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Abstract
The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave
Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting
objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of
the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress
fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept
of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently
suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to
couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable
sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases
the observable event rate of binary black-hole coalescences in the range of 102 � 103 M� by a factor of up to ~300.

Introduction
The recently reported breakthrough observation of

gravitational waves emitted by coalescing binary
black holes marked the starting point of the new field
of gravitational-wave astronomy1. The observations of
Advanced LIGO (Laser Interferometric Gravitational-
wave Observatory) produced evidence of a new
population of black holes not consistent with our
previous knowledge based on X-ray observations2.
Increasing the low-frequency sensitivity of current and
future gravitational-wave observatories will not only allow
us to improve the signal-to-noise ratio with which we can
observe them but also allow us to extend our observation
capability to even heavier binary black-hole systems. This

will allow us to shed light on many important questions,
such as: What is the precise astrophysical production
route of binary black-hole systems of tens of solar masses?
What is the nature of spin–orbit and spin–spin coupling
in coalescing binary black holes? Are the no-hair theorem
and the second law of black-hole mechanics valid?
To enhance the low-frequency sensitivity of future

gravitational-wave detectors, a variety of noise sources
must be addressed and improved, of which the most
fundamental is so-called quantum noise, an inherent
consequence of the quantum mechanics of the measure-
ment process.
In the late 1960s, Braginskiǐ3 identified quantum

fluctuations of the electromagnetic field as the main
fundamental limitation to the sensitivity of electro-
magnetic weak force sensors. He showed that continuous
monitoring of the test object position to infer an external
weak force (e.g., GW) always leads to a quantum back-
action of the meter on the probed object’s position,
thereby setting the standard quantum limit (SQL) on the
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achievable precision of such a measurement. In
interferometric sensors such as GW interferometers,
light is used to monitor the distances between mirrors.
Here, back-action noise originates from the quantum
fluctuations of the light’s intensity, leading to random
radiation-pressure forces acting on the mirrors.
The corresponding additional displacement noise is
most pronounced at low frequencies due to the
mirrors’ dynamical response and stems from the
fundamental quantum fluctuations of the light’s
phase, setting the imprecision of the position monitoring
(Δximp / 1=

ffiffiffiffiffiffiffiffi
Nph

p
) (here Nph is the number of

photons used for the measurement) and the back-action
noise (ΔxBA / ffiffiffiffiffiffiffiffi

Nph
p

). Evidently, the naive trade-off in
Nph yields the SQL; that is, the point at which
Δximp ¼ ΔxBA.
The SQL stems from non-commutativity of the

displacement as an operator at different times, i.e.,
½x̂ðtÞ; x̂ðt′Þ�≠0, which means that a displacement
measurement at time t will influence the result of one at a
later time t′. Observables that commute at different times
and thus can be monitored continuously with arbitrary
precision are known as quantum non-demolition (QND)
observables. The obvious choices for such observables
are the conserved quantities of the test object, such as
energy, quadratures for the oscillator, or momentum for
a free mass.
Velocity measurement as a QND procedure proposed in

ref.4 is based on the premise that at timescales shorter
than the suspension-pendulum period, the mirror behaves
as a free mass and its momentum is conserved and
proportional to its velocity, p̂ ¼ mv̂. A more careful ana-
lysis has shown that the dynamics of the test object
cannot be considered separately from that of the meter,
which is the laser light in the case of GW interferometers.
For a combined system ‘mirrors+ light’, the generalized
momentum is a sum of two terms, P̂ ¼ mv̂� gSMðtÞâc,
rather than a simple proportionality to velocity (see,
e.g., section. 4.5.2 in ref.5), where gSMðtÞ is the strength
of coupling between the light and the mirrors’
mechanical motions and âc ¼ ðâþ âyÞ= ffiffiffi

