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Abstract 
 
The effects of climate change on smallholder agriculture under different crop technologies, namely 
conservation agriculture, Falbedia albida, optimal fertilisation and intensive farming, were analysed 
against the conventional subsistence farming in Malawi. A biophysical economic modelling approach 
was used over a 60-year period to assess changes in crop productivity, total welfare and land-use 
options. The results indicate varying decreases in crop yield. For instance, when compared to the 
crop yield in 2010, maize yield decreased by -20% under subsistence farming and -0.1% under 
intensive farming in the seventh decade (2061 to 2070). Adaptation to climate change effects 
increased total welfare by 24% and producer revenues by 44% when compared to no adaptation. To 
optimise the welfare of smallholder farmers in Malawi, the study recommends increasing the 
adoption of intensive farming, conservation agriculture and Falbedia albida to at least 9.5%, 12% 
and 10% of total cultivated area in the 7th decade respectively. The study also reveals that farmers’ 
inability to optimise land use has a higher negative impact on welfare when compared to the effect 
from climate change. This means that the optimisation of crop and technology choices may play a 
more vital role in improving farmers’ welfare than mere adaptation to climate change. 
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1. Introduction 
 
The effects of climate change on the agricultural sector have been studied in many aspects involving 
different crops, crop technologies and geographical resolution. The actual combination of crops, crop 
technologies used and geographical resolution is vital to properly guide policy makers and farmers. 
Otherwise, the generalisation of results from any combination of crop, technology and geographical 
resolution is unhelpful, as different farmers have different potential to adapt to particular crop 
technologies (Feijt et al. 2016). In this case, specific guidance for both farmers and policy makers in 
a particular region requires consideration of the regional biophysical conditions, farmers’ 
socioeconomic status, and crop and crop technology combination preferences (Vermeulen 2012). 
However, in many Sub-Saharan African (SSA) countries, such advice is usually generalised from 
scanty and low-resolution studies, which involve isolated crops and crop technologies. A synopsis of 
previous climate impact studies on SSA is presented in Table 1. 
 
Even if advice generated from low-resolution climate impact studies may provide vital information 
for higher policy planning and general guidance to farmers, it may not justify adaptation needs or 
technological investments in a particular agroecological zone. Apart from geographical resolution, 
the actual crop selection is equally critical. In Malawi, cassava, cotton, groundnuts, maize, paprika, 
rice, sorghum, soybeans, sugarcane and tobacco are considered major crops, contributing to over 95% 
of the total cultivated area (Government of Malawi [GoM] 2014a). However, other than maize, not 
much is known regarding future climate change effects on the other listed crops (Cooper et al. 2008; 
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Schlenker & Lobell 2010). While many previous studies have justifiably focused on maize being a 
staple food crop, leaving out other crops derails the appreciation that cash crops make an important 
contribution to attaining food security and increasing farmers’ income, which help to alleviate poverty 
(Barbier 2000; Masanjala 2006). For instance, not much is known about future climate change effects 
on the productivity of tobacco, which is the single most important cash crop in Malawi (Nakhumwa 
et al. 1999). Crop technology selection is also important to complement crop choices. However, a 
tendency has been evident from previous studies, in terms of which subsistence farming has been the 
most and at many times the sole crop technology analysed, which leaves farmers and policy makers 
with little or no advice on alternative technology options (Strauss et al. 2012; Gama et al. 2014).  
 
The aim of this study was to fill the highlighted gaps in order to better understand the effects of 
climate change on crop productivity, optimal land-use options, total welfare and producer revenue in 
Malawi. Firstly, the study includes as many crops and technologies as are practised by smallholder 
farmers in Malawi. In this case, most of the major crops grown in Malawi under different crop 
technologies, like subsistence farming, conservation agriculture, Falbedia albida, optimal 
fertilisation and intensive farming, which have usually been missing from previous studies, are 
considered for analysis. Secondly, in this study, crop yield simulation is done at higher resolution, 
i.e. from 1 300 homogenous response units (HRUs) in Malawi. HRUs are areas with uniform slope 
range, soil type and altitude (Schmid et al. 2006). What distinguishes crop yield in a particular HRU 
is the crop technology used and the HRU climatic variables. Essentially, therefore, the study estimates 
adaptation options at the HRU level. However, for effective high-level planning purposes, a bottom-
up regional aggregation approach is used, as presented in Figure 1, according to which crop yields, 
adaptation options and levels from 1 300 HRUs (Figure 1a) are aggregated into 184 agricultural 
extension planning areas (EPAs) (Figure 1b). EPAs represent the smallest and basic administrative 
planning units for agricultural activities in Malawi. From the EPA level, the land-use or adaptation 
levels are further aggregated into 28 districts (Figure 1c), then into eight agricultural development 
divisions (ADDs) (Figure 1d) and then into the entire country. In this way, diversification and 
adaptation options are not just estimated at the national level, but are also provided in all respective 
agroecological zones as well as all agricultural administrative planning regions. 
 
