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Abstract: This paper addresses the problem of optimal design for linear networked control
systems (NCSs). We deal with the delayed NCSs in the continuous time-domain and propose a
computational approach to optimization problems based on the hybrid LQ-type techniques. In
particular, we develop an explicit connection between the networked control processes and the
corresponding hybrid systems. For the constructive feedback control design procedure we derive
the necessary Riccati-formalism and propose an implementable solution algorithm.
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1. INTRODUCTION

Conventional control systems are composed of intercon-
nected controllers, sensors and actuators following a point-
to-point architecture. As an alternative to this architecture
we could use a networked or distributed architecture that
offer a more efficient reconfigurability, resource utilization
and reduce the installation and maintenance cost. The
systems that follow this architecture are named networked
control systems (see e.g., [11]). This paper deals with
the problem of optimal design for a class of NCSs where
the control loops are closed through a real-time network,
forming a delay control system. Since an implementable
control system possesses some stability properties, we also
incorporate into the above optimal control design proce-
dure an auxiliary stability analysis. It is well-known that
the ability to operate a delayed control system in an op-
timal way remains a challenging theoretical task. Indeed,
the time delays are common in mathematical models of
industrial processes, and the theory of continuous time
systems with time delay is complicated (see e.g., [1, 21]).
In this context and with focus on particular classes, many
schemes have been proposed to tackle and analyze the
problem. For a deeper discussion on the main theoretical
and computational results see e.g., [11, 17, 26, 8].

In the last years, there has been a revival of the first-order
optimization techniques and related numerical schemes
based on the corresponding hybrid version of the Maxi-
mum Principle (MP) see e.g.,[2, 5]. For a classical optimal
control problem (OCP) governed by a closed-loop control
system, one of the main tools toward the construction of
optimal trajectories is the celebrated Bellman Dynamic
Programming (DP) method (see e.g., [9, 10]). It is well-
known that for a conventional OCP the DP approach
is equivalent to the techniques based on the usual Pon-

tryagin MP(see e.g., [13, 20]). This fact is due to their
numerical robustness, reliability and the existence of well
established convergence results. The aim of this contribu-
tion is to develop an optimal control law that stabilize
an unstable system using a hybrid control technique and
the corresponding Riccati-formalism [6] (similarly to the
conventional LQ-theory [13, 20]). We also discuss some
advanced numerical schemes based on the above hybrid
Riccati approach.

The remainder of this paper is organized as follows. In
the next section we give a short introduction to a class of
the NCSs under consideration. Section 3 is devoted to the
newly elaborated Riccati-based techniques and concepts
for the hybrid OCPs. Our aim is to apply the hybrid
version of the LQ approach to optimal design of linear
NCSs. Section 4 contains a constructive solution proce-
dure for OCPs which determined an approximate optimal
behavior of NCSs. Finally, we discuss the computational
aspect of the proposed methodology for optimization of
networked systems, establish the stability properties of
the generated closed-loop system and study an illustrative
example. Section 5 summarize the paper.

2. NETWORKED CONTROL SYSTEMS: BASIC
CONCEPTS

A NCS architecture consists of numerous physical and
computational elements or ”agents”, which have physi-
cal and informational interactions and dependencies, sup-
ported by multiple, overlapping network resources. Let us
consider the following analytical concept proposed in [11].

Definition 1. A NCS architecture is a three tuple

NCS = {D(τ), I, T (p)} ,

where
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• D(τ): agent dynamics with possible time-delays τ
which represent a collection of linear hybrid systems
that can be impacted
a) directly by continuous and discrete states/outputs

from other agents,
b) indirectly by the receipt of state or output in-

formation from other agents over one or more
communication networks,

c) by internal and external elements and (possible)
disturbances.

• I: network information flows, represented by a di-
rected graph. This graph summarized the information
dependencies detailed in the dynamics equations.

• T (p): network topology, represented by a colored,
directed p-nodes graph. This graph summarizes the
communication resources in terms of the suitable
links/networks.

The presented definition can be considered, for example,
as a suitable conceptual model for the architecture of the
simple delayed networked control system with the ”initial”
and ”causal” delays τa and τ from D(τ) (see Fig. 1).

