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Abstract

A method is presented to obtain initial conditions for Smoothed Particle Hydro-

dynamic (SPH) scenarios where arbitrarily complex density distributions and

low particle noise are needed. Our method, named ALARIC, tampers with the

evolution of the internal variables to obtain a fast and efficient profile evolution

towards the desired goal. The result has very low levels of particle noise and

constitutes a perfect candidate to study the equilibrium and stability proper-

ties of SPH/SPMHD systems. The method uses the iso-thermal SPH equations

to calculate hydrodynamical forces under the presence of an external fictitious

potential and evolves them in time with a 2nd-order symplectic integrator. The

proposed method generates tailored initial conditions that perform better in

many cases than those based on purely crystalline lattices, since it prevents the

appearance of anisotropies.

Keywords: Smoothed Particle Hydrodynamics, SPH, Smoothed Particle

Magneto-hydrodynamics, SPMHD, Initial Conditions, Low Noise.

1. Introduction

1.1. Context

Smoothed Particle Hydrodynamics, SPH for short, was first introduced in

the late 70’s by Gingold and Monaghan [1] together with Lucy [2] as a La-
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grangian numerical method to solve the equations of hydrodynamics [3]. Since

then, the method has gained both popularity and robustness [4] and is widely

used today to simulate a wide variety of scenarios, ranging from its original

hydrodynamic cradle ([5], [6]) to modern fracture/elasticity studies ([7], [8]),

turbulence ([9], [10]), magneto-hydrodynamics ([3], [11], [12]) and relativistic

flows [13], not to mention a myriad of applications in industry including visual

effects in cinema [7]. Historically, the philosophy of SPH could best be identified

with the ideas behind the early PIC codes developed at LANL and maybe even

traced back to the beginnings of Weighed Residual Methods in the late 30’s as

a Collocation Method [14].

In the process of becoming the successful numerical method it is today, SPH

encountered many problems on its way, many of which were resolved: Consid-

erable time has been invested in studying the numerical properties of different

kernels ([15], [16], [17]), contructing a conservative formulation of the SPH equa-

tions not prone to numerical instabilities ([3], [11], [18]), dealing with arbitrary

boundaries ([19], [20]) or with the correct discretization of the Laplacian op-

erator -which is the mechanism responsible for dissipative effects- ([21], [22]).

However, little discussion has taken place around the creation of arbitrarily

complex, low-noise, initial conditions. We see now that as the method expands

in its scope, the need to initialise the particles with arbitrary mass density dis-

tributions becomes indispensable. In this manuscript we describe, examine and

offer a solution to this problem which is both straightforward and efficient.

1.2. Basics of Smoothed Particle Hydrodynamics

As mentioned before, SPH is a Lagrangian numerical method to solve the

equations of hydrodynamics. In their continuum form, the equations describing

the motion of a moving fluid are usually stated as:
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dρ

dt
= −ρ(∇ · v) (1)

ρ
dv

dt
= −∇p (2)

du

dt
= −(γ − 1)u(∇ · v) (3)

where d/dt is the material derivative, γ is the specific heat ratio, and the

state variables ρ,v and u correspond to the mass density of the fluid, its velocity

and its thermal energy per unit mass, respectively. The equation of state linking

the pressure p with these variables is usually chosen to be the ideal gas law:

p = (γ − 1) u ρ (4)

The SPH method replaces the continuous system with a set of point particles

with specific values of the fields ρa,va and ua with -a- the numbering index for

all the particles in the simulation. The smoothing approximation in SPH means

that the values of these fields are not Dirac-δ functions centred at ra, but they

rather spread out around it: They are smooth particles. The spreading is not

homogeneous, in fact it is concentrated at the centre and decreases radially

outwards. This radial dependence is given by the weight function W (with

support radius Ha) known as the interpolating kernel:

W (|ra − rb|, Ha) =
C

(Ha)d
K
(
|ra − rb|
Ha

)
(5)

where C is a constant which guarantees that W is normalised to unity, d

is the dimensionality of the problem, and K is usually chosen from a family of

functions known as the Wendland Kernels [17]. Throughout this manuscript we

use the 4th order Wendland Kernel (WC4 for short)1 defined as:

KWC4(q) = Θ(1− q)

 (1− q)5
(
8q2 + 5q + 1

)
d = 1

(1− q)6
(

35q2

3 + 6q + 1
)

d = 2
∨
d = 3

(6)

1For the WC4 kernel, the values of C are {3/2, 9/π, 495/32π} for the 1D, 2D and 3D cases

respectively.
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where Θ(q) the Heaviside-Step function:

Θ(x) =

 1 x ≥ 0

0 x < 0
(7)

A system of equations analogous to 1, 2 and 3 can be derived for the set of

smooth particles. The equations obtained are discrete and conserve the total

mass of the system, linear and angular momenta and the total energy down

to the precision of the time-integration algorithm. A formal derivation of the

equations can be found in [3], [7] or [23], we summarise the main results:

ρa =
∑
b∈Na

mbWab(Ha) (8)

dva
dt

= −
∑
b∈Na

mb

(
Sa
ρ2
a

Fab(Ha)

Ωa
+
Sb
ρ2
b

Fab(Hb)

Ωb

)
· rab (9)

dua
dt

= −
∑
b∈Na

mb
pa
ρ2
a

(vab · rab)
Fab(Ha)

Ωa
(10)

with rab = ra − rb, Wab(Ha) = W (|ra − rb|, Ha) and Fab(Ha) = F (|ra −

rb|, Ha). Also, F , Ω and the tensor S are defined as usual:

∇Wab(Ha) = −rabFab(Ha) (11)

Sa = −paI (12)

Ωa = 1 +
Ha

dρa

∑
b∈Na

mb
∂Wab(Ha)

∂H
(13)

Equations 1, 2 and 3 do not, however, include dissipative effects, which is why

equations 8, 9 and 10 exclude such dynamics too. The inclusion of dissipative

terms comes usually via viscosity ν, friction χ and conductivity κ:

dv

dt

∣∣∣∣
diss

= ν∇2v − χv du

dt

∣∣∣∣
diss

= κ∇2u (14)

A discrete version of these terms is also available in SPH:
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(
ν∇2v

)
a

= −
∑
b∈Na

mb α
v
b v

v
sig (vab · r̂ab)

rabFab
ρab

r̂ab (15)

(χv)a = χva (16)(
κ∇2u

)
a

=
∑
b∈Na

mb

(
αvb v

v
sig

(vab · r̂ab)2

2
− αub vusiguab

)
rabFab
ρab

(17)

where:

ρab = avg{ρa, ρb} Fab = avg{Fab(Ha), Fab(Hb)} (18)

and r̂ab is the unit vector joining particles a and b. The speed at which signals

propagate in the fluid vsig is taken as the fastest velocity present in the system,

and the coefficients αv and αu play the roles of viscosity and conductivity (ν

and κ resp.) and can be kept constant or can be set to evolve, change and adapt

as required by the problem. A good model for the temporal evolution of these

α-coefficients can be found in [12], [24], or [25]2. Equations 8, 9 and 10 together

with the dissipative terms 15, 16 and 17 and the evolution equations for the

α-coefficients constitute the main result in the SPH model.

