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Abstract

We present a method to optimize the chronology of marine cores by orbital
tuning. In a first step—and as an additional result—we calculate a model for the
variation of the oxygen isotope abundance ratio throughout the core. The model
consists of two components: One results from the convolution of the solar insolation
at 65° on July 15 with an impulse response function which is calculated from the
data, the other is an additional low-frequency component. The initial age-depth
relation of the core can be optimized by minimizing the deviation between model
and data. The results of applications on the Meteor core 13519 and the Ocean
Drilling Program core site 658 are shown. With the optimized chronologies the
model fits the data quite well throughout the investigated cores.

1 Introduction

The aim of this work is to provide a method to obtain the age-depth relation of marine
sedimentary cores. The clue are the variations of the solar insolation due to changes of
the earth’s orbital parameters (inclination between earth axis and orbit plane, relative
position of vernal equinox and perihelion, and eccentricity of the orbit).

The total insolation which is received by the earth during one year remains always
nearly the same—it is not significantly affected by changes in the earth’s orbital parame-
ters.! Such changes only influence the distribution of the insolation in dependence on the
latitude and the season. The assumption that variations in this distribution affect the
climate—i. e. the global ice volume—is called.Milankovié¢. Theory. Various suggestions
were made which claimed the insolation at a particular season and latitude to be most
responsibel for changes in the global ice volume, implicating a certain model of climate
interchanges [13]. Most widly used is the insolation at 65°N in summer [9, 11, 12, 20],
corresponding to the idea that the annual snow balance mainly depends on summertime
melting, and that the growth and decay of the ice sheets is mainly influenced by the
annual snow balance at high northern latitudes.

1The dependence of the total insolation—integreated over the year and all latitudes—on the eccen-
tricity e is of the order €2, or 0.1 per cent, and therefore generally considered not to be of any detectable
influence on the climate.[5]



Marine sedimentary cores may contain a climatic record provided by the oxygen isotope
abundance ratio in the lime shells of micro organisms. The generally used value is

§180 = (n1s/n16) — (7118/7116)1.04@, )
(n13/n16)boday ( )

where (njg/n16) represents the abundance ratio of the oxygen isotopes 0 and '€0. The
6180 value in the ocean is a measure of the global ice volume due to fractionation effects
of the hydrological cycle. In the evaporation from the sea surface, molecules containing
the lighter oxygen isotope 160 are prefered, and so this isotope is stored in increasing ice
sheets. This yields an increasing *0 /10 abundance ratio in the ocean. Micro organ-
isms assimilate the oxygen of their environment, and their lime shells form the marine
sediments. Although the isotope abundance in organic sediments may depend on various
factors, e. g. the local sea surface temperature and salinity, it is generally believed to
reflect essentially the global ice volume [3, 14, 23, 25].

The solar insolation can be calculated for times up to about 10 million years ago with
very good accuracy [1, 6, 16, 17], and the hypothesis that the §'*0 record was influenced
by changes in the daily solar insolation on July 15 at 65°N is strongly supported by
spectral analysis [8, 9, 10, 13]. The dependence of the 680 record on the solar insolation
gives the possibility to obtain information on the age-depth relation of marine cores. Of
course it is neccessary to introduce some kind of @ priori information about the nature of
the response. The various models which have been constructed to describe the connection
between solar insolation and 680 record differ in the implied a priori information.

The most widly accepted Quaternary chronology is the SECMAP time scale due to
Imbrie et al. (1984), which has a maximum age of nearly 900 ky. It was obtained by
manual correlation of the variation of orbital elements—phase shifted corresponding to a
simple linear system with an exponential impulse response function and a time constant
of 17 ky—with the filtered time series of five cores. After individuell dating the cores were
averaged and smoothed to give a standard stack. This can be used to date other cores by
stratigraphic correlation.

Herterich and Sarnthein (1984) optimized an age-depth relation for the Meteor core
13519 defined by a polygonian of five points by maximizing the coherence between 8180
record and solar insolation, summed over the three astronomical frequency bands (19 ky,
23 ky, and 41 ky).

Martinson et al. (1987) developed a time scale back to 300 ky, which was the mean of
the results of four different approaches:

e The phases between the dominant components of the orbital forcing and the corre-
sponding components recorded-in the data are assumed to be constant.

e The response is assumed to mimic simply the forcing.

e The system function consists of two simple linear models with different time scales
for warming and cooling [12].

e The tuning target is constructed from the linear combination of “pure” orbital
components and their harmonics.

The final error of the averaged chronology was estimated to be about 5 ky.



Herterich (1988) used a model § for the 6'®0 variation defined by

dy(t .
B _ 3j(1) + aa), e
dt
where z(t) is the solar insolation, c describes the strength of the forcing, and X is the
inverse time constant of the system. Eq. 2 implies that § is obtained from the solar

insolation by convolution with an impulse response function of the form

ae ™ fort>0
h(t) = { 0 otherwise. (3)

This impulse response function is similar to the one assumed in the development of the
SPECMAP time scale, but the time constant of the system was not fixed. The real pa-
rameters a and A and the age-depth relation were calculated by minimizing the deviation
between model and data and some further error measures. In this way a time scale of the
latest 300 ky was obtained.

