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Abstract

By open–world design we mean that collaborating classes are so loosely coupled

that changes in one class do not propagate to the other classes, and single classes can

be isolated and integrated in other contexts. Of course, this is what maintainability

and reusability is all about.

In the paper, we will demonstrate that in Java even an open–world design of

mere attribute access can only be achieved if static safety is sacrificed, and that this

conflict is unresolvable even if the attribute type is fixed. With generic language ex-

tensions such as GJ, which is a generic extension of Java, it is possible to combine

static type safety and open–world design. As a consequence, genericity should be

viewed as a first–class design feature, because generic language features are prefer-

ably applied in many situations in which object–orientedness seems appropriate.

We chose Java as the base of the discussion because Java is commonly known

and several advanced features of Java aim at a loose coupling of classes. In partic-

ular, the paper is intended to make a strong point in favor of generic extensions of

Java.

Keywords
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1 Introduction

If collaborating classes are strongly coupled with each other, none of them can

be modified in isolation or incorporated into a different context. In other words,

maintenance and reuse are seriously limited. Basically, collaboration of two classes

A and B means that objects of class A access the methods of objects of class B

(often also vice versa).

In many software designs, method access is the main reason for strong cou-

pling: as long as objects of B are merely “passed on” by objects of A and no

method of B is called inside A , the implementation of A may treat B objects as

more or less anonymous (e.g. as objects of type Object in Java), so A and B are

particularly loosely coupled1.

Design concepts based on event sending (like in JavaBeans [6]) provide an

alternative to direct method access, which allows a weaker coupling. However,

such a design is certainly not a feasible alternative under all circumstances. Hence,

the problem of flexible, yet safe method access is still important. By safe we mean

statically safe in the first place, that is, if a method of an object is called in some

piece of code,2 a static analysis of this piece of code at compile time is able to

determine whether this object offers the required method and the signature3 of this

method is also as required.

There has been a long–standing debate in various scientific and other commu-

nities whether static safety at compile time is important or dynamic checks at run

time would be sufficient. In fact, various languages (notably Smalltalk) do not

offer static safety at all. It is our feeling that there is no general answer to this

question: static safety is highly desirable in some situations, and not of any use in

other situations. We will analyze this problem in Section 2.3. It will turn out that

the differences between these two kinds of situations are rather subtle.

The discussion in this paper will be along the lines of a concrete, step–by–step

1Sectionn 2.2 explains loose coupling in greater detail.
2We use the unspecific term “piece of code” here and at other points to avoid terms that are

ambiguous (“component,” “module,” etc.) or whose meanings are too specific for our purposes

(“subroutine,” “function,” “method,” etc.).
3The signature of a method comprises its name, list of argument types, return type, and the ex-

ceptions thrown by this method. The signature of a class or interface is determined by the signatures

of its public methods.
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case study, which is introduced in Section 2. This case study is taken from a realm

that is quite common in Java programming: the processing of visual data.

Section 2 starts with a case study about attribute access in Java and the follow-

ing sections describe the disadvantages of the first solution. Sections 2.2 and 2.3

explain in detail what is meant by loose coupling and static type safety. Sec-

tions 2.4–2.6 will demonstrate that even the advanced features, which are appli-

cable for attribute access in Java do not sufficiently support these goals (not even

in case the type of the attribute is fixed). Section 2.7 demonstrates the problems

that are introduced when the attribute type is made variable in an algorithm. Sec-

tion 2.8 shows how loose coupling and static type safety may be resolved through

a parametrically polymorphic design, which is not possible in pure Java, but in

generic language extensions such as GJ [2] (see [1] for a relatively recent survey

of generic Java extensions).

From the reader we assume Java or C++ literacy and familiarity with object–

oriented programming concepts such as classes and inheritance. The appendices at

the end of the article briefly introduce specific Java and GJ concepts (enumerations,

inner classes, reflection, and parametric polymorphism), which do not have exact

counterparts in other object–oriented languages.

An extended version of the code examples quoted in this manuscript can be

found at

http://www.mpi-sb.mpg.de/˜marco/OpenWorld/
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2 Simple Case Study

Our running example is a simple shape–oriented image–processing algorithm, which

accesses abstract attributes of two–dimensional geometric shape objects via a pair

of get/set methods.

For example, the color and texture of a (monochromatic) geometric object are

two typical abstract attributes. If the borderline and the interior of a shape may

have different colors, each geometric object has two color attributes: borderline

color and interior color.

In this article, an (abstract) attribute of a class or interface A . . .

� . . . is a conceptual, abstract entity.

� . . . is associated with objects of class / interface A.

� . . . is publicly accessible.

� . . . has a certain data type (primitive or class type).

Abstract means that its implementation is left open. The usual way of attaching

an attribute to a class A is to make it a private data member of A and to add

access methods for this member to the public part of A (often, the word attribute

is exclusively used to refer to data members of classes). However, other ways of

realizing an abstract attribute are sometimes more suitable. We will come back to

this point later on (Section 2.2).

It goes without saying that this simple example is only a representative of more

complex scenarios, in which the problems discussed here are even more urgent.

2.1 Straightforward Implementation

For simplicity, we assume in our running example that geometric objects are purely

monochromatic. However, we do not regard the color of an object as a single

attribute, but as a composition of three attributes: red, green, and blue, according

to the RGB encoding scheme. In other words, the color of a geometric object

is represented by a triple (red,green,blue) of Double objects, each in the range
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from 0 to 1. Then (1,0,0) means plain red,(0,1,0) is green, and (0,0,1) is blue.

The code (0,0,0) stands for black, and (1,1,1) for white, and so on. This encoding

scheme for colors is also used in the Java color model, which is realized by class

java.awt.image.ColorModel.

Two–dimensional geometric shapes may then be represented by an interface1

like the following, which we name GeomShape2D.

For technical reasons, which will become evident later on, we will not use the

primitive type double, but the corresponding wrapper class java.lang.Double:

public interface GeomShape2D f

public Double getRed ();

public Double getGreen ();

public Double getBlue ();

public void setRed (Double r);

public void setGreen (Double g);

public void setBlue (Double b);

// Further general methods for arbitrary two-dimensional

// shapes, e.g. for shifting or rotating a shape object

g

We have added UML diagrams to the source code examples to improve the

understanding of the text.

UML means unified modelling language and can be used to describe e.g. class

hierarchy and dependecies. For example, in figure 2.1, class SomeShape is de-

rived from the interface GeomShape2D. The line between Algorithm 2 and Ge-

omShape2D means that there is a relation. Here, the geometric shapes of the

algorithm are weakly associated with the algorithm, i.e. the algorithm holds a

set of references. We omitted the number of references, but in the whole paper,

geom shapes always represents a set of references, and all other relations are single

references (like myColor in figure 2.2). The method adjustRed() is always anno-

tated with a small box containing a fragment from its implementation. Sometimes

the signatures of the methods are given as well - method ( parameter : Integer) :

Double means that this method takes a single parameter ’parameter’ of type integer

and returns an object of type Double.