2The evolution is usually given by a source-sink model:

dα

dt
= S −

α− αmin

τ
(19)

where τ is a characteristic decay time, αmin is the minimum value towards which α relaxes,

and S is a source terms indicating where the dissipation should be applied. Usual choices for

this terms are:

Sv
a = max

b
{0,−∇ · va} Su

a =
Ha|∇2u|a
2
√
ua + ε

(20)

with the divergence, and laplacian operator given by their SPH counterpart (See [21] for

details):

(∇ · v)a =
∑
b

mb

ρb
vab · rabFab(Ha) (21)

(∇2u)a = −2
∑
b

mb

ρb
(ua − ub)

Fab(Ha)

rab
(22)
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1.3. The problem of Initial Conditions in SPH

The SPH equations lay down the rules for the time evolution of the state

variables but say little about the initial condition of such fields. Some fields, like

the velocity or the thermal energy, can be defined at will, but when it comes to

the mass density ρ, subtleties appear and the problem becomes non-trivial, at

least in its most general formulation where geometries and density profiles are

arbitrarily complex. These subtleties can be better captured by looking at the

SPH density estimator in Eq.8:

ρa =
∑
b∈Na

mbWab(Ha) (23)

where the summation runs over the set Na formed by all the particles b at

a distance Ha or less from particle a - i.e. over its neighbours.

Using this estimator, we see how ρa does not only depend on its own mass

ma, but also on the masses of the particles around, and more importantly per-

haps, on the relative positions3 from its neighbours.

Thus, the problem of finding an initial distribution of particles consistent

with a prescribed density field translates into an inverse problem where both

the mass and the position of every particle have to be found knowing only the

desired density profile ρa; solving this -efficiently- is not a trivial task.

1.4. Short review of solutions to the density initialisation problem

Over the years several methods have been proposed that, one way or another,

circumvent this issue. These approaches either take advantage of symmetries

inherent in the system, or rely on approximations that might not strictly hold,

but lie within the approximation errors of the SPH formalism.

3The dependence of ρ on H is only apparent since H is completely defined by the particle

positions. Details will be discussed later, but can also be found in [3], or [12].
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1.4.1. Variable mass methods

The first kind of attempt is to make use of the ma coefficients in the density

estimator in Eq.23 to obtain any desired profile. The idea is to begin with

a crystalline structure with homogeneous particle density, that is, a structure

where:

na =
∑
b∈Na

Wab(Ha) = n = constant (24)

and simply choose the appropriate mass ma for each particle to obtain the

desired mass density profile: ρa = mana. This approach, although intuitively

correct, has a few disadvantages: First, it implicitly assumes the following ap-

proximation to hold:

ρa =
∑
b∈Na

mbWab(Ha) ≈ ma

∑
a∈Na

Wab(Ha) (25)

which is only valid in the case of slowly varying, or constant, mass distribu-

tions; Secondly, it can lead to interactions between particles of different masses,

which, as noted by others (See [26] for example), produces undesired numerical

artefacts. For that reason, most modern implementations avoid the ”different

mass” approach.

With this in mind, our task transforms into placing N particles of equal mass

such that the SPH density estimator best approximates a density distribution of

our choice.

1.4.2. Remapping or Stretching methods

The second kind of solutions (see e.g.[26] and [27]) can be used in problems

with high degrees of symmetry: usually cylindrical, spherical, or in general, a

density profile depending on only one variable (see [12]). The idea is to create

a radial mapping from an homogeneous, crystalline configuration (where ρ0 is

constant), to a profile with a definite radial dependence ρ?(r). The crystal

positions r0 are mapped into the desired positions r via a radial transformation
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r = ξ(r0) defined by:

dξ

dr0
∝ ρ0

ρ?

(r0

r

)d−1

(26)

with d the dimensionality of the problem and subjected to the boundary

conditions: ξ(0) = 0 and ξ(R) = R. The integration of Eq.26 can be carried out

both analytically or numerically given the complexity of the problem at hand.

A different implementation can be found in [12] and [28] where, starting on

one end of domain L = [xmin, xmax], the interval is scanned to find the adequate

position for each particle while ensuring one thing: the particles should maintain

their relative position in the mass distribution function. The implementation of

this scanning comes down to finding the root of the function:

f(x) =

∫ x
xmin

ρ?(x) dx∫ xmax

xmin
ρ?(x) dx

− x− xmin

xmax − xmin
(27)

where the solution x will determine the position of the particle. It must be

noticed that in spherical or cylindrical problems where the initial configuration

is a cartesian crystalline structure, the remapping creates numerical artefacts

and the results are not adequate as a suitable initial condition.

The stretching method does not work in geometries with fewer symmetries.

However, within the limited cases where the method does works it seems to give

fast results whose errors scale down with the number of particles as shown by

Fig.1.

1.4.3. Relaxation methods

Another alternative that has been used throughout the history of SPH is that

of a relaxation ”stage” prior to the simulation as documented in [29] and [30].

The idea behind is to simulate usual SPH dynamics under two artificial effects:

That of an external potential and heavy damping. The first allows the particles

to replicate arbitrarily complex density profiles in virtually any geometry, and

the second is put forth to accelerate that process by damping the dynamics.