2
p

is the

amplitude quadrature of the light (defined in terms of
photon annihilation (creation) operators â (ây)). Though
sensing the mirrors’ velocity via an outgoing light phase-
quadrature measurement is not a QND measurement, it
nevertheless provides a substantial reduction of random
back-action force5.
The simplest conceptual realization of an optical speed

meter is shown in Fig. 16. Here, a laser sends short light
pulses to the suspended mirror. The pulses are reflected
from the mirror twice with a time delay τ between the
reflections. After each reflection, the mirror’s
displacement is written in the phase of the pulse; hence,
after two reflections the pulse’s phase is shifted by
ϕpulse / x̂ðt þ τÞ � x̂ðtÞ � τv, where v is the mean
velocity. Note that since the momentums transferred to
the mirror by photons in the two reflections have opposite
signs, and since there is no decoherence between the
reflections, they compensate each other. Therefore,
quantum back-action noise is suppressed by
� τ=Tsignal / Ωsignalτ, where Tsignal ¼ 2π=Ωsignal is the
specific timescale of the signal force, e.g., the period of a
GW.
This example illustrates the two key features that the

measurement scheme should possess to realize a speed
measurement: (i) the probe (light) must interact with the
test object (mirror) twice, retaining coherence between
the interactions (for coherent suppression of back-action
noise), and (ii) the two terms in the interaction
Hamiltonian that relate to the two consecutive measure-
ments should have opposite signs7.
The first implementation proposed for detection of

gravitational waves was in ref.7 (Fig. 2a), where a
traditional Fabry–Pérot–Michelson interferometer was
extended by an auxiliary “sloshing” optical cavity in the
output port. This caused the GW signal to “slosh” back
and forth between the two coupled effective cavities with
alternating phase. Hence, after the second pass
through the interferometer, the outgoing light would bear
exactly the required combination of position signals,
/ x̂ðt þ τÞ � x̂ðtÞ � τv, yielding the speed measurement.
This scheme was nicknamed a “sloshing speed meter”. It

Phase
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�xLaser

0 �
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Fig. 1 Conceptual scheme of optical speed measurement with two consecutive reflections of the light pulses from the front and the rear
surfaces of the mirror
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has the distinctive feature that carrier and signal light
beams do not share the same optical path throughout the
interaction because the sloshing cavity is kept not
pumped by a laser. This makes it very difficult to lock and
control, and may also lead to signal loss from distortion in
optical elements. A practical version of the sloshing
speed-meter scheme was analyzed in great detail in
refs.8, 9,].
Another solution was proposed by Chen in ref.10,

demonstrating that a Sagnac interferometer with zero
area performs a speed measurement. Here, the double
measurement of the mirror position is performed natu-
rally by two counter-propagating light beams, which, after
recombination on the beam splitter, produce the signal
beam whose phase depends on the mean relative velocity
of the end mirrors (see Fig. 2b and ref.6 for analysis).
Quantum back-action noise suppression in both

schemes depends on the fact that the radiation pressure
force component, which drives the differential displace-
ment of the arm mirrors, xdARM ¼ xn � xe, stems from the
beat note of the carrier classical amplitude A / ffiffiffiffiffi

Pc
p

(Pc is
the laser power circulating in the arms) with vacuum
fields, î, entering the readout port of the interferometer
rather than with the laser fluctuations, F̂b:a:ðtÞ / A îcðtÞ,
with îc the amplitude quadrature of î. In sloshing speed
meters, the subtraction of two back-action kicks is pro-
vided by the π-phase shift that the dark port field acquires
after the reflection off the sloshing cavity; hence,
F̂b:a: / A îcðtÞ þ eiπA îcðt þ τslÞ ¼ A ð̂icðtÞ � îcðt þ τslÞÞ,
and τsl is the characteristic time of optical energy sloshing
between the coupled cavities of the sloshing speed-meter
interferometer.

In a Sagnac interferometer, the required “minus” sign
is provided by the phase difference of π between the
reflected and transmitted beams at the beam splitter.
The suppression of quantum back-action here origi-
nates from the opposite sign of the radiation pressure
forces from the clockwise and counter clockwise pro-
pagating light beams, i.e., F̂b:a:

CW þ F̂b:a:
CCW / A îc tð Þ �

A îc t þ τprop
� �

; with τprop the light propagation time
between the arms.
The complexity of experimental implementation of

these schemes led to the idea of using two orthogonal
polarizations of light to separate the two beams sensing
the mirrors in a Sagnac-type speed meter11, 12. This
approach allows keeping the km-scale arm cavities of the
original Michelson unchanged, but requires substantial
modification to the input and output optics and the
implementation of additional polarizing elements of large
physical dimensions, which have not yet been used inside
the core interferometers.
An alternative scheme, proposed in ref.13, makes use of

the differential optical mode of the Michelson inter-
ferometer with the polarization orthogonal to that of the
pumping laser as an effective sloshing cavity. The polar-
ization separation of the signal light fields from the
“sloshing” ones is achieved with six optical elements: two
quarter wave plates (QWP), 2 mirrors, a polarization
beam splitter (PBS) and an additional (omitted in ref.13)
birefringent plate that flips the sign of the vertically
polarized signal sidebands reflected from the “sloshing
cavity”.
In this letter, we propose a new, even simpler scheme

with only 3 extra elements in which the two orthogonal
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Fig. 2 Two variants of speed-meter interferometers. a The sloshing speed meter, and b the Sagnac speed meter. Inset in a is a block diagram of
the sloshing speed meter principle of operation. Here (I)ETM stands for (input) end test mass, BS is a beam splitter, and T0 ¼ 1� R0 is the (power)
transmissivity of the output coupling mirror
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polarization modes of the Michelson interferometer serve
as two counter-propagating beams of a Sagnac-type
interferometer. The scheme is shown in Fig. 3. The
minimum of optical elements involved, as well as relaxed
requirements on their position control, makes our speed
meter the most robust to loss and imperfections and
easiest to implement in the next generation of GW
detectors, as we show below.

Materials and methods
Polarization circulation interferometer as a speed meter
The main interferometer is pumped by a strong p-

polarized laser field pp that can be represented as a linear
combination of two circularly polarized fields (marked by
ðlÞr for (counter)clockwise-polarization) with polarization
basis vectors,~ej (j ¼ fp; r ; lg):

pp~ep ¼ pr~er þ pl~el ; prj j ¼ plj j ¼
pp

��� ���ffiffiffi
2

p

Coherent coupling between the two polarizations is
performed by the polarization circulator comprising the
QWP, PBS and the closing highly reflective mirror. The
PBS and QWP define the new circular polarization basis
for the light modes of the interferometer. The PBS passes

the p-polarized vacuum field, îp, that is transformed by
the QWP into the l-polarized field îl. This field enters the
Michelson interferometer from the dark port and inter-
acts opto-mechanically with the pl component of the
pumping laser field p and the differential mechanical
degree of freedom of the interferometer mirrors,
xdARMðtÞ ¼ xnðtÞ � xeðtÞ. The outgoing l-polarized field
ôl, carrying information about the xdARM displacement, is
transformed into the s-polarized field ôs, which is reflec-
ted by the PBS toward the polarization circulation mirror
(PCM). The latter reflects ôs back toward the PBS, where
it arrives with an acquired phase shift 2ϕ0 ¼ π and enters
the main interferometer as îr after being transformed by
the QWP. Delayed by the arm cavity ring-down time τ,
it senses the xdARMðt þ τÞ ¼ xnðt þ τÞ � xeðt þ τÞ and
couples with the pr component of the pumping laser
field p.
The r-polarized output field ôr leaves the readout port

of the interferometer, is transformed by the QWP into the
p-polarized field ôp, and is transmitted by the PBS toward
the balanced homodyne detector (BHD). The readout
photocurrent is then proportional to the differential speed
of the change of the arms’ lengths:

IBHD / xdARMðt þ τÞ � xdARMðtÞ ’ τvdARMðtÞ

xn
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Fig. 3 Possible realization of the polarization circulation interferometer, using a quarter-wave plate (QWP) for polarization separation.
Here, (E)ITM stands for (end) input test mass, PCM is a polarization circulation mirror, PBS is a polarization beam splitter and PD is a photodetector.
Note that the BHD readout setup shown here does not reflect the full complexity of the homodyne readout schemes developed for real GW
detectors that have been studied extensively elsewhere14, 15
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Quantum-noise-limited sensitivity
To give a more quantitative account of the quantum

noise behavior of the proposed scheme, we use the
two-photon formalism of quantum optics16. In this
formalism, the electric field strain of the plane electro-
magnetic wave of the laser beam with frequency ωp,
cross-section area A and power Pin can be written as:
ÊðtÞ ¼ E0 ðAþ âcðtÞÞcosωpt þ âsðtÞsinωpt