In the present paper the impulse response function is not fixed, but is calculated from
the data, subject to two conditions securing its physical sence. The formulation of these
conditions would be very cumbersome in the frequency domain, and therefore, besides
other advantages discussed later, the whole calculation is performed in the time domain,
using the method of regularisation.

All the models, which are based on the assumption of a linear relation between solar
insolation and the 680 value, can only reproduce less than about half of the data vari-
ance [9, 10, 11, 12, 20]. The reason is, that the §'®0 record is dominated by a 100 ky
cycle, a frequency which is not present in the spectrum of the solar insolation. Therefore
our model consists of a second portion, an additional low-frequency component, which
is requested to be so smooth that it contains no significant power in the astronomical
frequency bands.

The construction of a model for the §#0 variation is one of the two main parts of this
work. The other is the optimization of the age-depth relation to minimize the deviation
between the estimated model and the §'®0 data. The alternate application of these
procedures converges to an optimal chronology and a corresponding model for the 680
variation, which fits the data quite well throughout the whole length of the investigated
cores, the Meteor core 13519 and the Ocean Drilling Program core site 658.

2 Theory

2.1 The general optimization approach

Every optimization procedure is based on the minimization (or maximization) of a target
function, which may be a sum of various components with different weight factors. A
general formulation of the target function for the problem at hand under the assumption
of a linear relationship between solar insolation and 6'®0 value reads

e = |[WY(fapr) — HX|* + « A(H) + BB(fapr). (4)

Here X and Y(fapr) are the Fourier transforms of the solar insolation z and the 6180
value y, respectively, where the argument of Y expresses its dependence on the age-depth
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Figure 1: The impulse response function h (upper left), the step response function g
(lower left), and gain (upper right) and phase (lower right) of the transfer function H,
calculated without any conditions for the Meteor core 13519 in the SPECMAP time scale.
Vertical lines indicate the astronomical frequencies (41, 23, and 19 ky).

relation, which is described by the function fapgr. H is the transfer function and W is
some window function. The first contribution of the target function can of course also be
formulated in the time domain, but the following illustrations are more convenient in the
frequency domain. The functions A, B : C*(R,R) — R attach a “badness” to the transfer
function H and the age-depth relation fapr, while & and J are real weight factors.

First we consider the simple case W(w) = 1 and @ = 0. Some claims on the age-
depth relation—Ilike smoothness-and-monotony—in the form of a non-vanishing compo-
nent SB(fapr) are necessary to obtain a to some extend reasonable chronology because
of the ill-posedness of the problem. Without further conditions the transfer function H
can directly be calculated for given z, y, and age-depth relation, but only at the frequen-
cies where the insolation has significant power (appendix A.1). The transfer function for
the data of the Meteor core 13519 (section 3.1) in the SPECMAP time scale is shown in
Fig. 1, together with its Fourier back transformation, the impulse response function, and
the integral of the impulse response function, the step response function. For a physically
realizable system the impulse response function has to be zero for negative time, which



is obviously not the case. The step response function, which describes the response of
the system to an instantaneous increase of the input at ¢ = 0, is also nonsensical. Fur-
thermore, if we try to optimize the age-depth relation—with the method described in
section 2.3—it drifts far away from any reasonable chronology without convergence. This
indicates that it is necessary to introduce certain conditions on A in form of a badness
function A(H), compare section 2.2.

The model §'®0 variation HX can only be non-zero at frequencies where the solar
insolation X is also non-zero. This may give rise to the idea to compare the model and the
data only at the astronomical frequencies, which implies to filter the data with a frequency
window W which is a superposition of three band filters at the astronomical frequencies,
i. e. 19, 23, and 41 ky. But time scale optimization of such a target function yields an
arrangement of the data that exhibits nearly no power at the astronomical frequencies,
which obviously minimizes the deviation between model and data.

However, some filtering of the data is sencefull. The model cannot reproduce the
strong 100 ky cycle in the data, and therefore it should be filtered out to prevent the
optimization procedure from shifting power from the 100 ky cycle to the astronomical
frequencies, which would falsify the resultant chronology. This “filtering” is done by
substraction of a low-frequency component which is calculated in one step together with
the impulse response function (section 2.2).

In our optimization procedure the minimization is split up into two steps, which are
described in the next sections.

2.2 Estimation of a model with given age-depth relation

In this section the calculation of the impulse response function and an additional low-
frequency component of the §80 value is presented. The target function is formulated in
the time domain. Besides an easier formulation of claims on the impulse response function
this avoids any problems with not equally spaced data.