These relaxation techniques can deliver low-noise results but are well known

to be time consuming and usually only viable when the net forces are expected
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Figure 1: Scaling of the relative error ε with the number of particles N . The target density

profile used was ρ?(r) = exp(−5r) in the interval [0, 1]. The stretching map was calculated

by integrating analytically and numerically Eq.26 and using the scanning method as well. We

see an N−3 scaling in all three methods for values of N up to 2000 particles where it attains

a relative error of ε = 10−5. The precise definition of ε is given in section.3.

to vanish at t = 0. The ALARIC algorithm, which will be presented shortly,

encompasses the ideas of these typical relaxation methods and builds on them

so as to retain the low-noise results and reduce the computational time. In a

later section a comparison is offered to demonstrate the relative improvement

of ALARIC with respect to typical relaxation schemes.

1.4.4. Inertia-Free methods

Another option is the Weighted Voronoi Tessellation, or WVT, method in-

troduced by Diehl et. al. [28]. The idea behind the method is to calculate

particle displacements directly from the proximity of each particle to its neigh-

bours. The idea relies on using the forces acting over the particles to construct

the immediate velocity instead of the acceleration4

4This can be identified with the assumption of a low Reynolds number where viscous effects

are overwhelmingly dominant ( See [31] for example ) or from a more classical perspective,
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1.5. Introducing ALARIC: An ALgorithm for ARbitrary Initial Conditions.

The ALARIC method presented in this manuscript builds on the relaxation

algorithms and the ideas behind the inertia-free methods to deliver a robust

tool to construct low-noise and arbitrarily complex density distribution in a

relatively short time. ALARIC emerges almost naturally from the standard

set of SPH equations which, as a result, can be easily included into any code

without having to redesign it entirely.

The main idea behind our algorithm is to use the very same SPH equa-

tions described in the previous section to calculate hydrodynamic forces but

includes 1.) an external potential to drive the particles to the desired density

configuration, 2.) friction and viscosity, to strongly damp their motion towards

the sought final distribution, 3.) sensible criteria for artificially nullifying the

velocities of all the particles - which effectively stops low-k oscillations and re-

duces the inertial forces of the system to zero, 4.) a particle-splitting algorithm

(reminiscent of a multi-grid approach in mesh-based numerical methods) which

efficiently converges the slow low-k features first, when the number of particles

is small, and the fast high-k features last, when the number of particles is big

and viscous mechanisms dominate their motion.

This paper is organised as follows: Section 2 describes the equations be-

as a world where Aristotelian Physics is correct.. Hence our classification as an Inertia-Free

method. The particle displacement is directly calculated by accumulating the weighted forces

due to its closest neighbours:

∆ri = µHi

∑
j∈Ni

W (|ri − rj |, Hi) (28)

Where µ is a free5 parameter that represents the strength of the interaction and the function

W (r,H) represents the weight of each contribution. Dielh et. al. worked with a weight that

resembled a repulsive r−2-type of force with the suggestion to replace it with the SPH kernel.

This suggestion however was never implemented in their paper.

The method was tested thoroughly and offered converged results in about 100 iterations.

The results were tested by setting 8000 particles of mass 1 and equal H-field to reproduce

uniform and non-uniform density profiles. They measured the interpolation accuracy and the

particle noise showing the WVT outperforms all the other methods considered in the paper6.
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hind ALARIC, including a detailed exposition of its main ingredients. Section 3

touches certain topics related to the quality of the converged solution. Numer-

ical results that illustrate the efficiency of the proposed methodology are pre-

sented in Section 4. Section 5 tests ALARIC against state-of-the-art methods,

and includes a discussion on how the initial conditions obtained with ALARIC

compare against purely crystalline lattices in a point-explosion test. Finally,

conclusions are presented in Section 6.

2. ALARIC’s main ingredients

2.1. External Potential

The particle initialization method proposed by us introduces a fictitious

potential ψ that comes into the equations as a pressure field. The effective force

felt by the particles is:

∇peff = ∇(p− ψ) (29)

The fictitious potential is constructed from the desired density profile ρ?

through the assumed equation of state:

ψ(r) = (γ − 1) u ρ?(r) (30)

The best results for our algorithm have been obtained by using an iso-thermal

model of the fluid. This means the internal energy of each particle ua will

remain constant throughout the run and is usually initialised to be constant

in space. Since we are restricting ourselves to the ”equal mass” approach the

mass density ρa can be computed from the node density na. Under the ”equal

mass” approach, both fields Ha and na (in a d-dimensional scenario) are usually

coupled via the equations:

na × (Ha)d = const. (31)

na =
∑
b∈Na

Wab(Ha) (32)
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where the constant in equation 31 is usually a measure of the number of

neighbors that every particle interacts with. This system of equations can be

solved self-consistently once the positions of the particles are known, meaning

the fields H and n should not be regarded as new variables, but rather as

intrinsic, or natural, properties of any set of points.

2.2. Friction and Viscosity

If friction and viscosity are present in the system, the appropriate SPH

equation of motion are given by:

dva
dt

=

(
dva
dt

)
ideal

+

(
dva
dt

)
visc

+

(
dva
dt

)
fric

(33)

where each individual term is given by:

(
dv

dt

)
ideal

= −
∑
b∈Na

m

(
Sa
ρ2
a

Fab(Ha)

Ωa
+
Sb
ρ2
b

Fab(Hb)

Ωb

)
· rab (34)

(
dv

dt

)
visc

= −
∑
b∈Na

m αb vsig (vab · r̂ab)
rabFab
ρab

r̂ab (35)(
dv

dt

)
fric

= −χva (36)

Where the field α has been set to evolve according to the equations presented

in [24] and [25]7. Finally, the numerical value for the friction coefficient χ that

offered optimal results was χ = 2.

2.3. Sensible criteria for nullifying the velocities

Its important to keep in mind that the main goal of ALARIC is to obtain

a suitable state to be used later as an initial condition in an SPH simulation.

It is altogether unimportant how that solution is reached. This means we are

free to temper with the evolution of all and every state variable at will, as long

7With the numerical value for αmin = 0.0
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as we can make our simulation converge faster. With this in mind, we have

found that nullifying the velocities of the particles every certain time interval τ

helps to avoid low-k oscillations which would be otherwise essentially immune

to viscous dynamics.