Therefore we can describe figure 2.1 as follows: An algorithm class has a

method adjustRed() which can be called to do some modification on a set of ge-

ometric two-dimensional shapes. A concrete shape (like a circle, line or square)

may be derived from the base class. The method adjustRed accesses the attribute

values through the interface of each shape, i.e. by calling the methods provided by

GeomShape2D.

For example, an image composed of two–dimensional shapes may be mod-

eled as an object of class java.util.Vector, whose items shall be objects of

1The C++ literate reader may think of a pure abstract class.
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Figure 2.1 UML-diagram for straightforward implementation

GeomShape2D

getRed() : Double
getGreen() : Double
getBlue() : Double
setRed(r : Double)
setGreen(g : Double)
setBlue(b : Double)

<<Interface>>
Algorithm_2

adjustRed()

+geom_shapes

...
shape.setRed(new Double(1))
...

SomeShape

classes implementing interface GeomShape2D:

Vector geom shapes = new Vector ();

For the sake of argument, suppose we want to perform the following simple im-

age processing operation: the RGB–values of each geometric object in geom shapes

are modified such that the sum of the three color values (the brightness) is not

changed, but the contribution of red is increased by 10%2. The mathematical de-

tails of the algorithm are not relevant. The main point is the impression that even

such a simple algorithm may result in a complex, error–prone implementation,

which is hard to understand and even harder to maintain.

2If red already contributes more than 90% to the color of an object, we set the color of this object

to plain red, that is (1,0,0).
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public static void adjustRed (Enumeration enum, double percentage) f

// See Appendix A on Enumerations for a brief introduction into this Java feature.

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

GeomShape2D shape =(GeomShape2D)(obj);

double red = shape.getRed ().doubleValue ();

if (red > 1-percentage/100) f

shape.setRed (new Double (1));

shape.setGreen (new Double (0));

shape.setBlue (new Double (0));

g else f

double new red = red + percentage/100;

double green = shape.getGreen ().doubleValue ();

double blue = shape.getBlue ().doubleValue ();

shape.setRed (new Double (new red));

shape.setGreen (new Double ((1-new red) *(green/(green+blue))));

shape.setBlue (new Double (1-new red-green));

g

g

g

Clearly, unlike in C and C++, every function must be a method of some class.

Let’s assume the class of adjustRed is a mere container of geometric algorithms

and called GeomAlgorithms. Then a call to adjustRed to increase the con-

tribution of red by 10% looks like this:

GeomAlgorithms.adjustRed (geom shapes.elements (), 10.0);

The key word static in the header of adjustRed allows a call to adjus-

tRed without an actual object of class GeomAlgorithms, simply by qualifying

the name of the class.

2.2 Goal 1: Loose Coupling

The fact that geometric objects are represented by interface GeomShape2D, and

that the basic colors red, green, and blue are accessed by methods getRed, se-

tRed, etc., is “hard–wired” in the algorithm adjustRed. Such a strong coupling

of a piece of code with its context is generally undesirable:

1. It is very likely that future maintenance work will affect the protocol used to

tie a piece of code together with its collaborators. It is even more likely that

a new application context will impose a completely different protocol.

2. It is highly uneconomical and error–prone to implement non–trivial pieces

of code repeatedly from scratch (or to revise them exhaustively) whenever
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the context changes through maintenance work or the subroutine shall be

applied in a different context.

The goal is to minimize strong coupling. A positive formulation is to design

loosely coupled software.

To stick to our running example: for adjustRed this means it cannot be

assumed that the underlying geometric shape class will always be named Ge-

omShape2D, that the RGB values are always accessed through methods get/setRed,

etc., and that these methods always have the same signatures as in GeomShape2D.

Even a subroutine as simple as adjustRed is complex enough to make the adap-

tation to another “protocol” a potentially hazardous effort, because the “volatile”

details are helplessly intermixed with the logic of the subroutine.

At first glance, this statement may look a bit too strong, because it seems that

the details to be changed can be easily found in the code and modified by straight-

forward changes. However, the discussion of the following three variations will

give an imagination how complex such a modification actually may be in practice.

Each of these variations is realistic and has been found in projects, and adapting an

algorithm such as adjustRed to any of them is by no means trivial.

2.2.1 First variation: combined attributes

In the first variation of GeomShape2D(i.e. interface GeomShape2D
2

below), the

three basic colors are not realized as three mutually independent attributes of Ge-

omShape2D, but form one attribute of type RGBColor, say, which comprises

three Double values (see figure 2.2 for the corresponding UML diagram):
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class RGBColor f

Double red, green, blue;

RGBColor (Double red, Double green, Double blue) f

this.red = red;

this.green = green;

this.blue = blue;

g

public Double getRedPart () f

return red; g

public Double getGreenPart () f

return green; g

public Double getBluePart () f

return blue; g

public void setRedPart (Double red) f

this.red = red; g

public void setGreenPart (Double green) f

this.green = green; g

public void setBluePart (Double blue) f

this.blue = blue; g

g

Figure 2.2 UML-diagram for first variation

...
shape.getColor().setRedPart(new Double(1))
...

SomeShape_2

RGBColor

red : Double
green : Double
blue : Double

RGBColor(r : Double, g : Double, b : Double)
getRedPart() : Double
getGreenPart() : Double
getBluePart() : Double
setRedPart(r : Double)
setGreenPart(g : Double)
setBluePart(b : Double)

+myColor

Algorithm

adjustRed()GeomShape2D_2

getColor()

<<Interface>>

+geom_shapes
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The following variant of GeomShape2D represents geometric objects whose

colors are implemented by class RGBColor:

public interface GeomShape2D
2

f

public RGBColor getColor ();

// Further general methods for arbitrary two-dimensional

// shapes, e.g. for shifting or rotating a shape object

g

2.2.2 Second variation: separate attributes

So far, we did not distinguish between abstract attributes and data members of

classes, which are also often called attributes. However, an attribute is not nec-

essarily a data member but, more generally, a conceptual entity related to a class,

which has a designated type and associates a value of this type to every object of

the class. An attribute may be implemented as a data member of this class (for

example, accompanied by a pair of get/set methods as above). However, it may

also be implemented completely differently, as we will see in the scenario that we

are going to discuss next.