Fig. 1. A simple NCS with delays

Let consider a classical (non-networked) linear system
ẋ(t) = Ax(t). It is well-known that the global stability
analysis of this linear system is closely related to existence
of a positive defined matrix P such that ATP +PA = −Q
for a given positive defined matrix Q. A basic tool for the
the stability analysis of the delayed linear systems is given
by the analogous result presented in [11]. The maximal
bound for the time delay τ from Definition 1 can be esti-
mated with help of the corresponding Lyapunov function
for the (non-networked) auxiliary linear dynamical system
and is equal to

λmin(Q)

16λ2
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λ1

‖ANCS‖2
√
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p∑

i=1

i

,

where ANCS is a system matrix of the networked system,
λ1 and λ2 are the minimal and maximal eigenvalues of
P and p is the number of the nodes (see Definition 1).
Under the above upper bound for τ one can guarantee
the exponential stability of the NCS under consideration.
Finally, we also refer to [18] for an alternative approach
based on the ”switched” Lyapunov functions for some
alternative classes of hybrid systems.

3. OPTIMIZATION OF HYBRID SYSTEMS

Let us start by introducing a variant of the general con-
cept for linear hybrid systems with autonomous location
transitions from [4, 7].

Definition 2. A linear hybrid system is a 7-tuple

{Q,X , U,A,B,U ,S},

where

• Q is a finite set of discrete states (called locations);
• X = {Xq}, q ∈ Q, is a family of state spaces such that
Xq ⊆ Rn;

• U ⊆ Rm is a set of admissible control input values
(called control set);

• A = {Aq(·)}, B = {Bq(·)}, q ∈ Q are families of
continuously differentiable matrix-functions

Aq : R → Rn×n, Bq : R → Rn×m;

• U is the set of all admissible control functions;
• S is a subset of Ξ, where

Ξ := {(q, x, q′, x′) : q, q′ ∈ Q, x ∈ Xq, x
′ ∈ Xq′}.

A linear hybrid system from Definition 2 is defined on
a finite time-interval [0, tf ]. We refer to [22, 23, 24, 25]
for some abstract concepts of hybrid systems. Let U be a
convex and closed set. We also assume that

U := {u(·) ∈ L∞
m (0, tf ) | u(t) ∈ U a.e. on [0, tf ]},

where L∞
m (0, tf) is the standard Lebesgue space of mea-

surable and essentially bounded functions. In this paper,
we suppose that some affine functions

mq,q′ : Rn → R, q, q′ ∈ Q, mq,q′(x) = bq,q′x+ cq,q′

are given such that the hyperplanes

Mq,q′ := {x ∈ Rn : mq,q′(x) = 0}

are pairwise disjoint. Here bq,q′ ∈ Rn and cq,q′ ∈ R for
every q, q ∈ Q. The given hyperplanes Mq,q′ represents
the (affine) switching sets at which a switch from location
q to location q′ can take place. We say that a location
switching from q to q′ occurs at a ”switching time”. We
now consider a linear hybrid system with r ∈ N switching
times {ti}, i = 1, ..., r, where

0 = t0 < t1 < ... < tr−1 < tr = tf .

Note that the above sequence of switching times {ti} is
not defined a priory. A hybrid control system remains in
location qi ∈ Q for all t ∈ [ti−1, ti[, i = 1, ..., r. In the
following, we recall the notion of hybrid trajectory of the
systems under consideration (see e.g., [4]).

Definition 3. An admissible hybrid trajectory associated
with a given linear hybrid system from Definition 2 is a
triple X = (x(·), {qi}, τ), where x(·) is a continuous part
of trajectory, {qi}i=1,...,r is a finite sequence of locations
and τ is the corresponding sequence of switching times
such that x(0) = x0 /∈

⋃
q∈Q

Mq and for each i = 1, ..., r and

every admissible control u(·) ∈ U we have

• xi(·) = x(·)|(ti−1,ti)
is an absolutely continuous func-

tion on (ti−1, ti) continuously prolongable to closed
intervals [ti−1, ti], i = 1, ..., r;

• ẋi(t) = Aqi
(t)xi(t) + Bqi

(t)ui(t) for almost all time
instants t ∈ [ti−1, ti], where ui(·) is a restriction of
the chosen control function u(·) on the time interval
[ti−1, ti].

