for the block diagonalization computed by the matrix disk
function.

Let AX —Y be a regular matrix pencil with no eigenvalues
on the unit circle. Then the right matrix pencil disk
function is given as

disk(Y, X) = APY — P>,

where PY and P> are oblique projections onto the deflat-
ing subspaces corresponding to the eigenvalues of AX —Y
inside and outside the unit circle, respectively. For the
computation of these oblique projections, the inverse free
iteration method, see Bai et al. (1997) and Benner (1997),
and a subspace extraction method are used; see Sun and
Quintana-Ort{ (2004) and Benner (2011). Using both of
the oblique projections, block orthogonal transformation
matrices are derived to do the block diagonalization of
the matrix pencil. For the decomposition above, the disk
function method has to be applied on the modified matrix
pencil A(aA) — E, where the parameter « is chosen as

é > max{|A\| : A € A(A, E) \ {o0}},

such that the finite eigenvalues of AE — A correspond to
the eigenvalues of the scaled matrix pencil outside of the
unit circle and the infinite eigenvalues of AE — A become
the zero eigenvalues of the scaled matrix pencil. A more
detailed derivation with the formulated algorithms can be
found in (Werner, 2016, Chapter 5).

Note that the disk function method is also used for han-
dling unstable systems. After the splitting into finite and
infinite eigenvalues, the finite part has to be separated
into parts with stable and anti-stable eigenvalues. There-
fore, the disk function method is applied to the Cayley-
transformed matrix pencil A(A— E) — (A+ E). This step is
unnecessary for the asymptotically stable system (5). The
complete additive decomposition of transfer functions of
linear descriptor systems is implemented in the MORLAB
routine ml_adtf _dss. It should be noted that the disk func-
tion method is only suited for medium-scale systems since
the block diagonalization of the system matrices destroys
in general any sparsity structure. The advantage at this
point is, that the additive decomposition is independent of
the structure of the original system. Due to the modularity
and functionality of this approach, MORLAB is applicable
to unstructured, unstable dense systems and it was used
to transfer many different model reduction methods from
standard to descriptor systems.

8.8 Solving Lyapunov Equations

First, the generalized continuous-time Lyapunov equations
(12) and (13) have to be solved. In MORLAB, methods
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based on the matrix sign function are used for this type of
equations.

Let Y € R™ "™ be a matrix with no purely imaginary
eigenvalues. The Jordan canonical form of Y can be
written as
Calde 0 o
vosfs 85 o
where S is an invertible transformation matrix, J_ con-
tains the k eigenvalues with negative real parts and J; all
the n — k eigenvalues with positive real parts. Then the
matrix sign function is defined as

-y O 1
0 Ink:| S ’

with S the transformation matrix from (16); see, e.g.,
Roberts (1980). For matrix pencils AX — Y with no
purely imaginary eigenvalues and X and Y non-singular,
the matrix sign function (17) can be generalized. The
computation is done using a Newton iteration of the form

sign(Y) =S [ (17)

1/1
Yk+1 = 5 (Yk; + Ck;XYle) 5 }/b = K (18)
cx

where ¢ are scalars, chosen to accelerate the convergence
of the method. In the MORLAB implementation, the
Frobenius norm scaling

_¥lle

XY, X

is used in the sign function based methods.

To use the sign function for solving the matrix equation
(12), the iteration scheme (18) has to be applied on the
block matrix pencil

ET 0 AT 0
A=A { 0 Ef] [BfB}F _Af] '

With Yi oo = limg_, o Y, the iteration converges to

v —-Ef 0

hoe T 2B X ET Ey)”
where X, is the solution of (12). The resulting block
scheme is used to develop an iteration on the system
matrices. Additionally, the factorization of the solution

Xpe = RpRg is exploited to compute only full-rank factors
of By. The resulting iteration looks like

1/1 _
Apy1 = 5 <ckAk +eEr AL 1Ef> , Ag = Ay,

1
By = —— [By, e E+ A7 1Bl ,
k m[kackfk k]

The solution factor is then obtained by
1
7
Since the computation of the solution factor in (13) works
the same way, both solutions can be computed at the
same time using only one iteration on the A matrix. The
derivation of the dual Lyapunov solver is shown in Benner
et al. (1998) and implemented in the MORLAB routine
ml_lyapdl_sgn_fac. Like the disk function, also the sign
function method is only suited for medium-scale system
and will destroy the sparsity structure of the original

system.