An adequate interval τ can be found by choosing the shortest of the following

two characteristic times:

Crossing time (τcross). This characteristic time is estimated using a character-

istic speed, like the speed of sound for example, and a characteristic length

coming from the geometry of the computational domain:

τcross =
L

cs
=

L√
γ Pρ

(37)

Near Equilibrium (τNE). A second characteristic time8 is estimated as the time

interval [0, τNE] such that:

Ek(τNE) > Ek(τNE + ∆t) (38)

where Ek is the total kinetic energy of the system:

Ek =

N∑
a=1

mv2
a

2
(39)

The shortest of these two characteristic times is used to provide a sensible

time interval τ at the end of which we will bring all the particles to a sudden

stop by setting their velocities to zero.

τ = min{τcross, τNE} (40)

In spite of the use of velocity nullification to accelerate the convergence,

there might be scenarios that still take excessively long to converge. Some of

8This choice was inspired by a swinging pendulum whose kinetic energy is maximum pre-

cisely at the point where the pendulum position coincides with its equilibrium position. Al-

though the degrees of freedom in a typical SPH system are considerably larger than that of

a simple pendulum, this criteria has offered relatively good results, as will be shown in the

following section.
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them seem to approach a regime characterised by oscillations of the density dis-

tribution around the desired profile whose period can be close to τ and therefore

the constant nullification of the velocities becomes redundant and ineffective.

To avoid this, a small change to the characteristic time has been imple-

mented: to increase τ every time the particles are brought to a sudden stop:

τnew = (1 + θ)τold (41)

Optimal results have been obtained in the examined cases, using θ = 0.1.

2.4. Particle Splitting

The last ingredient in ALARIC is inspired by multi-grid approaches com-

monly used in mesh-based numerical methods. The idea is to first pursue a quick

convergence of the coarse, low-k, features of ρ? with a fraction of the desired

number of particles N , denoted by N0. Once this simulation has converged to

our desired profile ρ?, each particle is then replaced by a set of p new particles

positioned at ra + qa,i with i ∈ {1, .., p}. We are free to choose the precise

geometry of the newly created p particles. However, in our experience, good

results have been obtained using the geometric arrays depicted in Fig. 2 where

the arrows depict the displacement vectors qa,i. They start at the position of

the old particle and end at the positions of the new particles.

Their orientation follows neatly organised patters: left/center/right in 1D,

a triangle with its center occupied in 2D and a tetrahedron, also with its center

occupied (similar to a methane molecule), in the three-dimensional case9.

The magnitude of such displacements is chosen so as to avoid overlapping

with other, newly-created, particles that arise from neighbouring old particles.

This can be accomplished by setting the magnitude of every qa,i proportional

to the local inter-particle-spacing which can be obtained by scaling down the

support radius Ha of the old particle. For a d-dimensional scenario we propose:

9These arrangements imply the values for p = {3, 4, 5} for the 1, 2 and 3 dimensional cases

respectively.
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Figure 2: Schematic representation of the geometric arrays used during the particle-splitting

algorithm. Shown arrays for 1, 2 and 3 dimensional cases.

‖qa,i‖ =
2Ha

d
√
p NH

∀i ∈ {1, · · · , p} (42)

where NH is the approximate number of neighbours each particle interacts

with10. This splitting can be continued, i-times for example, until the particles

are abundant enough to meet our initialization requirements.

3. Quality of solution

In this brief section we address two important questions about the quality

of the density profile that we encounter at the end of the simulation. First,

we propose a measure of the agreement between the current density profile and

the desired density profile, and secondly, we present the necessary conditions to

ensure that such measure will, indeed, tend to zero as the two profiles approach

each other.

3.1. Ensuring convergence

The use of ALARIC will drive our system to a state of equilibrium, that is,

a state where the velocities are zero, and the forces between the particles are

balanced: ∇peff = (γ − 1) u ∇(ρ− ρ?) = 0. This condition is fulfilled whenever

the following condition holds true:

ρ− ρ? = ρ0 = constant (43)

10This formula can be easily obtained by considering the volume element assigned to the

old particle, and splitting it into p, smaller, fragments.
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Unless ρ0 equals zero our density will not be equal to the desired density.

To make sure this is the case, the mass m of the particles is being re-calculated

every time the velocities are nullified. We set it to be equal to:

m =
1

N

∑
a

ρa
na

(44)

This choice for m ensures ρ0 = 0 in the final state and allows our system to

evolve to a state of equilibrium characterised by a mass density ρ = ρ?.

3.2. Monitoring the Errors: ε and ε̇

Evolving the system using the equations implemented in ALARIC will, in

due time, converge to the sought initial state characterised by ρ = ρ?. The

quality of the converged state can be monitored in time using:

ε =

∫
‖ρ(r, t)− ρ?(r)‖2dV∫
‖ρ?(r)‖2dV

=

∑N
a=1(ρa − ρ?(ra))2/na∑N

a=1 ρ
?(ra)2/na

(45)

Ideally, the simulation must be run until ε falls below a certain tolerance

level. In some cases, however, our limited number of particles impedes us to

reach such tolerances, hence it is wise to consider an alternative threshold de-

rived from the derivative of the error: ε̇ = dε/dt. This threshold helps detect

cases where the time trace of ε stagnates and becomes flat (ε̇ ≈ 0). The rea-

sons behind this flattening will be discussed in the following sections and in the

Appendix.

It must be noticed that the geometric patterns used during the particle

splitting shown in Fig.2 are not perfect and can introduce a small amount of

noise into our ε-trace. This can set back our error estimate several orders of

magnitude trashing our efforts for a faster convergence and making the use

of particle-splitting counterproductive. It is thus wise, not to use too many

stages during the simulation and not to set error tolerances too low during the

intermediate stages of the multi-grid simulation.
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Figure 3: Illustration of the target function ρ? and the meaning of the parameter ∆. The

value ∆ = 0.1 was used for this plot.

4. Numerical Results

We proceed now to discuss several examples that illustrate the power of the

proposed methodology and explore some of its more salient features.

4.1. Impact of ALARIC’s ingredients on the convergence.

To illustrate the performance of our method in a one-dimensional case, we

will use 300 particles to recreate the following density profile:

ρ?(r) = (1 + ∆)− cos(5r) exp(−5r2) (46)

The shape of ρ? and the meaning of ∆ are both shown in Fig.3. We proceed

by initialising the particles with a flat and homogeneous density and we let them

evolve using our modified SPH dynamics. The threshold on the density error

has been set to εmin = ε̇min = 10−8.