If an attribute of a class A is implemented as a data member of A, it is per-

manently associated with A. Sometimes it is useful or even necessary to at-

tach an additional, temporary, attribute to existing objects of type A. For in-

stance, if geometric shapes are not designed to have a color, the objects in a

collection of GeomShape2D (such as geom shapes) cannot be assigned color

values other than by storing all of these values in separate, additional data struc-

tures. For example, in Java the three additional RGB values could be stored in

three separate dictionaries from java.util.Dictionary, which are realized

by java.util.HashTable (see again figure 2.3 for the corresponding UML-

diagram):

Dictionary red dictionary = new Hashtable ();

Dictionary green dictionary = new Hashtable ();

Dictionary blue dictionary = new Hashtable ();

The formal type of items in dictionaries is Object, however, the correspond-

ing implementation of adjustRed assumes that all objects in these three dictio-

naries are of subtype Double:

10



Figure 2.3 UML-diagram for second variation

SimpleShape

Algorithm_3

red_dict : Dictionary
green_dict : Dictionary
blue_dict : Dictionary

adjustRed()

+geom_shapes
...
red_dict.put(obj, new Double(1))
...

public static adjustRed
2

(Enumeration enum, Dictionary red dict,

Dictionary green dict, Dictionary blue dict, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

double red = red dict.get (obj).doubleValue ();

if (red > 1-percentage/100) f

red dict.put (obj, new Double (1));

green dict.put (obj, new Double (0));

blue dict.put (obj, new Double (0));

g else f

// etc.

g

g

g

In other words, to set and retrieve a basic color of a geometric object obj, this

object serves as the key to the methods put and get of Dictionary.

It is beyond the scope of this paper to discuss whether storing attributes in

separate containers is a reasonable approach (see Section 2.2 of [7] for an in–depth

discussion). Here we only note that designs like this actually appear in practice

and have to be coped with.

2.2.3 Third variation: different encoding

RGB is but one possible encoding scheme for colors. For example, it is also pos-

sible to express every color as a composition of a hue value, a saturation value,

and a brightness value. This is the well–known HSB encoding scheme for colors.

The RGB and HSB encoding schemes are equivalent in the sense that there are two

algorithms that translate an RGB specification into an HSB specification and vice

versa. The following, third version of GeomShape2D represents the color of a ge-

ometric object according to the HSB scheme (see figure 2.4 for the corresponding

UML-diagram):
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public interface GeomShape2D
3

f

public Double getHue ();

public Double getSaturation ();

public Double getBrightness ();

public void setHue (Double h);

public void setSaturation (Double s);

public void setBrightness (Double b);

// Further general methods for arbitrary two-dimensional

//shapes, e.g. for shifting or rotating a shape object

g

Figure 2.4 UML-diagram for third variation

GeomShape2D_3

getHue()
getSaturation()
getBrightness()
setHue()
setSaturation()
setBrightness()

<<Interface>> Algorithm_4

adjustRed()

+geom_shapes
...
// compute HSB-values for different red value
shape.setHue(..)
shape.setSaturation(..);
shape.setBrightness(..);
...

Summary of Section 2.2

A feature of a class (even a feature as simple as a single

attribute!) may appear in quite different ways in the

class’ interface. A true open–world design of a client

must be able to cope with all of them.

2.3 Goal 2: Static Safety

This section is intended to clarify our viewpoint on static (type) safety. Static safety

can be destroyed by an evaluation of run–time type information. For example, the

down–cast in adjustRed from Object to GeomShape2D implicitly evaluates

the run–time information whether or not the argument’s class implements the inter-

face GeomShape2D.3 In Java, this information can be explicitly queried through

operator instanceof. On the other hand, reflection (Appendix C) allows the

run–time access to detailed information about the properties of an object’s type.

3Casts in C and C++ are another example of implicit run–time type evaluation, which is even

more dangerous, because here a type error does not raise an exception but may result in undefined

behavior.
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We do not regard every application of run–time type information as loss of

static safety. In fact, we will distinguish between two fundamentally different use

scenarios of run–time type information, which look very similar but have fun-

damentally different semantics. In the first use scenario, a maximum degree of

reliability is achieved despite the fact that run–time type information is heavily

incorporated. In contrast, the second use scenario reveals a serious gap in static

safety.

Note that the implementation of adjustRed in Section 2.1 is not really com-

plete, because a failure of the down–cast from Object to GeomShape2D is not

caught. We will consider two different ways of catching such a failure. It will turn

out that these two ways are quite representative for the two different use scenarios.

A brief sketch of the first variant:

public static void adjustRed
3

(Enumeration enum, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

if (obj instanceof GeomShape2D) f

GeomShape2D shape =(GeomShape2D)(obj);

// Proceed with the algorithm. . .

g else f

throw MyFavoriteException ();

g

g

g

And here is the second variant:

public static void adjustRed
4

(Enumeration enum, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

if (obj instanceof GeomShape2D) f

GeomShape2D shape =(GeomShape2D)(obj);

// Proceed with the algorithm. . .

g

g

g

Technically speaking, the only difference is the missing else–part in adjustRed
4

.

However, from an abstract viewpoint both versions implement fundamentally dif-

ferent algorithms. In fact, adjustRed
4

implements the algorithm,

“modify all GeomShape2Dobjects that are found in geom shapes,”

whereas adjustRed
3

implements the algorithm,

“modify all items of geom shapes(assuming that all of them are

GeomShape objects).”

13



In other words, the application of instanceof and the down–cast are in-

tegral ingredients of the algorithm’s logic in method adjustRed
4

. In contrast,

in adjustRed
3

they are only used to check and reconstruct certain type infor-

mation, which was lost due to the type anonymity of the objects in the container

geom shapes.

If the test for the correct type is part of the algorithm, a quest for more static

type safety certainly does not make any sense. Hence, we regard adjustRed
4

as fully statically safe. However, in the other case such a quest makes perfect

sense: if the code does not compile unless all items in geom shapes are of types

implementing interface GeomShape2D, we loose nothing but gain a much higher

degree of reliability. This is a case in which we regard an evaluation of run–time

type information as statically unsafe.

We belive that the general debate on static safety suffers from a lack of ac-

curate distinction between these two use scenarios. In fact, this distinction seems

to be crucial for that discussion. Our example shows that this distinction might

be rather subtle, and that the implementations of both use scenarios only differ in

(seemingly) minor details, so it is not surprising that there is a lot of confusion in

this debate.

In the rest of the paper, we will concentrate on the second, unsafe, use scenario.

Summary of Section 2.3

An evaluation of run–time type information that does

not belong to the logic of a piece of code but is merely

used to reconstruct lost type information indicates an

unnecessary (and potentially dangerous) lack of static

safety.

2.4 “Non–Solutions”

Clearly, an implementation of the general design pattern adapter [3] seems the

right way of achieving loose coupling. We will come back to adapters in the very

next section. In this section, we will dwell a bit on certain advanced features of

Java, which also aim at loose coupling: inner classes and reflection. Besides their

unquestionable merits, both of them miss both goals stated in Sections 2.2 and 2.3.

It might be instructive to analyze this failure before going on with adapters.