By = By.

R, = E;lBk_m.

)

oo

=1

]

'Q ~

o RS

2 —e— Disk function method .

% nE 4- Sign ‘function L}‘/apunov sol‘ver T
1071°
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Fig. 2. Convergence of spectral projection methods.
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Fig. 3. Computed proper Hankel singular values.

The solution factor R; of the generalized discrete-time
Lyapunov equation (14) is obtained by the exact construc-
tion formula

Ry = [A Boo, ALl Boo Al Boo, -, (A Boo)’ P A Boo|

with v the index of the matrix F.,, which is the index of
the system. An analogous formula can be used for the fac-
torized solution of (15). Note that in our example v = 3, so
that R; = [A2) Boo, Ay EaoA! Beo, (A Eno)?AL Bol.
The implementation in MORLAB is provided in the sub-
routine ml_gdlyap_smith_fac using a Smith iteration.

4. NUMERICAL RESULTS

In this section, the single steps from the previous sections
are applied to the introduced benchmark example (5). The
number of masses was chosen as g = 1500, which leads
to n = 3001 states in the first-order system (5). All the
computations were done on a machine with one Intel(R)
Core(TM) i3-2100 CPU processor running at 3.10GHz and
equipped with 4 GB total main memory. The computer
is running on Ubuntu 12.04.5 LTS and uses MATLAB
8.0.0.783 (R2012b). The generalized balanced truncation
method is implemented in the ml_bt_dss function from
the version 3.0 of the MORLAB toolbox; see Benner and
Werner (2017). By construction, the example is c-stable.
That is why unnecessary computations for the decoupling
of stable and anti-stable system parts were turned off
by setting the optional argument for the dimension of
the deflating anti-stable subspace to 0. The MORLAB
function call was made by

[rom, info] = ml bt_dss(sys, opts),
where sys and rom are structs containing the full and
reduced-order models in first-order form, info contains
information of all used algorithms and the optional pa-
rameters are set by
opts = struct( ...
’stabdecopts’, struct(’Dimension’, 0),

’Tolerance’ , 1.0e-03).
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First, the decoupling of the subsystems, using the matrix
disk function, was performed to generate the slow subsys-
tem (10) of dimension ny = 2998 and the fast subsystem
(11) of dimension n, = 3. During the iteration steps of the
disk function method, the absolute change of the iteration
variable was measured and the four performed steps can
be seen in Figure 2. Afterwards, the matrix sign function
based dual Lyapunov equation solver was applied to the
matrices of the slow subsystem. There, the convergence of
Ay to —E; was measured and is also shown in Figure 2.

The reduced-order model was then computed using the
square root method. The desired order of the reduced-
order model was determined using the error formula of
generalized balanced truncation

ny
G = Gullu <237, (),

with ¢x(G) the k-th proper Hankel singular value of the
system G, to find a reduced-order, such that the H.,
approximation error is smaller than 10~3. The computed
proper Hankel singular values are shown in Figure 3.
One can see the fast decrease in the magnitudes of the
singular values such that for the required accuracy only
a reduced-order model of order r = 6, with ry = 6
and ro, = 0, is needed. The bound for truncating the
proper Hankel singular values is also shown in Figure
3. It has to be noted that, due to numerical errors,
the MORLAB routine recognized one improper Hankel
singular value with a magnitude of 107!%. That one was
automatically truncated by the routine itself. Otherwise,
it could be reduced as index-1 part of the reduced-order
system to an additional feed-through term of the form
*CrooA;i, B, =0, 0, O}T. Consequently, this improper
Hankel singular value is zero and does not influence the
reduced-order system. In general, the number of non-zero
improper Hankel singular values is bounded from above by

+

Ny, S min(z/m, vp, n00)7

where v is the index of the system, m the number of
inputs, p the number of outputs and n. the number of
infinite eigenvalues of AE — A. For the example (5), this
upper bound is 3. Since the system was strictly proper
by construction, it was expected that all improper Hankel
singular values are zero. In Figure 4 the absolute sigma
error of the reduced-order (r = 6) and the full-order
model (n = 3001) can be seen. The red dashed line is
the computed error bound of the generalized balanced
truncation 2 Zzirﬁ-l 6 (G) ~ 6.0382 - 1074,

The sigma plots of the full-order and reduced-order system
are both shown in Figure 5. There is no visible difference
between the two curves.