We proceed from a given age-depth relation. The technique used to calculate a model
which describes the response of the 6§20 value to changes in the solar insolation is a
slightly extended version of the well known regularisation method [4, 7, 18, 27]. We
assume the model 7 for the 6180 variation y to be given by

i) =5(t)+ [ hwa(t—w)du, (5)

where z denotes the daily solar insolation on July 15 at 65°N, h the impulse response
function describing the linear impact of z on y, and § the low-frequency component of the
variation that cannot be explained by a linear model. Eq. (5) can be written in discretized
form:

§=7+Xh. (6)

Here § and § are vectors of dimension n, when n is the number of §'*0 measurements in
the core. We assume the function k(u) to be represented by a polygonian (u;, h;)j=1,..m,
therefore h is a vector of dimension m and X is an n X m-matrix depending on the solar
insolation z(t) and the time coordinates (u;);=1,.,m and (;)i=1,...n of h and y, respectively,
see appendix A.2. For physical relizability h must be zero for negative values of u [15].
This is easily secured because h can only be non-zero between the values of the suplied



(%;)j=1,..m- For calculations in the frequency domain it would be very cumbersome to
obtain physical relizability.

The inverse problem defined by Eq. (6) is ill-posed [4, 7, 18, 27], even if we would omit
i, and to stabilize the solution we have to to introduce some kind of a priort information
about the unknown functions. Therefore, to find a solution for h and g, we solve the
minimization problem

lly — 7 — XA|? + MF (k) + X6 (h) + pF(§) = min, (7)
where A1, A, and p are real parameters, and F and G are defined to be the discretized

equivalent of

F.CYRR) - R, Fla) = /;tmx(a”(t))zdt (8)

min

/ ™ 2(a(t))dt. (9)

min

G:C*R,R) - R, G(a)

F attaches to a function the norm of its second derivative and G attaches the norm of
the function itself weighted with ¢, i. e. F and G are “badness” functions suppressing
solutions which are not smooth or which do not vanish for large t, respectively. The
contribution A;F(h) stabilizes the solution of k, i. e. it supresses data noise amplification,
whereas beyond that uF () allows § to reproduce only the low frequencies of the data.?
Incorporation of the term A;G(h) secures the stability of the system [15].2 Note that the
integral in Eq. (9) represents a multiplication in the time domain which would become a
convolution in the frequency domain. Therefore a Fourier transformation of the problem
would not result in any simplification.
Derivation of Eq. (7) (see appendix A.4) with respect to the components of h yields

(XTX + MF + 26k + XTg = XTy, (10)
and derivation with respect to the components of § yields
Xh+(I+pF)y=y, (11)

where F, and G are m x m-matrizes and Fj is an n x n-matrix following from Eqs. (8,9) and
the time coordinates of A and §, respectively, see appendix A.3. I denotes the identity
matrix. Egs. (10,11) represent a system of (n 4 m) linear equations for the unknown
components of k and 7, which has a unique solution, because the matrizes I, Fy, F;, and
G have full rank. The model § for the 6180 variation is then given by Eq. (6).

2.3 Optimization of the age-depth relation for a given model

The optimization of the time scale is a non-linear minimization problem. The following
formulation provides analytical derivatives of the target funtion and avoids the necessity
of any constraints on the variables, which enormously simplifies the iteration procedure.

2This is achieved by a suitable choice of the weight factors. The sensitivity of the results is discussed
in section 3.3.

3Gtability is in fact already secured because of the finite range of the time coordinates u of h, but
without the additional condition we would obtain an unphysical step at the end of the impulse response

function.



Let Ay be definded by
Ay =y -y, (12)
i. e. Ay is the residual variation of the data if the low frequency component is substracted
(compare section 2.1). Given the solar insolation z and the impulse response function A
we can obtain a continous function®

volt) = [ h(u)a(t - u)du, (13)

which describes the portion of the 6120 variation due to changes of the solar insolation.
Let 7(z) be the age-depth relation. Then the deviation between model and data is given
by®

n

ly — 3l1* = 2_1Ay: — yo(r (2], (14)
i=1
where z; are the corresponding depth coordinates of the §'%0 values y; in the core.
The function we optimize is the inverse sedimentation rate r(z). This choice has
several advantages, as we shall see below. The age-depth relation is expressed through r
by

(z) = /0 “r(2)dz. (15)

In the discretized formulation we assume r(z) to have the constant value r; between
neighbouring depth coordinates z;_; and z;. The corresponding time coordinates are
given by

() = z (& = 21), (16)

with 2o := 0.
To avoid excessive oscillation® of the sedimentation rate s; = 1/r; we add the norm
of the second derivative of s to the deviation given by Eq. (14). So we obtain the target

function .

g(r) == Y_[Ayi — yo(r(z:))) + AF(s), (17)
i=1

where F is defined by Eq. (8). Note that 7 and s depend on r. The derivatives d¢/0r;
can be calculated (see appendix A.5) and ¢ can be minimized using standard minimiza-
tion techniques. Our results were obtained with the conjugate gradient method due to
Fletcher and Reeves. Finally the new time coordinates (t})i=1,...n of the depth coordinates

(zi)i=1,..n are given by
th=71(2). (18)

If a variable r; becomes large during the iteration, the sedimentation rate s; tends
to zero, but cannot become negative. If, on the other hand, r; approaches zero, the
sedimentation rate tends to infinity, which is prohibited by the increasing badness Af(s),
and in this case r; and s; can also not become negative. Therefore the monotony of the
age-depth relation is secured without further constraints on the variables.

4We can treat yo as a continues function because h and z can be calculated with arbitrary high
resolution, so that reasonable interpolation is possible.