� �
, where

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π �hωp=ðAcÞp

is the second quantization nor-
malizing constant, A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pin=ð�hωpÞ
p

is the carrier
dimensionless amplitude, and âc;sðtÞ are the cosine (“c”)
and sine (“s”) quadrature amplitudes of the quantum
fluctuations with zero mean.
Here, variations from the mean value of two conjugate

quadratures of the light field are given by a 2D vector
î � f̂ic; îsgT of the amplitude and the phase quadrature
operators, respectively. Analysis of quantum noise of any
interferometer starts from deriving the relations
between the input and output light quadrature
amplitudes, or I/O-relations for sideband fields at an
offset frequencyΩ ¼ ω� ωp. For a lossless interferometer
tuned in resonance, so that the GW signal appears
only in the phase quadrature, the general shape of
the I/O-relation is very simple17:

ôp;c Ωð Þ ¼ e2iβ̂ip;c Ωð Þ ;
ôp;s Ωð Þ ¼ e2iβ îp;s Ωð Þ � Kîp;c Ωð Þ� �þ eiβ

ffiffiffiffiffiffiffi
2Kp h Ωð Þ

hSQL

ð1Þ
where KðΩÞ is an optomechanical coupling factor
describing the interaction of the mechanical degrees of
freedom of the interferometer with light, βðΩÞ is the
frequency-dependent phase shift acquired by sideband
fields as they pass through the interferometer, and hSQL ¼ffiffiffiffiffiffiffiffiffiffiffi

8�h
ML2Ω2

q
stands for the GW strain standard quantum limit

for the effective mechanical mode of the interferometer
with reduced mass M and arm length L. The second term
in the brackets in Eq. (1) originates from the radiation
pressure force driven by amplitude fluctuations. The last
term in (1) describes the response of the interferometer to
the GW signal with strain hðΩÞ ¼ 2xdARMðΩÞ=L.
One can then derive the quantum noise power spectral

density (PSD) from the above I/O-relations in the fol-
lowing form:

ShðΩÞ ¼ h2SQL

2
1þ ½KðΩÞ � cotϕLO�2

KðΩÞ

( )
ð2Þ

where we assumed the homodyne readout of arbitrary
quadrature defined by the local oscillator phase ϕLO.

The formulae for K and β for any tuned interferometer
configuration can be derived easily, as we show below.
For a Michelson interferometer with total circulating
power in each arm Pc, laser frequency ωp ¼ 2πc=λp and

effective half-bandwidth γ, it is KMI ¼ 2Θγ
Ω2ðγ2þΩ2Þ with

Θ � 8ωpPc
McL , and frequency-dependent sideband phase shift

βMI ¼ arctanΩ
γ . As shown in the Methods section, the

same expression for the polarization circulation inter-
ferometer in the speed-meter regime is:

KPCSM ¼ 2KMIsin
2βMI ¼

4Θγ

ðγ2 þΩ2Þ2

In the more general case of a detuned interferometer,
the I/O-relations can be written in matrix notation as
follows:

o ¼ Tiþ t
h

hSQL
; whereT ¼ Tcc Tcs

Tsc Tss

� 	
; t ¼ tc

ts

� 	

where i ¼ ½̂icðΩÞ; îsðΩÞ�T and o ¼ ½ôcðΩÞ; ôsðΩÞ�T are the
two-dimensional (2D) vectors of the input and the output
light quadratures, respectively, TðΩÞ is a 2 × 2-matrix of
the corresponding optical transfer matrices for the light
fields, and tðΩÞ is a 2D vector of optomechanical response
functions that characterizes how a GW with strain
amplitude spectrum hðΩÞ shows itself in the output
quadratures of the light leaving the interferometer.