240



A linear hybrid system in the sense of Definitions 2 and
Definition 3 that satisfies all above assumptions is denoted
by LHS. Note that the pair (q, x(t)) represents the hybrid
state at time t, where q is a location q ∈ Q and x(t) ∈ Rn.
Definition 3 describes the dynamic of a hybrid control
system LHS. Since x(·) is a continuous function, Defini-
tion 3 describes a class of hybrid systems without impulse
components of the (continuous) trajectories. Therefore,
the corresponding switching sets Mq,q′ are defined for

x(ti) = x(ti+1), i = 1, ..., r − 1.

Under the above assumptions, for each admissible control
u(·) ∈ U and for every interval [ti−1, ti] (for every location
qi ∈ Q) there exists a unique absolutely continuous
solution of the linear differential equations from Definition
3. This means that for each u(·) ∈ U we have a unique
absolute continuous trajectory of LHS. Moreover, the
switching times {ti} and the discrete trajectory {qi} for
a hybrid control system LHS are also uniquely defined.
Note that the evolution equation for the trajectory x(·) of
a given linear hybrid system LHS can also be represented
as follows

ẋ(t) =

r∑

i=1

β[ti−1,ti)(t)
(
Aqi

(t)xi(t) +Bqi
(t)ui(t)

)

a.e. on [0, tf ], x(0) = x0

(1)

where β[ti−1,ti)(·) is the characteristic function of the in-

terval [ti−1, ti) for i = 1, ..., r. Let Sf : R → Rn×n,
Sq : R → Rn×n and Rq : R → Rm×m, where q ∈ Q.
Assume that Sf is symmetric and positive semidefinite,
and that for every t ∈ [0, tf ] and every q ∈ Q the matrix
Sq(t) is also a symmetric and positive semidefinite matrix.
Moreover, let Rq(t) be a symmetric and positive definite
for every t ∈ [0, tf ] and every q ∈ Q. We also assume
that the given matrix-functions Sq(·), Rq(·) are continu-
ously differentiable. Given a system LHS we consider the
following hybrid linear quadratic (HLQ) problem:

minimize J(u(·), x(·)) :=
1

2
(xT

r (tf )Sfxr(tf ))+

1

2

r∑

i=1

∫ ti

ti−1

(
xT

i (t)Sqi
(t)xi(t) + uT

i (t)Rqi
(t)ui(t)

)
dt

over all admissible trajectories X of LHS.

(2)

Evidently, (1) is the problem of minimizing the quadratic
Bolza cost functional J over all trajectories of the given
linear hybrid system. Note that we study the hybrid OCP
(1) in the absence of possible target and state constraints.
Throughout the paper we assume that the HLQ prob-
lem (2) has an optimal solution (uopt(·),Xopt(·)), where
uopt(·) ∈ U and Xopt(·) belongs to the set of admissible
trajectories from Definition 3. It is necessary to stress
that the existence of an optimal pair (uopt(·),Xopt(·)) for
a HLQ problem of the above type follows from the general
existence theory for linear quadratic OCPs with a convex
closed control set U (see e.g., [20]). We now apply the HMP
(see [4]) to the HLQ problem under consideration and for-
mulate the corresponding necessary optimality conditions.
For general optimality conditions in the form of a HMP
see also [4, 14, 23, 24, 25].

Theorem 1. Let (uopt(·),Xopt(·)) be an optimal solution of
the regular OCP (2). Then there exist absolutely continu-

ous functions ψi(·) on the time intervals (topt
i−1, t

opt
i ), where

i = 1, ..., r, and a nonzero vector of Lagrange multipliers
a = (a1, ..., ar−1)

T ∈ Rr−1 such that

ψ̇i(t) = −AT
qi

(t)ψi(t) + Sqi
(t)xopt

i (t)

a. e. on [topt
i−1, t

opt
i ],

ψr(tf ) = −Sfx
opt
r (tf ),

(3)

and

ψi(t
opt
i ) = ψi+1(t

opt
i ) + ai

dmqi,qi+1
(xopt

i (topt
i ))

dxi

= ψi+1(t
opt
i ) + aibqi,qi+1

,

(4)

where i = 1, ..., r − 1. Moreover, for every admissible
control u(·) ∈ U the partial Hamiltonian