Fig.4 shows the time traces of the density error in eight different runs with

∆ = 0.0. Each run includes a new combination of ALARIC’s ingredients to its

dynamics: The first run is a reference run, it simply shows the evolution of the

system under the effect of the external potential, but no viscosity is present, no
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Figure 4: A log-log plot of the time traces of ε for 8 different simulations. Every simulation

represents a different combination of the available ingredients.

friction, and the velocities are not being nullified. The impact of ALARICs last

ingredient, the particle splitting, will be studied in subsection 4.2.

Runs 2, 3 and 4 include viscosity, friction and velocity stopping separately.

We see how the time trace of the density error in each case decreases much

faster than the reference case. In particular, we can see how viscosity alone

softens the ε-trace while friction alone, although faster, has a noisier ε-trace.

Run 3 corresponds to the implementation of a typical relaxation algorithm as

described in [29].

Runs 5, 6 and 7 combine the ingredients in pairs, while run 8 combines all

the ingredients at once. We see how runs 6 and 8 completely overlap, in fact,

its quite difficult to notice their individual traces. Runs 6 and 8 performs better

than any other combination so far. The reason behind their similarity comes

from the fact that the added viscosity in run 8 softens the time-trace of ε, but

has little effect on the overall convergence.

Table 1 summarises the number of time-steps required in each case to con-

verge, the real computational time spent in each simulation, and the residual

error ε left at the end of the run. The simulations have been ranked from fastest
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to slowest.

Run TimeSteps CPU time [s] Residual ε

Reference > 10000 > 100 0.1700

Viscosity (V) > 10000 > 100 0.0034

Velocity Stop (S) > 10000 > 100 0.0013

S + V > 10000 > 100 0.0002

Friction (F) 6841 64 0.0002

F + V 6486 78 0.0002

S + F + V 4218 49 0.0002

S + F 4219 36 0.0002

Table 1: Performance comparison between the 8 runs.

We can clearly see how the extra computation of the viscosity term in run 8

makes every time-step a little bit slower than run 6. On the other hand, the use

of viscosity softens, in general, the trace of the density error making easier the

identification of its convergence through the ε̇ threshold. To better appreciate

this effect Fig.5 presents the traces of the time derivative of the error traces

(ε̇ = dε/dt) for runs 6 and 8.

A question remains: Is the (S+F +V ) combination worth the extra compu-

tational time compared to the (S+F) approach? In our experience, the presence

of dissipative dynamics, although slower, prevents the development of fast oscil-

lations which do not crash the run but create excessive amount of noise which

disrupts the convergence towards a relaxed state. We will use the (S + F + V )

dynamics on every run to come.

4.2. Impact of the particle-splitting on the convergence

In this section we illustrate the effect of splitting particles on the overall con-

vergence process. To do so we will replicate the density profile ρ? from equation

46 with 909 particles and ∆ = 0.0. We will do that in three different ways:

Firstly, we will initialise 909 particles, and let them evolve with the (S+F+V)-
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Figure 5: A log-log plot of the time traces of ε̇ for 3 different simulations. The viscosity

present in run 8 (S + F + V) makes the time trace of ε̇ fall a little bit faster than that in run

6 (S + F). The effects of viscosity are more visible in the last stages of the simulation, where

big displacements have already taken place, and only small inter-particle motion remains. For

comparison, the time trace of ε̇ in run 1 (Reference) is also offered. The time traces does not

stop immediately after falling below the threshold because the condition for convergence is

not evaluated at every time step, but every τ seconds.

dynamics. Secondly, we run a simulation that starts with 303 particles and is

equipped with a 1-stage particle splitting. Thirdly, we initialise 101 particles

but perform a 2-stage particle splitting. All three runs will end up with 909 par-

ticles in their final stages, and all of them are run until convergence is obtained.

Fig.6 shows the time-trace of the three simulations.

An important phenomenon is illustrated here, the 1-stage run is indeed faster

than the 0-stage one. Partially due to the longer time step allowed by a smaller

number of particles before the splitting, and partially because viscosity is more

efficient after the splitting when the number of particles is greater.

We can also see the effect of the noise introduced by the particle splitting. In

fact, the noise created in the 2-stage run is big enough to send the ε-trace above

the trace of the 1-stage run making it effectively slower. In conclusion, the noise

created by the particle splitting is acceptable once: after the low-k features of
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the profile have been replicated, but not when the particles are approaching the

delicate equilibrium characteristic of a converged run. We will run our scenarios

with 1-stage particle splitting at most.

Figure 6: ε-traces for 3 different runs, each with different number of particle splitting stages.

The dotted lines at times t1 and t2 help identify the precise moment when the particles

multiply in the 2-Splitting simulation. The 1-Splitting simulation has only one splitting event

at t = t3. Although the fact that t2 < t3 presages a better performance of the 2-Splitting run

in comparison with the 1-Splitting run, as the simulations evolve, we see how the time trace

of the latter decays more rapidly. In this example, the use of more than one splitting event is

counterproductive.

4.3. Impact of the parameter ∆ on convergence.

An important feature of the desired density profile is the strong depression

around the origin where it attains the value ρ(0) = ∆. In this section we will

use a 1-stage particle splitting approach to illustrate the effect that ∆ has over

the convergence. To do so, we run 6 different simulations with the following

values for ∆:

∆ =

{
0,

1

100
,

5

100
,

1

10
,

5

10
, 1

}
(47)
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The runs begin with N0 = 101 in the initial stage11, and 303 in the final

stage. The results are summarised in Fig.7.

By looking at the shape of the individual time traces we can categorise the

time traces into two, well-defined, groups: The first group, composed by the

runs with ∆ ≥ 0.1 seems to converge using the ε criteria; This means that here

the error estimator falls below the proposed threshold on ε = 10−8. The second

group, that where ∆ < 0.1, did not converge on ε but on ε̇, meaning that the

density error could not go further down and it flattened.

This behaviour hints at the existence of a lowest-possible error that the

system can attain, and more importantly, it shows that this value seems to

increase as ∆ decreases - that is, it becomes harder to replicate scenarios with

ever low-density regions.

Figure 7: Time traces correspond to simulations with equal configurations but different values

of the parameter ∆. The time traces show different behaviours which can be grouped into

two distinct categories: Convergence in ε (For ∆ > 0.1) and convergence in ε̇ (For ∆ < 0.1).