The readout photocurrent of the balanced homodyne
detector is proportional to the quadrature of the outgoing
light defined by the local oscillator phase angle ϕLO. Thus
we can define the readout quadrature proportional to
ÎBHDðϕLOÞ as:

ôϕLO
� ôccosϕLO þ ôssinϕLO � HT

ϕLO
� b

with HϕLO
� fcosϕLO; sinϕLOgT ; and the spectral density

of quantum noise at the output port of the interferometer
can be obtained using the following simple rule:

ShðΩÞ ¼ h2SQL

HT
ϕLO

� T � Sin
i � Ty �HϕLO

jHT
ϕLO

� thj2
ð3Þ

where Sin
i is the spectral density matrix of injected light

and its components and can be defined as:

2πδðΩ�Ω′ÞSin
i;μνðΩÞ �

1
2 injâμðΩÞðâνðΩ′ÞÞy þ ðâνðΩ′ÞÞyâμðΩÞjin
D E

where jini is the quantum state of vacuum injected in the
dark port of the interferometer and ðμ; νÞ ¼ fc; sg (see
section 3.3 in ref.5 for more details). In the present article,
we address single-sided spectral densities S and hence in
the case of the input vacuum state:

jini ¼ jvaci ) Sin
a ¼ I

Danilishin et al. Light: Science & Applications  (2018) 7:11 Page 5 of 9



Derivation of I/O-relations of the polarization circulation
speed meter
The I/O-relations for our scheme can be obtained using

the Michelson interferometer I/O-relations for each of the
±45°-polarization modes. One just needs to keep in mind
that both polarizations contribute to the common back-
action force. The corresponding transfer matrix TMI and
response vector, tMI read:

TMI ¼ e2iβMI
0 1

�KMI 1

� 	
; tMI ¼ eiβMI

ffiffiffiffiffiffiffiffiffiffiffi
2KMI

p 0

1

� 	

In the proposed scheme, each polarization mode, pl and
pr, has half of the total circulating power provided by the
pump laser. Therefore, each mode has only half of the full
Michelson power and thus Kr;l ! KMI=2. Having this in
mind, one can write down the I/O-relations for the two
polarization modes and for the link between them pro-
vided by the PMC unit as:

ôl ¼ Tl
MI îl þ Tb:a:

MI îr þ tl h
hSQL

ôr ¼ Tb:a:
MI îl þ Tr

MI îr þ tr h
hSQL

îr ¼ P2
ϕ0
ôl

8>><
>>:

where Pϕ0
¼ cosϕ0 �sinϕ0

sinϕ0 cosϕ0

� 	
is the matrix for 2D

rotation by angle ϕ0 that describes the phase shift the
carrier light acquires as it propagates from the QWP

toward the PCM, and Tb:a:
MI ¼ e2iβ

0 0
�K=2 0

� 	
is the

back-action-only transfer matrix of the arm that accounts
for the back-action effect on the corresponding polariza-
tion mode created by the orthogonal-mode radiation
pressure.

Solving these equations for ôr , one obtains for the new
transfer matrix T½ϕ0� and response function t½ϕ0�:

T½ϕ0� ¼ Tb:a:
MI þ Tr

MI � P2
ϕ0

� I� Tb:a:
MI � P2

ϕ0

h i�1
�Tl

MI

t½ϕ0� ¼ tr þ Tr
MI � P2

ϕ0
� I� Tb:a:

MI � P2
ϕ0

h i�1
�tl

ð4Þ

The speed-meter regime of this interferometer is
achieved when 2ϕ0 ¼ πn for all integer n. In this case, one
has:

T ¼ �e4iβ
1 0

�2Ksin2β 1

� 	
¼ e2iβsag

1 0

�Ksag=2 1

� 	
ð5Þ

t ¼ e2iβ
ffiffiffiffi
K

p 0

�2isinβ

� 	
¼ eiβsag

ffiffiffiffiffiffiffiffiffi
Ksag

q 0

1

� 	
ð6Þ

where Ksag ¼ 4Ksin2β is the Sagnac speed-meter OM
coupling factor and βsag ¼ 2βþ π=2 is the corresponding

phase shift for sidebands traveling through the Sagnac
interferometer10. Therefore, we have shown that our
scheme is equivalent to the Sagnac speed-meter inter-
ferometer with one-half the laser input power. There is no
surprise in that.
And finally, substituting (5) and (6) into Eq. (3), one

obtains the final expression for the PCSM quantum noise
power spectral density in the form (2).
Arbitrary values of ϕ0 yield far more cumbersome for-

mulas for T and t that one can obtain straightforwardly
from Eqs. (4). However, the simple case of a small varia-
tion of ϕ0 from π=2 is of special interest for the analysis of
the influence of imperfections. Let assume ϕ0 ¼ π=2þ ϵ,
where ϵ ¼ 2πΔLPC=λp � 1; then one finds to first order
in ϵ:

Tϵ ¼ � e4iβ

1þ 2e2iβϵK
1þKϵ �2ϵ

�2ðKsin2β� ϵÞ 1þKϵ

� 	

tϵ ¼ 2e2iβ
ffiffiffiffiKp

1þ 2e2iβϵK
eiβ

�isinβ

" #

For phase quadrature readout, this yields the following
simple expression for the QNLS PSD18:

Shϵ ’ h2SQL

2
2

Ksag
þKsag

2
þ 2ϵ ðK � KsagÞ

Ksag


 �
ð7Þ

where the last term in the brackets dominates at low
frequencies, being / 1=Ω6, as we discussed above.

Results and discussion
The behavior of K as function of frequency reflects the

strength of interaction of light with the mirrors of the
interferometer at this particular sideband frequency Ω.
This includes both the strength of back-action and the
level of response one can expect from the particular
scheme at a given signal frequency, as reflected by two
terms that contain K. The inset of Fig. 4 shows clearly the
differences between the Michelson and the PC speed
meter in this regard. The sharp rise (/ Ω�2) of KMI (gray
trace) at low frequencies within the interferometer
bandwidth, Ω<γ, is responsible for poorer quantum noise
performance of the Michelson interferometer compared
to the PC speed meter, which is characterized by
flat behavior of KPCSM in that frequency region. This trend
is responsible for the much-improved speed-meter
quantum noise at low frequencies. Moreover, as
KPCSMðΩ ! 0Þ ¼ const, one can improve low-frequency
sensitivity of the speed meter even more by choosing to
measure the optimal quadrature by tuning the homodyne
angle to ϕLO ¼ arccotKPCSMðΩ ! 0Þ, as shown by the red
dashed trace in Fig. 4.
In the simple special case of ϕLO ¼ π=2, the QNLS PSD

is ShðΩÞ ¼ h2SQL KþK�1� 

=2, and one can clearly see
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that KðΩqÞ ¼ 1 is the condition of reaching the SQL. It
defines the frequency Ωq where the QNLS curve touches
the SQL, and therefore back-action and shot noise have
equal contributions to the QNLS. For the Michelson
interferometer, there is always a real solution to this
condition, whereas for the speed meter, there is a
threshold value of the ratio Θ=γ3 	 1=4 that sets the limit
on the required circulating power for a given inter-
ferometer bandwidth and vice versa. For a given half-
bandwidth γ, the circulating power required for the PC
speed meter to reach the SQL is Pc 	 McLγ3=ð16ωpÞ.

Loss and imperfection analysis
To estimate the astrophysical potential of the proposed

scheme fairly, we must assess the influences of the main
sources of loss and imperfections of a real interferometer.
In Fig. 5, we show the relative contributions (normalized
by the QNLS of the equivalent lossless Michelson

interferometer) that losses and imperfections make to a
realistic QNLS.
The leading source of loss for the proposed scheme is

photon absorption and loss in the polarization compo-
nents, i.e., absorption in the QWP (assumed single-pass
photon loss of ϵQWP ¼ 1%) and loss due to imperfect
polarization separation in the PBS (assumed extinction
ratio for transmitted s-polarized and reflected p-polarized
light of ηs ¼ ηp ¼ 1%). One observes that both
mechanisms contribute equally to the QNLS as expected
because the input fields, îp, pass both elements the same
number of times (4) before being readout at the output as
ôp. We also consider loss in the arm cavities, ϵarm ¼ 30
ppm as a realistic projection for the next generation
GW interferometers. The arm loss influence at low
frequencies, as shown by Kimble et al.17, amounts to
additional incoherent back-action noise created by loss-
associated vacuum fields.
Finally, we analyze how robust the scheme is to the