2.4.1 Inner classes

A common idiom in Java is the usage of inner classes as wrappers (see Appendix

B). For example, the next variant of our interface for geometric shapes, GeomShape2D
4

,

is based on the following wrapper class, which is named DataWrapper:

14



public interface DataWrapper f

public Double getValue ();

public void setValue (Double value);

g

public interface GeomShape2D
4

f

public DataWrapper getRedWrapper ();

public DataWrapper getGreenWrapper ();

public DataWrapper getBlueWrapper ();

// Further general methods for arbitrary two-dimensional shapes,

// e.g. for shifting or rotating a shape object

g

The idea is this: getRedWrapper returns a DataWrapperwhose methods

read and overwrite the red color of the corresponding shape object (getGreen-

Wrapper and getBlueWrapper analogously). The following implementation

of the interface GeomShape2D
4

demonstrates this technique:

public class GeomShape2DWithColorWrappers

implements GeomShape2D
4

f

Double red;

Double green;

Double blue;

// Color wrappers:

public class RedWrapper implements DataWrapper f

public Double getValue () f

return GeomShape2DWithColorWrappers.this.red;

g

public void setValue (Double red) f

GeomShape2DWithColorWrappers.this.red = red;

g

g

public DataWrapper getRedWrapper () f

return new RedWrapper ();

g

// Analogous inner classes Green/BlueWrapper and methods getGreen/BlueWrapper

// Further methods of GeomShape2D
4

g

An implementation of adjustRed in which inner classes encapsulate the

method access:

15



public static void adjustRed
5

(Enumeration enum, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

if (obj instanceof GeomShape2D
4

) f

GeomShape2D
4

shape =(GeomShape2D
4

)(obj);

DataWrapper red wrapper = shape.getRedWrapper ();

DataWrapper green wrapper = shape.getGreenWrapper ();

DataWrapper blue wrapper = shape.getBlueWrapper ();

double red = red wrapper.getValue ().doubleValue ();

if (red > 1-percentage/100) f

red wrapper.setValue (new Double (1));

green wrapper.setValue (new Double (0));

blue wrapper.setValue (new Double (0));

g else f

// etc.

g

g else throw MyFavoriteException ();

g

g

It might be obvious from this example that inner classes do not really solve

the problem we addressed in Section 2.2.4 In fact, the strong coupling between

the client adjustRed
5

and the underlying geometric shape type is simply shifted

from the original methods (get/setRed etc.) to the new methods (getRed/

Green/ BlueWrapper). In view of Section 2.2, it makes no difference whether

the identifier getRed or the identifier getRedWrapper is “hard–coded” in adjustRed
5

.

2.4.2 Reflection

Run–time type information can be used to access all methods of a class without

knowing in advance which methods this class offers and which signatures they

have. In Java, reflection is implemented by the reflection API5. This package can-

not handle primitive types, which is one of the reasons why the design of the case

study from Section 2.1 relies on class Double instead of primitive type double.

A variant of method adjustRed based on reflection (sketched) can be seen

in figure 2.5.

Clearly, static safety is completely missed. On the other hand, the names

4At first glance, there seems to be an elegant workaround: the methods getRed/ Green/

BlueWrapper are not called inside adjustRed
5

. Instead, adjustRed
5

has three enumera-

tions arguments, which refer to sequences of DataWrapper objects for all three colors. More

specifically, for every item in the original sequence geom shapes there is a DataWrapper ob-

ject in each of the new sequences, which refers to the original item. However, static safety is still

missing, and a really loose coupling is not achieved either, because adjustRed
5

still depends on

the existence of inner classes implementing DataWrapper. In other words, adjustRed
5

would

not depend on the exact signatures of getRed/ Green/ BlueWrapper anymore but still on the
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Figure 2.5 A variant of method adjustRed based on reflection (sketched).

public static void adjustRed
6

(Enumeration enum,

String name of red get method, String name of red set method,

String name of green get method, String name of green set method,

String name of blue get method, String name of blue set method,

double percentage) f

String argument types of red get = new Class [0];

String argument types of red set = new Class [1];

String argument values of red get = new Object [0];

String argument values of red set = new Object [1];

try f

argument types of red set[0] = Class .forName (”java.lang.Double ”);

g

catch (Exception e) f

// Do some reasonable exception handling

g

// Analogously green and blue

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

java.lang.reflect.Method get red;

java.lang.reflect.Method set red;

try f

get red = obj.getClass ().getMethod (name of red get method,argument types of red get);

set red = obj.getClass ().getMethod (name of red set method, argument types of red set);

g

catch (Exception e) f

// Do some reasonable exception handling

g

// Analogously green and blue

Double red obj = get red.invoke (obj, argument values of red get);

double red = red obj.doubleValue ();

if (red > 1-percentage/100) f

set red.invoke (obj, new Double (1));

set green.invoke (obj, new Double (0));

set blue.invoke (obj, new Double (0));

g else f

// etc.

g

g

g
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and signatures of the color–accessing methods are not hard–wired in the code of

adjustRed
6

. However, we note that adjustRed
6

is not really independent of

these methods, because the number of arguments of these methods are still hard–

wired.6

Summary of Section 2.4

Even advanced features such as inner classes and re-

flections, which are specifically intended to implement

loose coupling, are not sufficient to achieve the goals in

Sections 2.2 and 2.3 simultaneously.

2.5 Adaptation

The adapter pattern [3] can be used to decouple a class from its clients. In our case

study, this means that a subroutine such as adjustRed is not based on the com-

prehensive interface GeomShape2D, which captures various aspects of geometric

shapes, but on a small interface, which only captures the aspects relevant for ad-

justRed, for example, leaned on the signature of GeomShape2D (see figure 2.6

for the corresponding UML-diagram):

public interface RGBHandler f

public double getRed (Object obj);

public double getGreen (Object obj);

public double getBlue (Object obj);

public void setRed (Object obj, Double r);

public void setGreen (Object obj, Double g);

public void setBlue (Object obj, Double b);

g

A variant of adjustRed based on RGBHandler could look like this (sketched):

existence of these three methods (having whatever signatures).
5See Appendix C or java.lang.reflect.*.
6In principle, Java’s reflection mechanism is powerful enough even to render the number of argu-

ments variable. However, then the problem remains what adjustRed
6

should do in case of, say,

additional arguments, that is, what values they should be assigned by adjustRed
6

.
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Figure 2.6 UML-diagram for rgb handlers

GeomShape2D

getRed()
getGreen()
getBlue()
setRed()
setGreen()
setBlue()

<<Interface>>

GeomShape2D_RGBHandler

RGBHandler

getRed(obj : Object) : double
getGreen(obj : Object) : double
getBlue(obj : Object) : double
setRed(obj : Object, r : double)
setGreen(obj : Object, g : double)
setBlue(obj : Object, b : double)