The smallest possible value of ε can be estimated using only a few assump-

11The reason for the odd choice of number of particles (101) has to do with ensuring that

one particle always sits at the bottom of the density well, at x = 0.
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tions (the details of the calculation can be found in the Appendix). Table 2

compares this theoretical estimate with the saturated values obtained form the

flat lines in Fig.7.

Parameter ∆ εteo.min εstag

0.00 1 · 10−4 2 · 10−4

0.01 7 · 10−5 1 · 10−4

0.05 9 · 10−6 2 · 10−5

0.10 8 · 10−7 2 · 10−6

0.50 1 · 10−9 < 10−8

0.10 8 · 10−11 < 10−8

Table 2: For different values of ∆ we compare the values of the density error at which the

simulation stagnates εstag with a theoretical estimation of the lowest possible error attainable

in such simulation εteo.min. Notice how the measured stagnation value of ε always falls above

the theoretical minimum.

Table 2 clearly shows how the measured error is always above our theoretical

minimum. The cases where a convergence in ε was achieved (∆ > 0.1) the

saturation value for the error must, logically, lie below the error threshold used,

i.e. must be somewhere below 10−8 - Incidentally, the theoretical estimation for

these cases also falls below this threshold.

As a final illustration of the behaviour of the relaxed particles around the low-

density region we present in Fig.8 the radial dependence of the density profiles

for 1, 2 and 3-dimensional runs. In every case we see that a single particle

resides at the bottom of the density well. This peculiar final state is key in

understanding our estimation of the lowest possible error estimation presented

in the appendix and included in many of the graphs presented so far.

The theoretical lower limit on ε should intuitively be a function of the number

of particles N and the parameter ∆. The calculation of the theoretical minimum

for ε can be done through the following formula, whose derivation can be found
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Figure 8: Radial Density profile for multidimensional simulations. The number of particles in

the d-dimensional case obeys a scaling formula of the form N = N0 · ld where the coefficients

N0 and l have been arbitrarily set to N0 = 77 and l = 7.

on the Appendix:

εteo.min =
Vλd

Q

( m

Vλd
−∆

)2

(48)

Where V is a constant, Q depends on ∆, and m and λ depend both on ∆

and N . To see the direct dependance of ε on N and ∆ Fig.9 shows contour

plots of equal ε for different values of N and ∆ for the 1, 2 and 3-dimensional

cases.

Fig.9 depicts a behaviour of ε that agrees with our preconceptions of the

theoretical minimum: For a fixed value of ∆, increasing the number of particles

allows us to lower the error in the estimation, and analogously, for a fixed number

of particles, increasing the numerical value of ∆ makes the density profile easier

to be replicated, thus lowering the error estimate.

4.4. Flexibility of the external potential formulation

The use of an external potential finds its most salient advantage in its flex-

ibility; We are not required to limit our expectations to density profiles with
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Figure 9: 1D(left), 2D(center) and 3D(right) contour plots of the theoretical minimum esti-

mation εtep.min(N,∆) in the domain {N0 · ld, N0 · ld+3} × {10−3, 100}. The coefficients N0

and l have been arbitrarily set to N0 = 77 and l = 7. We can see how εteo.min decreases for

higher number of particles, and increases for lower values of ∆, as expected.

high degrees of symmetry, but we are free to set our external potential using

any desired density profile. As an example of this we will use 10K particles in

a 2D unit-ball domain to replicate a desired mass density ρ? given by:

ρ?(r, θ | p) =
1

2
+ 2r2 exp

[
− 4

(
r − 1

5

)2]
sin

[
p

(
θ + log r

)]
(49)

with p a flexible parameter. The resulting scenarios for p = {1, 2, 3} are

shown in Fig.10 and Fig.11. Specifically, Fig.10 depicts the set of particles and

illustrate how they gather around certain regions, and deplete others, to recreate

the high and low density regions characteristic of ρ?.

Figure 10: Particle mesh for the scenarios corresponding to ρ?(r, θ| 1), ρ?(r, θ| 2) and

ρ?(r, θ| 3), respectively.

Fig.11 shows the resulting density field associated with the particle distri-
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bution presented in Fig.10. Here, the colour palette has been chosen to best

separate the ’valleys’ form the ’hills’ of ρ?.

Figure 11: Density field for the scenarios corresponding to ρ?(r, θ| 1), ρ?(r, θ| 2) and ρ?(r, θ| 3).

5. Discussion

5.1. Performance of ALARIC against inertia-free methods.

This section has the only purpose to compare ALARIC against what can

be considered the state-of-the-art methods: The WVT method. We propose

the test used in their paper 12 to illustrate their method. We use 2000 parti-

cles of equal mass to replicate a uniform density profile in a circular domain

and compare the outcome of the WVT method and of ALARIC at differ-

ent stages of the run. Initially, the particles are arranged in the same ran-

dom configuration for each method. The comparison shots will take place at

TS = 1, 10, 100, 1000, 10000 where TS is the number of time-steps. As men-

tioned before, Diehl et al. only implemented a version of their algorithm where

the kernel used was of the r−2-kind, here we will also present a version of the

WVT algorithm that uses the SPH kernel. Finally we will compare also against

a naively constructed inertia-free method coined AFC as in Away-From-Closest.

The AFC method simply displaces each particle an amount ∆r away from its

closest neighbour. The strength of the displacement is also regulated by a free

parameter µ which is linearly brought down to zero in the course of the run.

12In Fig.3 of Dielh et. al.[28]
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Figure 12: Particle configuration at different stages of the run (TS = 1, 10, 100, 1000, 10000)

for the AFC method, the WVT method using both the r−2-weight and the SPH kernel and

ALARIC. It can be seen how, in less than 100 TS, the WVT couple already delivers reasonably

homogeneous configurations. It is not until TS=1000 that ALARIC obtains similar results.

The naively constructed AFC method is quite noisy and performs the poorest.
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Fig.12 shows the successive snapshots of the particle configuration at dif-

ferent time-steps. It is clear to the naked eye how the WVT method delivers

visibly homogeneous configurations as soon as TS=100. The AFC method is

quite noisy and does not offer a sensible solution until the very end of the

run. ALARIC obtains a reasonably homogeneous profile somewhere between

TS = 100 and TS = 1000.