5For ilucidation note that in the trivial case 7(z) = ¢ (i. e. 7(2) represents the initial age-depth
relation which was used to calculate h and ¥) the right side of Eq. (14) becomes ||Ay — Xh||?.

61. e. to stabilize the solution of the ill-posed problem.



If there are hiatuses in the core, the true sedimentation rate is not smooth at the
points where the hiatuses occur. Because we require smoothness of the sedimentation
rate in Eq. (17), the solution would be a poor representation of the true sedimentation
rate. This problem can be accounted for very simply: If we presume a hiatus between
the depth coordinates z;—; and z;, the point s; has to be omited in the calculation of
the badness AF(s) in Eq. (17). So s; can differ from its neighbouring values without
punishment, especially it can tend to zero.

Note that any calculation in the frequency domain would require to optimize the
inverse function z(t), because equally spaced time coordinates are needed. Therefore the
time coordinates of a hiatus would have to be fixed a priori, while our method only
requires the depth coordinates and allows the time coordinates to be adjusted by the
optimization procedure to reconcile model and data.

2.4 TIterative optimization of response model and age-depth
relation

The input data required for the estimation of an age-depth relation and the corresponding
response model are:

e The 680 values (y;)i=1,...,» in the core,
e the corresponding depth coordinates (2;)i=1,...n,
e an initial guess for the time coordinates (%;)i=1,...n-

Application of the procedure described in section 2.2—which mainly consists of the so-
lution of a linear equation system—yields a model § for the 680 variation and hence a
deviation between this model and the data y. It is not advisable to minimize the deviation
ly — §||? iteratively by calculating a new model for each new age-depth relation, because
the calculation of a model takes much time and the derivatives of ||y — §||? with respect to
the age-depth relation parameters r; cannot be calculated due to the implicit dependence
of §j on the age-depth relation. So the iteration would be very cumbersome.

Instead we keep the model fixed and optimize the time coordinates of the data using
a standard minimization technique, as described in section 2.3. So we obtain a new age-
depth relation, which minimizes the deviation between the data and the fixed model.
Using the new time coordinates we can calculate a new model, and so on.

During these iterations the parameters A; and A, for the response model estimation,
compare Eq. (7), remain fixed. On the contrary the parameter p has to be adjusted
according to changes in the total length of the time series due to optimization of the age-
depth relation for the following reason: If the time scale of a time series is expanded by
a factor a, the norm of the second derivative, see Eq. (8), decreases by a factor a~3. This
would allow § to become less smoother and lead to minimization of the deviation |ly — g1
just by expansion of the whole time series. Therefore y has to be scaled proportional to
AT? for each new response model estimation, when AT is the new total length of the
series.

The alternate model estimations and time scale optimizations are repeated until the
age-depth relation does not change anymore. In some cases it may be necessary to average



over successive iterations to achieve convergence. That means we introduce a damping
paramerer 7 with 0 < 4 < 1 and obtain the new time coordinates from

ti=(1— 7t +y7(2), (19)

where t; are the initial time coordinates of the depth coordinates z; and 7(z) is the new
estimated age-depth relation. An alternative approach to introduce a kind of damping is
to terminate the time scale optimization and switch to the model calculation before the
solution with minimum deviation is reached. This strategy may yield some calculation
time saving provided that the minimization algorithm behaves reasonable.

3 Applications and results

3.1 Meteor core 13519

The Meteor core 13529 was taken from the Sierra Leone Rise at 5°N, 20°W in the equa-
torial Atlantic, position of DSDP site 366, in 2862 m water depth. It is 10.67 m long
and the maximum age exceeds 750 ky. The §'®0 curve (see Fig. 2) was obtained from
the planktonic species Globigerinoides sacculifer. It consists of 179 data points, which
corresponds to a mean sampling intervall of about 4 ky.

For the optimization procedure an initial time scale is needed. Various experiments
show that a simple linear age-depth relation, assuming a constant sedimentation rate
over the hole core, is not of sufficient accuracy. In some regions of the core the attached
initial age would be very far from the “true” age (which we assume to be somewhat
near the SPECMAP age), and the optimization procedure is not able to shift it across
some intermediate insolation extrema. Therefore we use the depth coordinates of the
boundaries of the isotopic stages 1-20 [22], as given by Sarnthein et al. (1984), to fix the
initial age-depth relation. To these points we attach the ages given by the SPECMAP
time scale [14]. The initial chronology is then obtained by linear interpolation.

The 680 variation in the resultant time scale and the corresponding model—calcu-
lated as describes in section 2.2—are shown in Fig. 2. As described in section 2.2 the
model consists of two components: the sun-induced variations yg and the intrinsic low-
frequency variations 7, which are also shown in Fig. 2. Due to the unconvenient initial
age-depth relation yg is small compared with 7, i. e. with this age-depth relation only
a small fraction of the §'80 variation can be explained by linear impact of the solar
insolation. The other model component, §, can only reproduce the low-frequency features
of the data. The data variance explained by the two model components is compared in
table 2.