<<Interface>>

Algorithm_5

adjustRed()

+geom_shapes

+rgb

...
rgb.setRed(shape,new Double(1))
...

public static void adjustRed
7

(Enumeration enum,

RGBHandler rgb, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

double red = rgb.getRed (obj).doubleValue ();

if (red > 1-percentage/100) f

rgb.setRed (obj, new Double (1));

rgb.setGreen (obj, new Double (0));

rgb.setBlue (obj, new Double (0));

g else f

// etc.

g

g

g

Notice that down–casts are not avoided but moved from the algorithm to the

adapting class. To apply adjustRed to a class like GeomShape2D, a class

GeomShape2D RGBHandler, say, is defined, which implements RGBHandler

and “knows” all relevant details of GeomShape2D:
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public class GeomShape2D RGBHandler implements RGBHandler f

public Double getRed (Object obj) f

if (obj instanceof GeomShape2D) f

return ((GeomShape2D)obj).getRed ();

else throw MyFavoriteException ();

g

public void setRed (Object obj, Double r) f

if (obj instanceof GeomShape2D) f

((GeomShape2D)obj).setRed (r);

else throw MyFavoriteException ();

g

// Green and blue analogously

g

Now we can apply adjustRed
7

to a sequence of GeomShape2D objects:

GeomShape2D RGBHandler rgb = new GeomShape2D RGBHandler;

GeomAlgorithms.adjustRed
7

(geom shapes.elements (), rgb, 10.0);

In general, the individual attributes of a class are not as strongly coupled as the

RGB color values of a geometric shape. Hence, in general it might be preferable

to provide one separate handler object for each attribute. Such a one–to–one cor-

respondence between attributes and handlers would exactly implement the data–

accessor concept as introduced in [4] or [5] and discussed in [7]. Note however,

that although adapter and data accessor are similar on the implementation side,

they are completely different in their intent (see [5] for a detailed discussion): the

intent of data accessors is to encapsulate the access to attributes of classes in small,

light–weight classes. This allows a common, uniform interface for all attributes of

all classes, which means that classes and attributes are easily exchangeable in an

attribute–accessing client such as adjustRed.7 To emphasize that the following

data–accessor interface only applies to attributes of type Double, we will call the

interface DoubleAccessor (see figure 2.7 for the UML-diagram):

public interface DoubleAccessor f

public Double get (Object obj);

public void set (Object obj, Double value);

g

7Note that the JavaBeans convention for method signatures [6] does not provide a uniform inter-

face to attributes in the strong sense as used in this paper. In the JavaBeans approach, the signatures

of a pair of get/set methods depend on the name of the attribute in a disciplined manner. In con-

trast, the signatures of the get/set methods of a data accessor do not at all depend on the name

and type of the attribute. This difference results from different goals: the JavaBeans approach allows

an easy access of each attribute given the name of the attribute, whereas we need a convention that

renders the name of the attribute completely anonymous to allow an easy exchange.
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Figure 2.7 UML-diagram for double accessor

DoubleAccessor

get(obj : Object) : Double
set(obj : Object, value : Double)

<<Interface>>

GreenAccessorRedAccessor BlueAccessor

And the corresponding implementation of adjustRed (see figure 2.8 for a

UML-diagram):

public static void adjustRed
8

(Enumeration enum, DoubleAccessor red acc,

DoubleAccessor green acc, DoubleAccessor blue acc, double percentage) f

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

double red = red acc.get (obj).doubleValue ();

if (red > 1-percentage/100) f

red acc.set (obj, Double (1));

green acc.set (obj, Double (0));

blue acc.set (obj, Double (0));

g else f

// etc.

g

g

g

Figure 2.8 UML-diagram for an algorithm that uses double accessors

...
red_acc.set(obj,new Double(1))
...

Object

Algorithm_6

red_acc : DoubleAccessor
green_acc : DoubleAccessor
blue_acc : DoubleAccessor

adjustRed()

+geom_shapes

For ease of exposition, we will use the variant adjustRed
8

in the rest of the

paper.
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2.6 Data Accessors and Down–Casts

Unfortunately, using data accessors in Java results in many down–casts due to the

fact that the object type is left open in the interface DoubleAccessor (it is

Object). We will illustrate this problem by sketching the implementation of an

appropriate data–accessor class for the basic scenario from Section 2.1 and for the

variations from Section 2.2.

The crucial impression to be taken from the examples is this: each scenario

will require a down–cast of the kind that indicates an unnecessary lack of static

safety. For ease of exposition, we omit all exception handling, and we only give

the accessors for the red color value.

2.6.1 Data Accessor for Straightforward Implementation

Here is a data–accessor class for the red color value based on interface GeomShape2D

from Section 2.1, page 5:

public class RedAccessor
1

implements DoubleAccessor f

public Double get (Object obj) f

return ((GeomShape2D)obj).getRed ();

g

public Double set (Object obj, Double value) f

((GeomShape2D)obj).setRed (value);

g

g

2.6.2 First variation: combined attributes

For GeomShape2D
2

(i.e. first variation in Section 2.2, page 2.2.1):

public class RedAccessor
2

implements DoubleAccessor f

public Double get (Object obj) f

GeomShape2D
2

shape =(GeomShape2D
2

) obj;

return shape.getColor ().getRedPart ();

g

public Double set (Object obj, Double value) f

GeomShape2D
2

shape =(GeomShape2D
2

) obj;

shape.getColor ().setRedPart (value);

g

g
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2.6.3 Second Variation: Dictionaries

The data–accessor class for the second variation from Section 2.2, page 2.2.2 is

somewhat different. Since the color values are stored outside the shape class, they

must be handed over to the data accessors in a way that does not affect the code

of adjustRed
8

. In other words, the data accessors must receive the color values

before adjustRed
8

is called (e.g. as an argument to the constructor). Interest-

ingly, this particular data–accessor class is not bound to a specific implementation

of geometric shapes, not even to a specific attribute, because the shape object is

merely handed over anonymously to the dictionary of attribute values. In fact,

DoubleDictAccessor only depends on the attribute type Double, which en-

forces another down–cast:

public class DoubleDictAccessor

implements DoubleAccessor f

Dictionary dictionary;

public DoubleDictAccessor (Dictionary dictionary) f

this.dictionary = dictionary;

g

public Double get (Object obj) f

Object item = dictionary.get (obj);

return (Double )item;

g

public void set (Object obj, Double value) f

dictionary.put (obj, value);

g

g

2.6.4 Third variation: different encoding

Next we consider a data–accessor class for GeomShape2D
3

(third variation in

Section 2.2, page 11). The following implementation, RedHSBAccessor, is

based on three further data accessors, which access the hue, saturation, and bright-

ness value of the geometric shape object, respectively. Hence, this class, which per-

forms non–trivial algorithmic tasks,8 is also decoupled from all “volatile” details

of the underlying shape class and might itself be better maintainable and reusable.