The end results of all the methods at TS = 10000 are almost indistinguish-

able to the naked eye with the exception perhaps of the AFC method where

patches of hexagonally packed regions are separated by what can be considered

grain boundaries.

In pursue of a more formal approach, Fig.13 offers the time-traces the relative

error ε for each of the candidates throughout the whole run. We can clearly

see the decisive advantages of each method. The WVT method is capable of

reducing the relative error ε quite early in the run and reaches a minimum

error of about 10−3 by the end of the run. The time-trace reveals how the

minimum value of ε is actually achieved at around TS = 1000 and then it

seems to stagnate, even though the parameter µ still decreases towards zero.

ALARICs time-trace on the other hand takes some time to start decreasing,

but by TS = 100 it has already matched the relative error of the AFC method,

and by TS = 200 that of the WVT couple. ALARICs time-trace seems to

stagnate after the first thousand time-steps with the difference that the error

is much lower, approximately 10−5, that is two orders of magnitude lower than

the others. As expected the AFC offers a noisy time-trace which is always

outperformed by the WVT methods.

This comparison shines light on the pros and cons of each method, we con-

clude the WVT to be a fast way of achieving reasonable results, while ALARIC

offers a low-noise solution in twice or three times the number of time steps. In

real computational time however, every time-step of ALARIC is almost twice

as longer than in the WVT run since more terms have to be added and a proper

time integrations takes place. All in all, ALARIC takes roughly ten times longer

that the WVT method to converge but offers results whose relative error is one
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Figure 13: Time-traces of ε for all the methods.

hundred times smaller.

5.2. Performance of ALARIC-produced IC in a point-explosion test

This section will try to explore and compare how an initial condition obtained

using ALARIC performs with respect to initial conditions created using perfect

crystal lattices. To do so, we will run a point-like explosion using our full SPH

engine and see how the shock-wave is affected by the inherent asymmetries of

crystal lattices. We will use approximately 40K particles in a two dimensional

square [−0.5, 0.5]× [−0.5, 0.5] with periodic boundary conditions, and will place

a total amount of energy E0 in the system distributed as follows: Half of the

energy will be placed in particle −a− which is chosen to be the closest to the

origin (0, 0), and the other half will be evenly distributed among all the other

remaining particles. The pressure in the central particle pa is much greater than

its surroundings and it creates a shock-wave as it propagates radially outwards.

The wave-front ought to be circular in shape since the surrounding media is

assumed to be homogeneous and isotropic.

The initial condition consists of a static medium with homogeneous density

ρ = 1. We take three approaches to replicate this configuration: The first two
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options place the particles along Cubic and Hexagonal Close-Packing lattices.

The third option uses ALARIC to position 40K particles into a desired density

ρ? = 1. Fig.14 shows the wave fronts of the point-like explosions at time 0.09s.

To better capture the asymmetry in the explosion we have decided to plot the

velocity divergence field.

Figure 14: Snapshot at time t = 0.09s of the point-like explosion test. We plot (∇·v) to better

capture the shape of the wave-front. The three graphs correspond to the use of three different

underlying crystal lattice in the initial condition: Cubic Lattice (a), Hexagonal-Close-Package

(b) and a crystal lattice obtained by using ALARIC with a flat target density profile (c). We

see how the crystalline structures (a) and (b) seem to have preferred directions of propagation

while (c) is the only one who offers an homogeneous and isotropic wave propagation.

We can clearly see that the wavefront seems to propagate slightly faster

along the planes of the crystalline structures (cases a and b ) while retaining a

much circular shape in the third case (case c).

Fig.15 shows the radial projection of both fields: the velocity divergence, and

the mass density. In every case, horizontal broadening is due to asymmetries

in the radial propagation of the wave, while vertical broadening is due to noisy

fields.

We can see from both variables, how at the shock wave as well as behind it,

a big horizontal broadening takes place in the first two cases (a and b), while

the third case, case c, it remains ’thin’ - that is, remains circular.

It must also be noticed that there is absolutely no vertical broadening

throughout the space in front of the shockwave in cases (a and b) because the

perfect crystalline structure remains untouched and delivers a clean estimate of
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Figure 15: Radial projection of the (∇ · v) and ρ fields, left and right respectively. The big,

radially local, negative divergence (convergence) at the wave-front is a key aspect in capturing

the shape and isotropic properties of the propagation.

the field, but there is a small noise in case c which overlaps and hides the radial

profiles of the crystalline cases. The reason for this noise has to do with the

quasi-crystalline state obtained with ALARIC.

6. Conclusions

ALARIC has been introduced as a simple and versatile tool to aid existing

SPH codes in constructing tailored initial conditions of arbitrary complexity

and exquisitely low-noise. The method consists of various ingredients which can

be used individually if necessary. However, internal testing suggests that using

the a.) iso-thermal SPH equations, b.) including dissipative dynamics through

the introduction of friction and viscosity (with χ = 2 and αmin = 0.0) terms, c.)

nullifying the velocities every τ -seconds (with a 10% increase in τ every time

its used) and d.) a one-stage particle-splitting event after the coarse features

have been obtained, gave optimal results for -all - the scenarios presented in this

manuscript.

Few new parameters were introduced during the exposition of the inner

workings of ALARIC. Although specific numerical values were used in the tests
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presented here, the spirit of this paper is by no means limiting in this sense.

Were the method proved slow or inefficient in future applications, the reader is

encouraged to change and manipulate these values as he/she sees fit.

As an example, section 4.2 was devoted to the 1-stage vs. multi-stage particle

splitting matter. It was concluded that more than one stage proved, not only

inefficient, but to be even counterproductive to our end. The reason lies partially

behind the amount of noise introduced by the splitting patterns presented in

Fig.2. The specific shapes of these patterns were arbitrarily chosen and do not,

in general, tesselate the d-dimensional space around them. This geometrical

imperfection gives rise to an immediate reorganisation of the particles which

introduces noise in the time trace of ε. The splitting patterns are different

for the 1, 2 and 3-dimensional cases, and the amount of noise introduced in

each case is different. In three dimensional simulations, for example, the noise

introduced after the splitting is much bigger than in the 1D case. With this in

mind, our intention has not been to limit the use of the particle splitting stages,

but rather to warn the reader about some of its limitations - we do not rule out

the existence of scenarios where 2 or more stages of particle splitting will be,

indeed, the better option.