During the optimization procedure the age-depth relation is adjusted to allow a larger
response to solar insolation, which is reflected in an increase of yg (see Fig. 4), and a
decrease of the mean deviation between model and data from 0.31 to 0.27. The variance
explained by yg is considerably increased while the variance exlained by the intrinsic low-
frequency component § is slightly decreased, compare table 2. The resultant age-depth
relation and the corresponding sedimentation rates are shown in Fig. 3. A comparison
between the 680 data before and after the time scale optimization and their agreement
with the optimized model is shown in Fig. 4, together with the two components of the
model. The increased yg is also reflected in the impulse response, the step response, and
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the transfer function”, which are shown in Fig. 5.

The coherency between the solar insolation and the 6’20 variation in the initial and
the optimized time scale is presented in Fig. 6. For the initial time scale peaks can be
recognized in the astronomical frequency bands, but the coherency is quite small at the
95 per cent confidence level. Due to the optimization the squared coherency in the 41, the
23, and the 19 ky band increases to 80, 60, and 50 per cent, respectively. Therefore the
examination of the coherency speetra-confirms that the time scale optimization procedure
considerably increases the linear correlation of the solar insolation and the §'80 record.

The Brunhes-Matuyama magnetic reversal was determined to be at a depth between
981 and 989 cm [2]. With our resultant chronology this implies an age between 729 and
732 ky.

"The step response and the transfer function are not incorporated in the optimization procedure.
They are just shown for illustration.
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Figure 6: Meteor core 13519: Squared coherency between insolation and §'®0 data in the
initial (left) and the optimized time scale (right). Shaded regions denote the lower 95 per
cent confidence limits. Vertical dashed lines indicate the astronomical frequencies (41, 23,
and 19 ky). Dashed curves at the right margin display the spectral window.

3.2 The Ocean Drilling Program core site 658

The core ODP 658 off north-west Africa is nearly 100 m long and the maximum age of the
used 6'80 data is about 730 ky. The large sedimentation rates enable an extraordinary
high resolution with measurements at 382 depth coordinates, which corresponds to a mean
sampling intervall smaller than 2 ky. We use the 6’20 data estimated from the benthic
species Cibicidoides wuellerstorfi [26].

The initial age-depth relation we use was estimated by Sarnthein and Tiedemann
(1990) according to the SPECMAP time scale [14]. There are two hiatuses at z = 9 m
and z = 96 m, which we take into account in the way described in section 2.3.

The 680 variation in the initial time scale and the corresponding model are shown in
Fig. 7. The fit between model and data is quite better than for the Meteor core 13519 in
the initial time scale, and the two components yg and § of the model, see Fig. 7 (compare
section 2.2), are of the same order of magnitude. The variance explained by the model
is quite larger than for the Meteor core 13519 for the initial time scale, see table 2. This
may in part be due to the fact that almost every isotopic stage was dated according to
the SPECMAP time scale, whereas for the meteor core the initial age-depth relation was
obtained by linear interpolation of only the boundaries of the major stages 2-20 because
of the lower resolution. :

Nevertheless the optimization procedure leads to further improvement. The resultant
age-depth relation and the corresponding sedimentation rates—compared with the initial
values—are shown in Fig. 8. During the optimization the mean deviation between model
and data decreased from 0.28 to 0.24. Fig. 9 shows the §%0 data and the model in the
optimized time scale, and for comparison the §80 data before the time scale optimization.
Also shown are the two components of the model. Note that the model component yg is
increased due to the optimization, likewise the the impulse response, the step response,
and the transfer function, which are shown in Fig. 10.

The total explained variance is considerably larger for the optimized time scale which
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Figure 11: Core ODP 658: Squared coherency between insolation and 8180 data in the
initial (left) and the optimized time scale (right). Shaded regions denote the lower 95 per
cent confidence limits. Vertical dashed lines indicate the astronomical frequencies (41, 23,
and 19 ky). Dashed curves at the right margin display the spectral window.

is due to a large increase of the variance explained by ye and a small decrease of the
variance explained by ¥, see table 2.

An examination of the squared coherency between the solar insolation and the §'*0
record before and after the time scale optimization, see Fig. 11, shows, that the coherency
at 41 and 23 ky remains almost unaltered, while the coherency at 19 ky is increased
from 25 to 60 per cent. Therefore—like for the Meteor core 13519—the linear correlation
between solar insolation and 6'®0 record is significantly increased by the optimization
procedure.

3.3 Sensitivity tests
3.3.1 The parameters of the response model estimation

Into the calculation of the response model enter the three parameters Ai, A, and g,
which control the smoothness of the impulse response funcion k, the vanishing of h with
increasing time, and the smoothness of the residual low-frequency variation y, compare
Eq. (7). The values of the parameters describing the details of the discretisation have no
effect as long as they are chosen properly.®

For testing the sensitivity of the solution we change every parameter individually by
the factors 0.1 and 10 and calculate the corresponding age-depth relation for the core
ODP 658. The mean deviation between these age-depth relations and the one with the
parameter choice used in section 3.2 is shown in Tab. 1.