8For ease of exposition, the conversion algorithms RGB$HSB are integrated in the data–

accessor class. In a more realistic design they would be implemented as methods of a separate

class.

23



public class RedAccessor
3

implements DoubleAccessor f

DoubleAccessor hue acc;

DoubleAccessor saturation acc;

DoubleAccessor brightness acc;

public RedAccessor
3

(DoubleAccessor hue acc,

DoubleAccessor saturation acc, DoubleAccessor brightness acc) f

this.hue acc = hue acc;

this.saturation acc = saturation acc;

this.brightness acc = brightness acc;

g

public Double get (Object obj) f

Double hue = hue acc.get (obj);

Double saturation = saturation acc.get (obj);

Double brightness = brightness acc.get (obj);

Double red = /* Red part of result HSB ! RGB */

return red;

g

public void set (Object obj, Double value) f

Double hue = hue acc.get (obj);

Double saturation = saturation acc.get (obj);

Double brightness = brightness acc.get (obj);

Double green;

Double blue;

/* Compute green and blue from hue, saturation, and brightness */

/* Compute the new values of hue, saturation,

and brightness from the RGB triple (value,green,blue) */

hue acc.set (obj, hue);

saturation acc.set (obj, saturation);

brightness acc.set (obj, brightness);

g

g

2.6.5 Inner classes

For completeness, we will also show how to bring interface GeomShape2D
4

from

Section 2.4 into the game:
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public class RedAccessor
4

implements DoubleAccessor f

public Double get (Object obj) f

GeomShape2D
4

shape =(GeomShape2D
4

)obj;

return shape.getRedWrapper ().getValue ();

g

public void set (Object obj, Double value) f

GeomShape2D
4

shape =(GeomShape2D
4

)obj;

shape.getRedWrapper ().setValue (value);

g

g

2.6.6 Reflection

To conclude this section, it might be instructive to see how a data accessor may be

based on reflection instead of mere down–casts. Of course, this does not change

the overall conclusion that there remains a lack of static safety.
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public class ReflectionAccessor

implements DoubleAccessor f

String name of get method, name of set method;

Class [] argument types of get, Class [] argument types of set;

Object [] argument values of get, Object [] argument values of set;

ReflectionAccessor (String name of get method,

String name of set method) f

this.name of get method = name of get method;

this.name of set method = name of set method;

argument types of get = new Class [0];

argument types of set = new Class [1];

argument values of get = new Object [0];

argument values of set = new Object [1];

try f

argument types of set[0] = Class .forName (”java.lang.Double ”);

g

catch (Exception e) f

// Do some reasonable exception handling

g

g

g

public Double get (Object obj) f

GeomShape2D
3

shape =(GeomShape2D
3

obj;

try f

Method get = shape.getClass ().getMethod (name of get method, argument types of get);

Object return obj = get.invoke (shape, argument values of get);

return (Double )return obj;

g catch (Exception e) f

// Do some reasonable exception handling

g

g

public void set (Object obj, Double value) f

GeomShape2D
3

shape =(GeomShape2D
3

obj;

argument values of set[0] = value;

try f

Method set = shape.getClass ().getMethod (name of set method, argument types of set);

set.invoke (shape, argument values of set);

g catch (Exception e) f

// Do some reasonable exception handling

g

g

g
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Summary of Section 2.6

In pure Java, a true open–world design results in a se-

rious lack of static safety (indicated by down–casts or

other ways of evaluating run–time type information).

Adapters may encapsulate but not remove this gap.

2.7 Making the Attribute Type Generic

So far, we did not vary the types of the attributes to work out the crucial point more

clearly: even if the type of an attribute is fixed, an open–world design of attribute

access results in a serious type–safety problem. In this section, we will require for

true “open–worldness” that the attribute type is also left variable. It is not surprising

that static safety will be seriously affected. However, the extent to which this will

happen might be surprising: we will have to introduce an additional, auxiliary

interface (named Traits below), and the attribute type and the traits type have to

fit together exactly.

To make our algorithm applicable to various attribute types, we have to replace

Double by a more general type; Object is the prime candidate for that:

public interface ObjectAccessor f

public Object get (Object obj);

public void set (Object obj, Object value);

g

Here is an appropriate implementation of ObjectAccessor for the red color

value of GeomShape2D:

public class ObjectAccessorRedGeomShape2D

implements ObjectAccessor f

public Object get (Object obj) f

GeomShape2D shape =(GeomShape2D)obj;

return shape.getRed ();

g

public void set (Object obj, Object value) f

GeomShape2D shape =(GeomShape2D)obj;

Double val obj =(Double )value;

shape.setRed (val obj);

g

g

So far, nothing changed. The new problem is due to the fact that our algorithm

applies certain operations to objects of the attribute type: the four basic numerical

operations and a comparison operation. In view of Section 2.2, we cannot as-

sume that all potential attribute types provide a common signature for all of these

operations. Hence, to write down these operations without knowing the concrete
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attribute type, we collect these operations in an additional object traits.9 In the

following, a traits object is an instance of a class that implements the following

interface:

public interface Traits f

public Object generate (double x);

public Object plus (Object val1, Object val2);

public Object minus (Object val1, Object val2);

public Object mult (Object val1, Object val2);

public Object div (Object val1, Object val2);

public boolean isGreaterThan (Object val1, Object val2);

g

The first method returns a reference to an object of the anonymous attribute

type, and the value of this object shall represent the value of x. We will only

use this method to generate objects representing 0, 1, and 100, respectively. The

requirement that these three values are feasible might not cause any problem for

any class type that represents real numbers.

The other methods assume that their arguments are of the attribute type. Meth-

ods #2–6 are also required to return references to objects of the attribute type.

These methods perform the basic arithmetical operations on the attribute type. Fi-

nally, the last method returns true if and only if the first argument is to be regarded

as greater than the second argument.

Now we are able to formulate a version of adjustRed in which the attribute

type is left open. A brief sketch:

9The name is borrowed from the analogous traits idiom in C++, which is heavily used in the

standard library.
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public void adjustRed
9

(Enumeration enum, ObjectAccessor red acc,

ObjectAccessor green acc, ObjectAccessor blue acc,

Object percentage, Traits traits) f

Object zero = traits.generate (0);

Object one = traits.generate (1);

Object hundred = traits.generate (100);

Object fraction = traits.div (percentage, hundred);

Object threshold = traits.minus (one, fraction);

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

Object red = red acc.get (obj);

if (traits.isGreaterThan (red, threshold)) f

obj.setRed (one);

obj.setGreen (zero);

obj.setBlue (zero);

g else f

// etc.

g

g

g

Here is a concrete example of such a traits class, which would perfectly collab-

orate with ObjectAccessorRed/Green/BlueGeomShape2Dvia class Dou-

ble:

public class DoubleTraits

implements Traits f

public Object generate (double x) f

return new Double (x);

g

public Object plus (Object val1, Object val2) f

double d1 =((Double )val1).doubleValue ();

double d2 =((Double )val2).doubleValue ();

return new Double (d1+d2);

g

// Analogously: minus, mult, div, isGreaterThan

g

Such a design requires even more care, because it must be additionally guaran-

teed by the software developer that the attribute type and the traits type fit correctly

together. Clearly, this kind of unsafe collaborations increases the potential for pit-

falls dramatically and is much harder to debug.
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Summary of Section 2.7

A generic attribute type requires an unsafe collabora-

tion between the attribute type itself and additional,

auxiliary types.