Hqi
(t, x, u, ψ) :=

〈
ψi, Aqi

(t)xi +Bqi
(t)ui

〉
−

1

2

(
xT

i Sqi
(t)xi + uT

i Rqi
(t)ui

)
.

satisfies the following maximality conditions

max
u∈U

Hqi
(t, xopt(t), u, ψ(t)) =

Hqi
(t, xopt(t), uopt(t), ψ(t)), t ∈ [topt

i−1, t
opt
i ),

(5)

where i = 1, ..., r and ψ(t) :=
∑r

i=1 β[topt

i−1
,t

opt

i
)(t)ψi(t) for

all t ∈ [0, tf ].

Note that the adjoint variable ψ(·) is an absolutely con-

tinuous function on every open time intervals (topt
i−1, t

opt
i )

for i = 1, ..., r but discontinuous at the switching points
topt
i ∈ τopt. On the other hand, we are able to establish the

continuity properties of the ”full” optimal Hamiltonian

H̃opt(t) :=

r∑

i=1

β[topt

i−1
,t

opt

i
)(t)Hqi

(t, xopt(t), uopt(t), ψ(t))

computed for optimal pair (uopt(·),Xopt(·)) and for the
corresponding adjoint variable ψ(·).

Theorem 2. Under assumptions of Theorem 1, the ”full”
optimal Hamiltonian H̃opt(·) introduced above is a contin-
uous function of time.

The proof of the presented theorem can be found in [6].
We also refer to [24] for a similar ”continuity” result
established for some other classes of hybrid systems. Let
us now consider the linear boundary value problem (1)-
(3) for U ≡ Rm. The maximization condition (5) from the
above HMP (Theorem 1) implies that

uopt
i (t) = R−1

qi
(t)BT

qi
(t)ψi(t), t ∈ [topt

i−1, t
opt
i ).

Using this representation of an optimal control and the
basic facts from the theory of linear differential equations,
we now compute (similarly to [13, 20]) an optimal control
uopt(·) for (2) in the form of an optimal partially linear
feedback control law

uopt(t) = −C(t)xopt(t) =

−
r∑

i=1

β[ti−1,ti)(t)Ci(t)x
opt
i (t),

(6)

where Ci(t) := R−1
qi

(t)BT
qi

(t)Pi(t) is a partial gain matrix
and Pi(·) is the partial Riccati matrix associated with

every location qopt
i ∈ Q. Analogously to the classic case, for

every location qopt
i ∈ Q and for almost all t ∈ (topt

i−1, t
opt
i )

we obtain the differential equation
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Ṗi(t) + Pi(t)Aqi
(t) +AT

qi
(t)Pi(t)−

Pi(t)Bqi
(t)R−1

qi
(t)BT

qi
(t)Pi(t) + Sqi

(t) = 0,
(7)

known as the Riccati matrix differential equation. We call
this equation the partial Riccati equation. Evidently, every
matrix Ci(·) and every matrix Pi(·) and the corresponding
partial Riccati equation (7) are associated with a current
location qi ∈ Q of the given LHS. We also can deduce the
usual relations

ψi(t) = −Pi(t)x
opt
i (t) (8)

for t ∈ [topt
i−1, t

opt
i ) and i = 1, ..., r. A symmetric (for all

variables t ∈ [0, tf ]) hybrid Riccati matrix

P (t) :=

r∑

i=1

β[topt

i−1
,t

opt

i
)(t)Pi(t)

which satisfies all equations (7) and the boundary (termi-
nal) condition P (tf ) = Sf , gives rise to the optimal feed-
back dynamics of (1) determined by the above partially
linear feedback control function (6). The investigation of
the family of equations (7) on the full time interval [0, tf ]
also involves the ”continuity” question associated with the
above-introduced hybrid Riccati matrix P (·). Evidently,
the continuity/smoothness of a value function is a question
of general interest also in the context of other classes of
OCPs governed by linear or nonlinear hybrid systems.
Related to the above presented optimization theory for
a LHS we are now able to formulate our main theoretical
result, namely, the discontinuity of the hybrid Riccati
matrix P (·).

Theorem 3. Under assumptions of Theorem 1, the hybrid
Riccati matrix P (·) is a discontinuous function on [0, tf ].