The strongest influence is due to the parameter g, and this is the one which can be
determined most accurately. It is set to the smallest possible value that does not allow
7 to contain any significant power in the astronomical frequency bands. This can be

8The number m of points of the discrete representation of h has to be choosen so that the smallest
features in h are well resolved. The maximum time coordinate u,, must be large enough to contain all
significant non-zero values of h.

19
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x0.1 x10

21 | 0.40 ky | 0.56 ky
A2 | 2.81 ky | 2.54 ky
w | 3.99 ky | 6.31 ky

Tablel: The mean deviation of the age-depth relation, corresponding to changes of the
parameters in the left column by the factor in the heading.
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Figure 12: The power spectra of the low-frequency component § (solid) for three values
of p differing by a factor 10, the highest peak corresponding to the lowest yx, and the
spectrum of the solar insolation (dashed).

achieved by examination of the power spectrum of the intrinsic low frequency component,
see Fig. 12. The spectrum with the highest peak—corresponding to the lowest value of
p—still has some power in the 41 ky band. Icreasing g by a factor 10 supresses this
portion without significant impact on the 100 ky band. Repeated increase by a factor 10
drastically reduces the power at 100 ky. Therefore the middle value is obviously preferable.

The experiments with parameters A\; and A, changed by factors 0.1 and 10 cover
the range throughout which a to some extend reasonable impulse response function is
obtained. The stronger dependence on ); is due to the fact that this parameter influences
the time scale of the damping of the impulse response function. Given some limits on this
time scale, the reasonable range for A, could considerably be narrowed.

3.3.2 The parameters of the time scale optimization

The optimization of the age-depth relation depends on the parameter A, which controls
the smoothness of 7(z), and on the initial age-depth relation.

Changes of the parameter A do in fact only influence the smoothness of the sedimen-
tation rates. Solutions with higher A are like smoothed versions of solutions with lower
A. The determination of this parameter therefore depends on how much variation in the
sedimentation rates we are ready to accept.

To examine the dependence of the solution on the initial time scale, we use core ODP
658. We take the initial age-depth relations used in the calculations of section 3.2 and
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add a linear error function which vanishes for the present and reaches its maximum value
emax abt the bottom of the core. We perform calculations using for emax the values -30,
-25, -20, -10, 10, 15, and 20 ky. The initial time scales with emax = —25...10 ky yield
the same age-depth relation as the normal run (emax = 0). For 15 and 20 ky we obtain
partly different time scales, but almost the same response model, while the value -30 ky
leads to a completely different time scale and a qualitative different response function
(i. e. increasing ice-volume for larger solar insolation). The various resulting age-depth
relations are compared in Fig. 13.

The solution does not depend on the iteration damping parameter v, compare Eq. (19),
as long as the damping is strong enough to prevent extensive oscillations of the age-depth
relation during the iteration.

4 Discussion

The main difficulty in the critical examination of the resultant chronologies is that there
are very few independent age determinations. The Isotopic stage boundary 6.0 was ra-
diometrically dated to have an age of 127 & 6 ky, which is consistant with the value
126.5 ky given by our results. The most reliable fix point beyond 300 ky 1s propably the
Brunhes-Matuyama-Boundary, which is generally believed to have an age of about 730
ky, see e. g. Mankinen and Dalrymple (1979). This lies well within the range given by our
results, which determine the Brunhes-Matuyama-Boundary to be between 729 and 732
ky, see section 3.1.

Passable agreement with the few independent age determinations was also achieved
by various other Quaternary chronologies, the most widly used of which is the SPEC-
MAP time scale, but we did not use the known ages in the optimization, and so their
reproduction is a confirmation of the results.

A main advantage of the method presented in this paper is that every core is adapted
to the solar insolation corresponding to its individual resolution, whereas the SPECMAP
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Core Meteor 13519 ODP 658
Chronology SPECMAP | Optimized | SPECMAP | Optimized
Solar insolation 8% 29% 29% 47%
Low-frequency comp. 52% 42% 53% 40%
Total 61% 0% 75% 82%

Table2: The data variance explained by the two model components.

dating is limited to the correlation with an averaged, smoothed standard stack.

In table 2 the percentages of data variance explained by the models are shown. The
absolut values should not be taken too seriously, because they depend on the parameters
A, A1, A2, and p. Reduction of one or more of these would yield an increased explained
variance—at the cost of some more structure in the model functions and the sedimentation
rates that does not seem reasonable. The purpose of the specification of the explained
variance is the comparism of the different cores and the different chronologies. For both
cores the optimization leads to considerably increased explained variances compared with
the SPECMAP time scale. The core ODP 658 seemed to be more proper to a decription
by our model than the Meteor core 13519. This may possibly in part be due to the fact,
that the former’s data were taken from a benthic species while the later’s were taken from
a planktonic spezies, which might be more influenced by local effects.

In our calculations we assume the characteristics of the response of the ice volume to
changes in the solar insolation—defined by the impulse response function—to be constant
over the observed time. Recent investigations of the validity of this assumption [21]
showed, that differences in the amlitudes of the response can be explained by varying
response times®, i. e. varying impulse response function. The effects on an orbitally tuned
chronology are estimated to result in deviations smaller than 3.5 ky.