small deviations, ΔLPC � λp, of the optical path length
between the QWP and the PCM, defining ϕ0. Departure
of ϕ0 from π=2 results in a partial leakage of the back-
action term / KMÎip;c from the sine quadrature into the
cosine one. This creates an additional back-action term in
the quantum noise PSD / 2KMIΔLPC=λp / 1=Ω4 that
leads, in conjunction with speed-meter-like response
(∝Ω), to a steep increase of noise at low frequencies,ffiffiffiffiffi
Sh

p
/ 1=Ω3. This explains the downward bending of the

corresponding yellow dash-dotted curve in Fig. 5 (see Eq.
(7) in Materials and Methods).
To conclude this analysis, we make some remarks on

balanced homodyne readout in the real scheme and the
influence of laser noise and LO optical path stability on
the performance of our scheme. As shown by Fritschel
et al.14, a choice of the LO that co-propagates with the
signal sidebands (e.g., pick-off at the anti-reflective coat-
ing of the main BS) solves the problems of spatial-mode
mismatch and relative-phase fluctuations between the LO
and the signal. Given that no modifications to the main
Michelson interferometer are necessary in our scheme,
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the same choice of the LO is possible here with all its
advantages. Steinlechner et al.15 showed that the effects of
a DC component of the signal and path-length stability
requirements for auxiliary optics that are not in the
shared path can be kept at bay with the relatively modest
control level of 10−15 m/Hz½ for Advanced LIGO inter-
ferometers, and therefore for our scheme as well. Finally,
our scheme is not susceptible to the laser intensity noise
coupling in the asymmetric Sagnac speed meters identi-
fied by Danilishin et al.19 for the obvious reason that a
Michelson (main) interferometer such as we use here is
not susceptible to BS asymmetry.

Astrophysics results and prospects
A quantitative comparison of the QNLS of our pro-

posed speed-meter scheme and the QNLS of an equiva-
lent Michelson interferometer is shown in Fig. 6. (We
assumed for our analysis that due to the application of
enhanced techniques, all other noise sources, such as
Newtonian noise20, seismic noise21, and suspension
thermal noise22, are pushed below the level of the QNLS).
For this we considered the realistic speed meter, including
the optical losses shown in Fig. 5, and calculated the
corresponding inspiral range (integrated for frequencies
between 1 Hz and the last stable orbit), i.e., the distance
up to which we can observe the BH coalescence before its
signal-to-noise ratio decreases below 8. Then, we com-
pared the speed-meter inspiral range to the inspiral range
of an equivalent Michelson interferometer and derived
the plotted improvement factor in terms of event rate,
assuming a homogeneous source distribution throughout

the Universe. We found, for example, that for initial
black-hole masses similar to GW1509141, the speed meter
would improve the event rate by a factor of ~27. The
largest improvement factors, however, occur for initial
black holes in the range between 100 and 1000 solar
masses, achieving improvement factors larger than 100;
this would allow investigating the potential existence of
any intermediate-mass BH population in this, so far
unobserved, mass range. Note also that although we have
showcased the enabling capacity of our concept for IMBH
searches, an improvement in low-frequency sensitivity
inherently provides similar advantages for other GW
observations, such as increasing the SNR, and for
detecting BNS with better sky localization and longer
warning times before their moments of merger.

Conclusions
In this article, we suggested a new configuration for

realizing a quantum speed meter in laser-interferometric
GW observatories. The key advantage of our configura-
tion compared to other speed meter implementations is
that no additional optical components need to be imple-
mented inside the main instrument. The few additional
components required to convert a standard advanced GW
detector into our polarization circulation speed meter can
be placed in the output port of the interferometer (i.e.,
behind the signal-extraction cavity). Our analysis shows
that compared with a standard Fabry–Perot–Michelson
interferometer, our speed-meter configuration provides
significantly improved sensitivity at low frequencies.
Further, a detailed investigation was conducted to identify
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the influence of imperfections on the sensitivity. We
found that the most critical factor is the optical loss of the
quarter wave plate and PBS. Using realistic values for
imperfections and loss, we found that the speed-meter
QNLS sensitivity yielded an improvement factor of larger
than 100 in the event rate for binary black-hole mergers in
the range from 102 to 103M�. Future analyses will focus
on further sensitivity improvements from additional
complementary quantum noise reduction techniques,
such as the injection of squeezed light states.
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