Proof: Assume that P (·) is continuous on the time interval
[0, tf ]. In particular, this means that

Pi(t
opt
i ) = Pi+1(t

opt
i ) ∀i = 1, ..., r − 1.

Using the above continuity assumption for P (·), the con-
tinuity of x(·) and the formula for the adjoint variable,

we deduce that ψi(t
opt
i ) = − limt↑t

opt

i

Pi(t)x
opt
i (t) and

ψi+1(t
opt
i ) = − limt↓t

opt

i

Pi+1(t)x
opt
i+1(t). Then from the re-

lation ψi(t) = −Pi(t)x
opt
i (t) and from the jump conditions

(4) for the adjoint variables ψ(·) (Theorem 1) we obtain:

−Pi(t
opt
i )xopt(topt

i ) = −Pi+1(t
opt
i )xopt(topt

i ) + aibqi,qi+1
,

where i = 1, ..., r − 1.. Hence[
Pi+1(t

opt
i ) − Pi(t

opt
i )

]
xi(t

opt
i ) = aibqi,qi+1

.

Since xopt(·) is continuous and the obtained vector of opti-
mal Lagrange multipliers a = (a1, ..., ar−1)

T is nontrivial,
the function P (·) is a discontinuous function on [0, tf ]. The
obtained contradiction completes the proof. 2

It is necessary to stress that the partial Riccati equation
(7) can also be derived using the general Bellman approach
for hybrid systems (see [15]).

4. OPTIMAL DESIGN OF THE LINEAR NCSS

Consider the following model of a linear NCS

ẋ(t) = Ax(t) +Bu(t), t > 0,

x(0) = x0,
(9)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is
the control vector. Let τk ∈ D(τ), k = 0, 1, ... be possible

delays (in the sense of Definition 1). Motivated by the
optimal partially linear feedback control strategies from
Section 4, we now choose the admissible control strategy
in the form

uk(t) = −K(t)x(t− τk), t ≥ τ0.

Note that for 0 ≤ t < τ0 the control low u0(·) is assumed
to be prescribed. This make it possible to represent (9) as
a closed-loop system

ẋ(t) = Ax(t) −BK(t)x̂k(t), t > 0,

x̂k(t) := x(t− τk).
(10)

For the newly introduced ”state” x̂k(·) we have the follow-
ing relation

x̂k(t) = e−Aτkx(t)+

∫ τk

0

e−sABK(t+ s)x̂k(t+ s)ds, (11)

where τk ∈ D(τ). Substituting (11) in (9) we now obtain

ẋ(t) = (A−BK(t)e−Aτk)x(t)−

BK(t)

∫ τk

0

e−sABK(t+ s)x̂k(t+ s)ds.
(12)

The resulting dynamical system (12) can now be inter-
preted as a linear hybrid system with controlled switchings
(see [24] for details)

ẋ(t) = Akx(t) + gk(t) t ∈ [tk−1, tk), (13)

where Ak := A−BKe−Aτk , and

gk(t) := BK(t)

∫ τk

0

e−sABK(t+ s)x̂k(t+ s)ds.

The time sequence {tk}, tk ∈ R+ for k = 0, 1, ... indicates
here the intervals of constant system-delays (for example,
on the time interval [tk−1, tk) the closed-loop system (12)
is a τk-delayed system).

We now consider a HLQ problem of the type (2) for the
obtained linear hybrid system (13) with some constant ma-
trices Rk, Sk Note that system (13) is written in a closed-
loop form and the problem is to select the gain matrix
K(·) in an optimal manner. Using the developed LQ-type
theory for hybrid systems optimization (see Section 3),
we now choose a quasi-optimal gain matrix K(·) in the
following form K(t) = R−1

k (t)BT (t)Pk(t), where Pk(·) is
a solution of the Riccati equations of the type (7), and
examine the resulting system (13). Evidently, the proposed
selection of the matrixK(·) corresponds to a quasi-optimal
feedback control in the sense of the HLQ problem stated
for system (13). The corresponding behavior of system (13)
approximates a LQ-optimal dynamics of the initial time-
delated NCS (9) in the case of ”small” delays τk fromD(τ).
Note that similarly to the conventional LQ optimization
theory the stability properties of a LQ-optimal linear hy-
brid system is a consequence of the optimality condition
(see [] for theoretical details). In the case of the obtained
quasi-optimal strategy for K(·) we now need to guarantee
the stability of (13) by a special analytical result. Usually
stability results for hybrid and switched systems are natu-
ral extensions of the well-known Lyapunov techniques. Let
us present a Lyapunov-based stability criterion from [12]
which can be applied to the corresponding analysis of the
resulting system (13) with the chosen matrix K(·).