It is quite interesting to compare the low-frequency components § of the model 6§20
variations for the two cores with the eccentricity of the earth orbit, see Fig. 14. The strong
correlation suggests that the eccentricity should be implicated directly in the construction
of a model, allthough no physical mechanism for the connection of eccentricity and global
ice volume is known yet.

The main problem of the presented method is the sensibility to changes in the initial
age-depth relation. In most cases this propably prohibits the use of a simple linear time
scale as initial chronology. One has to supply a time scale with an error of not much
more than about 10 ky, which could for instance be obtained by correlation with the
SPECMAP standard stack. Possibly an extented version of the presented method, which
could be applied to many cores simultaniously, will be more stable to changes in the initial
chronology.

9The observed differences can also directly be explained by changes of the amplitude of the response,
rather than the response time, which would not yield the estimated effect on orbitally tuned chronologies.
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Figure 14: The low-frequency component § of the model 620 variation for the Meteor core

13519 (solid line) and the core ODP 658 (long dashed), compared with the eccentricity of
the earth orbit (short dashed, conveniently scaled).

A Appendix

A.1 TUnconstrained calculation of the transfer function

In the following we describe the calculation of the transfer function for uneven spaced 6180
data (%;,¥:)i=1,..n. The variation of the solar insolation is given as continous function
z(t) [1]. Let At be the discretization time step and N the number of points. The
autocorrelation function of z(t) is then given by

N
roa(iAt) = %;w(jAt)m((j _ Al (20)

The cross correlation function of z(t) and y(t) is

_1
roy(1At)

S |

Xj: yo(t; — iA). (21)

These discrete representations of r.; and ry, are equally spaced, so their Fourier trans-
forms R, and R;,, respectively, can be calculated using standard spectral analysis. The
transfer function is given by

R,
R.’L‘.‘L‘ '

It is of course only defined for frequencies at which R is significantly different from zero.

H= (22)

A.2 The calculation of the convolution matrix X

The portion of the §80 variation due to linear impact of the solar insolation is given by

yo(t) = /000 h(u)z(t — u)du. (23)
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If we assume the impulse response function % to be given by a polygonian (u;, h;);=1,...m,

1. e.
h(u) = hj1 + h(u — u;_1) for uj—1 < u <y
with
B = L‘hi"_l
P A
] i1
we obtain
yo(t) = 2/ [hJ 1+ A (u — Uj— 1)]z(t — u)du,
uj—1
or _
yo(t) = Z
with

wi®) = [ (b + Byl = wion)le(t - wdu

= (hjo1 — hju;_ l)f t—u)du+h'/ Y uz(t — u)du.
Uj1 u

§—1
We assume z(t — u) to be linear between ¢ — u; and ¢ — u;_;. Introducing
zi(t) = z(t—u),

i(t) = ma(;):z:(t)

we then obtain
et —u) = zja(t) + () (v —uj—1)  for uj <u <w;.

Inserting this in Eq. (28) yields

yi(t) = (hjor — Biuja) [ @ioa(t) + 24(8)(u — wjmr)du +

Uj—1

+ B [ uwja(8) + ua(t) (u — )
’ll.]'—]

(24)

(25)

(26)

(27)

(28)

(29)

(30)

= (hjor = Byugoa) (2 (8) = 5 (Ous-) (s — wg-0) + 2500 = w2y)] +

1 1
1 [~ 00~ )+ 300812
Now we define

i
— -1
Aj = == =

U; — Uj—

By = (zj-1(t:) — @j(ti)uj-1)(u; ua—l)+ o5 (t:)(uj —uj

b

)
_a(®ia () — 25(t)ui-1) (v — ui )+§$3(t)(u — i)

U; — Uj-1
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Taking into account the definition of A, Eq. (25), we obtain
yi(t) = Bijlhj—1 + Aj(h; — hj-1)] — Cij(hj — hj-1)
= Bijhj1 + AjBijhj — A;Bijhj—1 — Cijhj + Cijhj
= (A;jBij = Cij)hj + (Bij + Cij — AjBij)hj-1. (34)
If furthermore

D,’j = AjB,'j—C;j,

E,'j = B,'j + C,'j — AjB,'j, (35)
we get
yi(t:) = Dijh; + Eijhj-1. (36)
Inserting this into Eq. (27) leads to
yo(t:) = > Dijh; + Eijhja, (37)
Jj=1

with ho := 0. If we set E; 41 := 0 we obtain

volts) = S°(Dis + Esjn)hs. (38)

Jj=1
Therefore we see that
Xij = Dij + Ei jna (39)

is the convolution matrix, since the 6§80 variation due to linear impact of the solar
insolation is given by

yo(ti) = i_l: Xijh;. (40)

A.3 The smoothing and damping matrizes

Let (tj,9;)j=1,..n be the discrete representation of a function y(t) and F(y) the norm of
its second derivative. Then the smoothing matrix F is defined by

10 LI

== F(y) =Y Fu;. 41
If the time coordinates t; are equally spaced with distance A, the smoothing matrix (#1);;
is given by [4]'°