— 10~1 B
3
3
]
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1073 1072 107! 10° 10* 102

w
Fig. 5. Sigma plots of the full and reduced-order model.

5. FURTHER MODEL REDUCTION METHODS

Beside the generalized balanced truncation (GBT) meth-
od, there are several other model reduction methods for
the work with linear descriptor systems (1) implemented
in MORLAB. The following listing shows these routines in
the version 3.0 of the MORLAB toolbox:

ml_brbt_dss - bounded-real balanced truncation
ml_bst_dss - balanced stochastic truncation
ml_bt_dss - balanced truncation
ml_hinfbt_dss - H balanced truncation
ml_hna_dss - Hankel-norm approximation
ml_lggbt_dss - LQG balanced truncation
ml_mt_dss - modal truncation

ml_prbt_dss - positive-real balanced truncation

In the following, the important properties of these methods
are shortly mentioned.

For the model reduction of closed-loop systems, the
linear-quadratic Gaussian balanced truncation (LQGBT)
method is usually used. Here, the proper and improper
Gramians are replaced by the solutions of generalized
algebraic Riccati equations (AREs); see Mockel et al.
(2011) for more details on this method. A more general
approach of the LQGBT is provided by the H ., balanced
truncation (HinfBT) using a scaled version of AREs; see
Mustafa and Glover (1991). Another method is the bal-
anced stochastic truncation (BST). In case of m > p,
the proper controllability Gramian from the Lyapunov
equation (6) is used as in the GBT method. The proper
observability Gramian is replaced by the solution of an
ARE. BST preserves the minimum phase of the transfer
function and for invertible transfer functions, a relative
error bound is provided for |G (G — G,)||%.. . For more
details about this method see Benner and Stykel (2017).
Important methods in the context of mechanical systems
and electrical circuits are positive-real balanced truncation
(PRBT) and bounded-real balanced truncation (BRBT)
which preserve the positive- and bounded-realness of the
descriptor system, respectively. For both methods, AREs
have to be solved; see Reis and Stykel (2010) for more
details. The different AREs are solved in MORLAB using
Newton-type methods, which compute Lyapunov equa-
tions in each step using the matrix sign function method.

Besides the balancing-related methods, MORLAB also im-
plements a modal truncation method. The idea here is that
the peak behavior of the transfer function in the frequency-
response plot strongly depends on the finite eigenvalues of
AE — A with negative real parts close to the imaginary
axis. The states corresponding to the eigenvalues with
larger negative real parts are then truncated; see (Benner
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et al., 2005, Chapter 1). In the current implementation of
MORLAB, the disk function method from Section 3.2 is
used for this purpose. Finally, MORLAB also includes a
method to solve a best approximation problem, i.e., find-
ing a reduced-order model of a determined order, which
minimizes the approximation error in a certain system
norm. The resulting method is the Hankel-norm approx-
imation, which solves the best approximation problem in
the Hankel semi-norm. Also, the H., approximation error
is often better than for the balanced truncation method.
A detailed derivation of the method and its MORLAB
implementation can be found in Werner (2016).

For all of these model reduction techniques there is also
an adjusted implementation for the standard system case
E = I, in MORLAB using similar techniques as for the
descriptor case.

6. CONCLUSIONS

As an example for a linear continuous-time time-invariant
descriptor system with singular £ matrix, a damped mass-
spring system with a holonomic constraint was considered.
The generalized balanced truncation method, reformu-
lated as the version implemented in MORLAB, was then
introduced for the reduction of the resulting system. The
basic methods for the decoupling of descriptor systems
using the matrix disk function and for solving the occur-
ring Lyapunov equations were presented, which showed the
advantages and disadvantages of MORLAB as a model
reduction software for unstructured medium-scale dense
systems. The numerical results from the m1_bt_dss routine
were shown for the introduced example system. Also, an
overview about further routines of implemented model
reduction methods for descriptor systems in version 3.0
of MORLAB was given.

The presented example of the generalized balanced trunca-
tion shows the workflow of model reduction routines for de-
scriptor systems implemented in MORLAB. The toolbox
offers a broad spectrum of model reduction methods for
the work with general medium-scale descriptor systems.
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