Theorem 4. Suppose we have candidate Lyapunov func-
tions Vk (Vk are positive definite and V̇k(x(t)) ≤ 0 for all
t ∈ [tk−1, tk)). Let S be a set of all switching sequences
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associated with the system. If for each element from S we
have that for all k = 0, 1, ..., Vk is Lyapunov-like for Ak

and gk, then the system is stable.

We also refer to [18, 26, 27] for some related stability re-
sults for hybrid systems. Note that a Lyapunov candidate
for a linear system of the type(3) can be selected as a
piecewise quadratic function. Since (13) is an equivalent
representation of the initial time-delayed system (9), the
presented Theorem 4 can also be interpreted here as a
stability criterion for dynamical systems with time delays
(see e.g., [21]). We now can claim that under the above
selection strategy for K(·), the resulting system (13) has a
similar stable behavior as the initial NCS (9). A motivation
of this fact follows from the natural interpretation of a
given NCS as a hybrid system and the related theory of
delayed systems (see e.g., [21]). In this paper we have
studied the LQ-type problem for a class of networked
and hybrid systems. It is evident that the similar problem
formulation is also of a great importance for some classes
of linear discrete systems of switched nature and in general
for dependable control of discrete events systems.

Let us now illustrate the computational effectiveness of
the proposed (quasi-optimal) LQ-based techniques and the
discussed stability properties.

Example 1.

ẋ(t) = x(t) + u(t),

x0 = 0.
(14)

First, we implement the computational approach proposed
in Sections 3 4. Note that in this case the ”hybridization”
of the initial delayed control system (14) contains two loca-
tions. For comparison we also study the system (14) using
the analysis method proposed in [11]. The corresponding
technique uses a special discrete transformation of the
original networked system for a given ”sampling time” h.
The obtained dynamical behavior for τ = 0.01 and h = 1
is shown in Fig.2.
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Fig. 2. Networked (the dotted line) and hybrid systems
(the continuous line).

The numerical error between two above-mentioned models
(the ”hybridization” model and the transformed system)
is presented in Fig. 3 and the resulting dynamical behavior
is shown in Fig. 4. As next we present the errors between
the networked and perturbed hybrid system (see Fig. 5).
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Fig. 3. Networked and hybrid systems: the error analysis.
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Fig. 4. Networked and hybrid control systems (dotted line
networked system, continuous line hybrid system)
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Fig. 5. Networked and perturbed hybrid system: error
analysis (dotted line networked system, continuous
line hybrid system)

The above computation was carried out, using the stan-
dard MATLAB packages.
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5. CONCLUDING REMARKS

In this paper, we have developed a new computational
approach to optimal control a class of networked delayed
systems. The proposed optimization approach is based on
the extension of the conventional MP and DP techniques
to control processes governed by linear hybrid systems.
Using the switched structure of the initial delayed net-
worked system, we study an equivalent model in terms of
the hybrid dynamics. This make it possible to apply the
newly developed hybrid LQ-type optimization theory to
the quasi-optimal design of the NCSs under consideration.
Moreover, we also deal with the stability analysis of the
obtained closed-loop system with delays. The paper also
deals with computational issues and contains an example
of simulated control laws that stabilize the linear NCSs.
We consider our numerical approach based on the above
”hybridization” of the initial NCS in comparison to a
conventional technique and establish stability properties
of the chosen quasi-optimal feedback strategy.

Finally note, that the presented analytical and numerical
techniques can also be applied to some alternative classes
of linear hybrid and networked dynamical systems with
delays [12]. The above LQ-based ”hybridization” approach
to delayed systems can also be very useful in the context of
the LQ-type problems for discrete and for some classes of
dependable control processes governed by discrete events
systems [3].
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