2.8 Parametric Polymorphism: GJ

Of course, the best way to avoid trouble with down–casts is to avoid down–casts at

all. However, it seems that in plain Java, down–casts cannot be avoided, unless all

data structures are “hard–wired” in the algorithms. Clearly, this would destroy all

hope even for a rudimentary form of open–world design. As we saw, this conflict

does not seem to be resolvable in plain Java. In this section, we will show that it

is resolvable in generic language extensions such as GJ [2]. The essential feature

missing in Java is parametric polymorphism(see Appendix D). We will start right

from Section 2.7, because the genericity of the attribute type will come as a by–

product.

To begin with, we replace the interface ObjectAccessor from Section 2.7

by the interface GenericAccessor, which is equally general, but will not en-

force any down–casts10 in the classes implementing this interface:

public interface

GenericAccessor<ObjectType,ValueType> f

public ValueType get (ObjectType obj);

public void set (ObjectType obj, ValueType value);

g

The formal type argument ObjectType stands for the class to which the at-

tribute is associated (i.e. GeomShape2D in our running example), whereas Val-

ueType stands for the attribute type. The goal is to use GenericAcces-

sor to eliminate the need for Object in the definition of adjustRed. Since

java.lang.Enumeration also works on Object, we have to replace Enu-

meration by a variant that is parameterized by the item type of the underlying

container:

public interface

GenericEnumeration<ObjectType> f

public boolean hasMoreElements ();

public ObjectType nextElement ();

g

Now, our Vector object geom shapes may be replaced by a vector that is

specific to the interface GeomShape2D:

10According to [2], generic type parameters are internally realized by down–casts in GJ. However,

this is an implementation detail of the compiler and does not affect the static safety offered to the

developer.
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Vector <GeomShape2D> geom shapes = new Vector <GeomShape2D>();

The traits interface introduced in Section 2.7 is also replaced by a generic one:

public interface GenericTraits <ValueType> f

public static ValueType generate (double x);

public static ValueType plus (ValueType val1, ValueType val2);

public static ValueType minus (ValueType val1, ValueType val2);

public static ValueType mult (ValueType val1, ValueType val2);

public static ValueType div (ValueType val1, ValueType val2);

public static boolean isGreaterThan (ValueType val1, ValueType val2);

g

Now we are in a position to implement a truly generic version of adjustRed,

which we call adjustRed
10

. This algorithm will be a method of a variant of class

GeomAlgorithms from Section 2, which is parameterized by ObjectType

and ValueType:

public class

GeomAlgorithms
2

<ObjectType, ValueType> f

public static void adjustRed
10

(GenericEnumeration<ObjectType> enum,

GenericAccessor<ObjectType,ValueType> red acc,

GenericAccessor<ObjectType,ValueType> green acc,

GenericAccessor<ObjectType,ValueType> blue acc,

ValueType percentage,

GenericTraits<ValueType> traits) f

ValueType zero = traits.generate (0);

ValueType one = traits.generate (1);

ValueType hundred = traits.generate (100);

ValueType fraction = traits.div (percentage, hundred);

ValueType threshold = traits.minus (one, fraction);

while (enum.hasMoreElements ()) f

ObjectType shape = enum.nextElement ();

ValueType red = red acc.get (shape);

if (traits.isGreaterThan (red, threshold)) f

shape.setRed (one);

shape.setGreen (zero);

shape.setBlue (zero);

g else f

// etc.

g

g

g

g

The following variant is a concrete example of how the interface Generi-
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cAccessormay be implemented in order to access a concrete attribute of a con-

crete class/interface such as GeomShape2D.

public class AccessorRedGeomShape2D

implements GenericAccessor<GeomShape2D,Double > f

public Double get (GeomShape2D shape) f

return shape.getRed ();

g

public void set (GeomShape2D shape, Double value) f

shape.setRed (value);

g

g

To realize the last argument of adjustRed
10

, we let a variant of Double-

Traits(see Section 2.7) implement GenericTraits<Double>:

public class DoubleTraits
2

implements GenericTraits<Double > f

public Double generate (double x) f

return new Double (x);

g

public Double plus (Double val1, Double val2) f

double d1 = val1.doubleValue ();

double d2 = val2.doubleValue ();

return new Double (d1+d2);

g

// Analogously minus, mult, div, and isGreaterThan

g

Finally, here is the call to the generic version of adjustRed:

AccessorRedGeomShape2D red acc = new AccessorRedGeomShape2D ();

AccessorGreenGeomShape2D green acc = new AccessorGreenGeomShape2D ();

AccessorBlueGeomShape2D blue acc = new AccessorBlueGeomShape2D ();

DoubleTraits
2

traits = new DoubleTraits
2

();

GeomAlgorithms
2

adjustRed
10

(geom shapes.elements (),

red acc, green acc, blue acc, 10.0, traits);

These code snippets might give an idea how parametric polymorphism may

be applied in the second use scenario of Section 2.2. The result is as flexible as

possible, absolutely safe, and even simpler than any of the previous designs in

plain Java.
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3 Conclusion

Figure 3.1 variations of data accessor implementations

object type fixed object type variable object type variable

value type fixed value type fixed value type variable

pure Java ok no static type safety no static type safety

use of traits

Java + GJ ok ok use of traits

C++ ok ok ok

In view of maintenance and reuse, it is desirable to render the coupling between

collaborating classes as loose as possible, but nonetheless (statically) safe. We have

seen that this is a serious problem even for the access to a single attribute via a pair

of get/set methods (even if the attribute type is fixed). The language features

of Java cannot resolve the contradiction between loose coupling and safety (see

figure 3.1 for a summary of the discussion). With a generic language extension

like GJ or by using C++, it is possible to enable static type safety. However, only

in C++, the traits mechanism can be avoided by using operator overloading.

We have identified a key feature, which can help to overcome this conflict:

parametric polymorphism (genericity). As we have seen, this feature is helpful

beyond its original intention (namely to implement parameterized algorithms and

data structures). In our opinion, this is a strong argument that genericity should be

treated as a first–class design feature rather than a mere “implementation trick” for

type–independent algorithms and data structures.