/1 =2 1 0\
2 5 —4 1
X 1 -4 6 —4 1
1 -4 6 —4 1
1 -4 5 =2
\ 0 1 -2 1)

10The factor 1/A3 is frequently omited, which implies that it is incorporated in the smoothing param-
eter, compare Egs. (7,10).
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If the time coordinates t; are not equally spaced, the calculation of the smoothing
matrix is a little bit more complicate. The second derivative at the point ¢; is given by

n
Y;

Introducing

Yit1=Yj _ Yi=VYi-1
ti+1—tj ti—tj—1
3t — tj-1)
2 +
Yj41
(ti+1 — ) (41 — tj-1)
- 2
(tj41 — t5)(ti41 — -1) (t; = ti-1) (it — i)
2

+

@;

B;

Vi

(t; — tjim1) (e — ti-1)

Yj-1-

V2
(tj+1 — t)/Eie — G
V2
(t; — ti—)VEm — i1
a; + Bj,

we obtain for the norm of the second derivative of y

F(y)

n—1

> ()?

=2

n—1
Z (o941

Z a2y3+1 + 73 yJ

( i1 — ti-1)
— 7595 + Biyi-1)?

ﬂ_?y?-l +

) yi +

+ Zajﬁjyj+1yj—1 — 207;Y4195 — 2B857iY5Yi-1-

Derivation of F(y) with respect to y; yields

+ [y —

Qivilisr — Biviyi-](1 — 6ia)(1 —
+ By + cinBinyiv = BirYiryinl(l - 8ina)(1

[a?—1yi + i1 Bic1¥i-z2 — Cim1¥i—1¥im1)(1 — 8i1)(1 — 6i2) +
6i,n) +

61',7:.)7

(43)

(44)

(49)

(46)

where 6; ; denotes the Kronecker Delta. The smoothing matrix (F3);; is then given by

[ 8
—B272
=
\ o

=B272

2 + 62

a2z

—0272

-~B3v3

)

o303
fiJ
—_yy - —
ansbna (5 )
olﬂ—lﬂn—l
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where f;; is defined for ¢ =3,...,n —~ 2 by

[ ai_18i1 for j=1-2
—0i1%i-1— Piyi forj=i-—1
2 2 2 .
B A e s R for g =1
Fi =1 —0;%;i = Bip1Yigr forj=e4+1 "7 (48)
ait1Bin forj=1+2
[ 0 otherwise

Let the mapping G be given by Eq. (9) and (uj, h;);=1,..n be an equally spaced repre-
sentation of the function h(u) with step width A. Then is

19 10 & L,

= Aulh;. (49)

Therefore the matrix G, compare Eq. (10), is given by

2 . . . ’
G = { Auf fori= (50)

0 otherwise.

A.4 The linear equation system for impulse response function
and low-frequency component

Derivation of Eq. (7) with respect to hy yields

n

> (y,- — i ixz‘jhi) + M F (k) + MG(h) + uF(F)| =0

i=1

9
Bhs

!

> 2Xk (Z Xiih; + i — yi) 42X Y (Fi)kihi +2X2 Y Giihj =0

i=1 =1 =1 i=1
2(XTXh)k + Z(XTﬂ)k - 2(XTy)k + 2)\1(F1h)k + 2)\2(Gh)k =0
(XTXh)i + M(Fih)k + Xa(GR)x + (XT9)e = (X Yk, (51)

11

where Fy and G are given by Eqgs. (42,50). By assembling the derivatives for all k =
1,...,m we obtain Eq. (10).
Now we derive Eq. (7) with respect to :

2
aig’ [E (y,- —Gi—Y Xijhj') +MF(h) + AG(h) + pF(y)| =0
=1 j=1

= 2 (Z Xiih; + G — yz) +2u) (F2)ig; =0

j=1 =1
<= 2(Xh)i+ 25 — 2y + 2p(Fa )
= (XY + i+ p(Fad)i = i, (52)

where F; is given by Egs. (47,48). By assembling the derivatives for all I = 1,...,n we
obtain Eq. (11).
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A.5 The derivatives of the target function for the optimization
of the age-depth relation

The age-depth relation is choosen to minimize
e(r) = D_[Ayi — yo(r(z:)]* + AF(s). (53)
=1
The vector Ay is defined by Eq. (12). The function yo(t) can be obtained by linear
interpolation of the points (fx, (X h)x) i. e.
(Xh)x = (Xh)er

- (t —1kq)  for fhoy <t <y, (54)
tp — tk—

yolt) = (Xh)e1 +

where f,, are time coordinates covering the possible range of the chronology with a spacing
narrow enough to resolve the variation of the solar insolation and X is the convolution
matrix calculated with these f.!!

The derivatives of € are

g—,.ej = Xj) —2[Ay — yo(7(2:))] iy@z(a:-fzs‘*)) + 2M(F)is | » (55)

with F, given by Eq. (47). At a given point r the corresponding age-depth relation 7(2)
is known from Eq. (16) and the derivative of yo(7(2;)) is given by

3%{;52{)_) = a—gt@—(T(za))%
_ EWe =X g g ) <, (56)
te — tk—1
with ife >4
{7 L2, &
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