On the same token, we have seen ALARIC being initilised from many differ-

ent particle configurations: Crystalline (1D-Equispaced in Sec.4.1 and Sec.4.2),

quasi-crystalline (Concentric shells in Sec.4.4) and Random (Sec.5.1). In each

case ALARIC performed quite well but we can not conclude which initialisation

is in fact the most efficient. It has also been suggested (See [29] for example) to

initialise the relaxation using a Monte Carlo method which will intuitively place

the system close to the desired profile. Finally, with the introduction of the

particle splitting scheme in ALARIC we can initialise the system with a signifi-

cantly smaller number of particles which will replicate the broad features of the

system quite readily. In fact, this number can be small enough that choosing

to initialise it in a crystalline, quasi-crystalline, random or Monte Carlo be-

comes almost unimportant. There is also the possibility of coupling inertia-free

methods with ALARIC to improve even further the computational speed of the
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method; These questions however, lie outside the scope of this paper.

For a particular choice of target density (Eq.46) we presented a theoretical

estimation of the lowest possible error attainable by the system using only a

few assumptions about the behaviour of the system. The estimation method,

although conceived with this particular density profile in mind, has the potential

to be extended to more general density distributions.

ALARIC was also tested against the state-of-the-art methods. The compar-

ison helped illuminate the strong points and the weaknesses of our algorithm.

Where WVT methods offer reasonable results with relatively short number of

time steps, ALARIC delivers solutions whose errors are two orders of magnitude

smaller at 10 times the computational cost.

Finally, by comparing the performance of initial conditions obtained with

ALARIC with those created by pure crystalline structures, we emphasised the

ability of the method to create isotropic initial conditions without preferred

directions of propagation - which, as shown in section 5, can introduce spurious

effects on the physical behaviour of the system.
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Appendix 1. Analytical estimation of lowest possible error

To shed some light into the effect that ∆ has on the overall convergence

process (with ρ? defined in Eq.46) we proceed as follows: we use a computational
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domain which correspondes to an d-dimensional ball, centred at the origin with

unit radius: Bd[0,1]; This corresponds to the interval [−1, 1] in 1D, the unit circle

in 2D, and a unit sphere in 3D.

Let’s now consider ε as defined in Eq.45. We see how this expression can be

split into the individual contributions from all the particles in the domain:

ε =
∑
i

εi (50)

Fig.8 shows how all the simulations run for this density target evolved to-

wards a state where one, and only one, particle was left alone sitting at the

bottom of the density well. This observation allows us to assume that the

biggest contribution to the error estimate comes from this particle:

εa =
(mna −∆)2

na

(∫
Bd
[0,1]

[ρ?(r)]2dr

)−1

(51)

The denominator can be evaluated analytically:

Q ≡
∫
Bd
[0,1]

[ρ?(r)]2dr = A
∫ 1

0

[ρ?(r)]2rd−1dr (52)

with A the ’angular’ part of the integral13. Next we integrate our density

target over Bd[0,λ], where the radial distance λ has been precisely chosen so as to

ensure that the mass contained inside such ball, equals the mass of one particle

- the very same particle sitting at the bottom of the density well; That is, the

distance λ is defined via:

A
∫ λ

0

ρ?(r)rd−1dr = m (53)

13Since our target function happens to be a radial function, an integration over Bd
[0,1]

, in

spherical coordinates allows us to separate the integrals and directly evaluate the angular

part. The values of A for d = {1, 2, 3} are {2, 2π, 4π} respectively.
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This choice of λ also implies the choice for na:

na =
1

Vλd
(54)

where the denominator simply represents the volume of a d-dimensional ball

of radius λ. Under this interpretation, the constant V, represents the volume

of a d-dimensional unit sphere14. With these assumptions in mind, the error

estimate on particle a is given by:

εa =
Vλd

Q

( m

Vλd
−∆

)2

(55)

The mass of each particle can be readily obtained from the number of par-

ticles N ( m =
∫
Bd
[0,1]

ρ?(r)dr/N). And λ can be obtained numerically15 from

Eq.53.

In summary, for a given number of particles N , and a definite value of ∆, the

minimum possible error the system can strive to, is obtained by assuming that

particle a is the biggest source of error, and therefore, the best case scenario will

come from neglecting the contributions of all the other particles in the system,

that is:

εteo.min ≈ εa (56)

To illustrate the validity of the assumptions we initialise 51 equi-spaced

particles in the 1D interval [−1, 1] and run 5 consecutive simulation each with

an extra multi-grid stage.

We compare 5 time traces coming from simulations with 0, 1, 2, 3 and 4

multi-grid stages, respectively. As mentioned before, every particle-splitting

event triplicates (x3) the number of particles: meaning that the simulation with

0 stages ends up with the same 51 particles at the end, and in comparison, the

14The corresponding values of V for d = {1, 2, 3} are {2, π, 4π/3} respectively.
15An analytically solution is permitted in the one and two-dimensional cases. The process

involves finding the root of an (n+ 2)-degree polynomial meaning the three dimensional case

must be treated numerically in any case.

35



simulation with 4 stages will end up with 51 · 34 particles, that is, with 4131

particles.

Figure 16: Time traces corresponding to 4 different simulations. Each run has an extra

intermediate multi-grid stage. The time traces overlap with each other until the particle-

splitting event occurs. Each event triplicates the number of particles and, consequently, the

density error decrease even further - without ever going below the theoretical minimum. The

time traces are color-coded with their respective theoretical minimum.

Fig.16 shows all 5 time traces. We see how the error estimate in general

decreases, but there is a small oscillation following the splitting events. The

noise introduced by the particle splitting and the consequent reorganisation of

the particles are responsible for this oscillation in the time traces. In the graph

is also shown the theoretical minimum for each run in the corresponding colour.

The time traces overlap for most of their paths until the algorithm finds it

pertinent to perform a particle-splitting, at this point the time traces bifurcate.

We see how the difference between the value, where the time trace saturates, and

the theoretical minimum seem to get closer together as the number of particles

increases - this is in accordance with Eq.56 and the assumption that the main

source of error comes form the one particle sitting at the bottom of the density

well, whose contribution becomes more marginal as the number of particles

grows.
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