An in–depth discussion of genericity as a design feature is beyond the scope of

this paper. A single paper of this length cannot give more than a base for such a

discussion.

Acknowledgments: we would like to thank Christoph Burnikel for valuable

comments.
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Appendix

Appendix A: Java Enumerations

Every container class in the Java utility library provides a method elements (),

which returns a reference to the interface java.util.Enumeration. This is

the standard interface for iterator classes in Java. For example, a traversal of a

vector v may be implemented like this:

Vector v = new Vector ();

/* . . . */

Enumeration enum = v.elements ();

while (enum.hasMoreElements ()) f

Object obj = enum.nextElement ();

// Do something reasonable with obj

g

Clearly, for every self–defined container class, one can also implement a spe-

cific Enumeration class. Hence, an algorithm that accesses containers exclu-

sively through interface Enumeration is completely independent of the choice

of the container class. This greatly improves maintainability and reusability.

Appendix B: Inner Classes

A nested class is a class that is defined inside another class. A nested, non–static

class is commonly called an inner class. Here is a simple, illustrative example:
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public class OuterClass f

int n;

public class InnerClass f

public int get () f

return n;

g

g

g

Note that InnerClass is allowed to access non–static — even private —

members of the class in which it is embedded (as opposed to nested classes in

C++). Inner classes are useful for many purposes. For example, they can be used

to circumvent the restriction that no class may inherit from more than one class.

Inner classes are also useful for lean implementations of adapters. The interested

reader is referred to the overwhelming literature on the Java language.

The aspect in which we are specifically interested in view of our case study

is the selection of class attributes. For sake of exposition, consider a simple busi-

ness model, which is based on three classes, Employee, Customer, and Free-

lance. Among other attributes, we keep the employees’ salaries, the customers’

credits and debits, and the freelances’ contractual payments. Some accounting al-

gorithms (e.g. calculation of interest) might be generic in the sense that they are

useful for each of these attributes. At first glance, it suffices to derive employees,

customers, and freelances from a common base class or interface PersonWith-

MoneyAttribute, say, which has a generic money attribute, and to implement

every accounting algorithm on top of PersonWithMoneyAttribute using

this money attribute. However, customers have two money attributes, so this idea

simply fails. Even if customers only had one money attribute: a design that regards

salaries, credits or debits, and contractual payments as conceptually identical might

not be sound and thus should be avoided.

Inner classes offer a solution to this dilemma: every person class implements

an inner class for every money attribute. All of these classes implement a common

interface MoneyHandler:

public interface MoneyHandler f

MoneyType get ();

void set (MoneyType amount);

g

For example, class Customer would define one inner class for credits and

one for debits:
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class Customer f

public class CreditHandler

implements MoneyHandler f

MoneyType get () f

/* . . . */

g

void set (MoneyType amount) f

/* . . . */

g

g

public CreditHandler getCreditHandler () f

return new CreditHandler ();

g

public class DebitHandler

implements MoneyHandler f

MoneyType get () f

/* . . . */

g

void set (MoneyType amount) f

/* . . . */

g

g

public DebitHandler getDebitHandler () f

return new DebitHandler ();

g

// Further stuff

g

An accounting algorithm may then be implemented on top of MoneyHan-

dler:

MoneyType myAccountingAlgorithm (MoneyHandler mh) f

/* . . . */

g

Appendix C: Reflection

The package java.lang.reflect provides a means of analyzing objects of

unknown classes at run time. For example, this includes means of retrieving the

name of an object’s class, the names and types of its data members, and the names

and argument lists of its methods. In this paper, we are particularly interested in

another powerful feature: invoking a method whose signature is only known at run

time. For example, the following method invokes a method of obj with one argu-

ment. The name of the method is given in the string name of method, the type
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of the only argument is argument type, and value is to be used as the value

of this argument when the method is invoked. The classes Class and Method

are defined in java.lang.Class and java.lang.reflect.Method, re-

spectively. As the class names indicate, an object of class Class (resp. Method)

contains general information about a particular class (method of a class). Method

forName of Class turns the (fully qualified) name of a class into an object for

that class.

public void invoke method (Object obj, String name of method,

String argument type, Object value) f

Class obj class id = obj.getClass ();

Class val class id = value.getClass ();

String val class name = val class id.getName ();

Class [] argument types = new Class [1];

Object [] argument values = new Object [1];

try f

argument types[0] = Class .forName (argument type);

argument values[0] = value;

Method method = obj class id.getMethod

(name of method, argument types);

method.invoke (obj, argument values);

g

catch (Exception e) f

// Do some reasonable exception handling

g

g

Appendix D: Parametric Polymorphism (GJ)

GJ’s [2] parametric polymorphism is very similar to templates in C++, generics in

Ada, parametric polymorphism in functional languages, and various other generic

extensions of Java [1]. This means that the concrete types on which a class defi-

nition is based may be left open. Such an “incomplete” class is called a parame-

terized class. In the definition of such a parameterized class, these types are repre-

sented by formal type arguments. Roughly speaking, a formal type argument is a

placeholder for the actual type. The actual type must be specified when an object

of the parameterized class is instantiated.

To give a simple example, the following stack class is parameterized by the

type T of its items. In GJ style:

38



public class Stack <T> f

public Stack () f /* . . . */ g

public void push (T t) f /* . . . */ g

public T top () f /* . . . */ g

public void pop () f /* . . . */ g

public int size () f /* . . . */ g

g

GJ does not allow that T is a primitive type such as int or double. In fact,

T must be a class or interface (this is another reason why the case study from

Section 2 uses class Double instead of primitive type double). The following

code snippet demonstrates how a stack of Integer may be created and used:

Stack<Integer > S1 = new Stack<Integer >();

S1.push (new Integer (1));

// Should print ’1’:

System.out.println (S1.top ().intValue ());

S1.push (new Double (2));

// Compiler error: wrong type

Note that the compiler checks whether or not an object of the parameterized

stack class is correct according to the concrete item type T: if we try to push a

value of a wrong item type onto a stack, the compiler issues an error message. This

is in great contrast to a generic stack class in plain Java, which must be based on

comp.lang.Object:
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public class Stack f

public Stack () f

/* . . . */

g

public void push (Object obj) f

/* . . . */

g

public Object top () f

/* . . . */

g

public void pop () f

/* . . . */

g

public int size () f

/* . . . */

g

g

/* . . . */

Stack S; // Intended to be a stack of Integer

/* . . . */

S.push (new Double (5));

// Oops: no compiler error; S silently becomes inconsistent!

This is an example of the first, unsafe, use scenario in Section 2.3. This obser-

vation can be generalized: the cases for which genericity was originally introduced

are a special case of the second use scenario.
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