 

 

  
 

Figure 1: Regional aggregation approach for adaptation and land-use levels 
(a) = 1 300 HRUs; (b) = 184 EPAs; (c) = 28 districts; (d) = eight ADDs. 
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Table 1: A synopsis of previous studies related to climate change effects on the agricultural sector in SSA 
 
Author 

Crops analysed Technologies Study focus 
Cass Cott Gnut Maiz Papr Rice Sorg Soyb Suga Toba CA FA IF OF SF MNR Yield Welfare 

Akpalu et al. (2008) ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✓ ✘ 

Arndt et al. (2012) ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✓ ✓ 

Gama et al. (2014) ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ 

Knox et al. (2010) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✓ ✘ 

Saka et al. (2003) ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ 

Schmid et al. (2006) ✓ ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✓ ✘ ✓ ✘ 

Zinyengere et al. (2014) ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✓ ✘ 

✓  = Analysed; ✘  = not analysed; Cass = cassava; Cott = cotton; Gnut = groundnuts; Maiz = maize; Papr = paprika; Sorg = sorghum; Soyb = soybean; Suga = sugarcane; Toba = 
tobacco; CA = conservation agriculture; FA = Falbedia albida; IF = intensive farming; OF = optimal fertilisation; SF = subsistence farming; MNR = manure application; Yield = 
climate change effect on crop yield; and Welfare = climate change effect on welfare of farmers.  
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2. Methods 
 

2.1 Model structure 
 
This study adopted and used the Malawi Agricultural Sector Model (MASM), developed by Kachulu 
(2017) through one of the algebraic modelling languages (AML) known as Generalised Algebraic 
Modelling Systems (GAMS). The MASM is an integration of a crop biophysical model and a partial 
economic equilibrium model, as presented in Figure 2. The model follows a documentation structure 
similar to the European Forest and Agricultural Sector Optimisation Model (Schneider & Schwab 
2008). As already highlighted, the MASM is a bottom-up, country-based dynamic partial equilibrium 
model that covers a sixty-year period, from 2010 to 2070. The MASM depicts resource endowments, 
crops, crop technologies, agricultural markets, population growth and trade to analyse the effects of 
different policy decisions or scenarios on the Malawian agricultural sector. 
 
2.2 Selected crops 
 
As already stated, most of the major crops grown in Malawi were selected, including cassava, cotton, 
groundnuts, maize, paprika, rice, sorghum, soybean, sugarcane and tobacco. The selected crops 
contributed to more than 95% of historical crop area from 2005 to 2010 (GoM 2014a). It can be 
observed from the data that maize dominated the crop mix, accounting for over 70% of the total 
cultivated area under smallholder farmers in Malawi. This highlights the subsistence nature of 
growing one food crop for subsistence needs and the problems of crop diversification among 
smallholder farmers. Even though the selected crops represented over 95% of the cultivated area, 
only 59% of the total arable land was utilised. Low land utilisation could be attributed partly to 
unequal distribution of land among smallholder farmers (Chinsinga 2011) and the tendency among 
farmers with larger land holdings to underutilise land. 
 
2.3 Selected crop technologies 
 
As mentioned already, the selected crop technologies included subsistence, conservation agriculture, 
Falbedia albida, optimal fertilisation and intensive farming. In this study, subsistence farming 
represents a technology in which soils are tilled, they are dependent on rainfall, nitrogen is applied at 
30% of what is otherwise recommended (GoM 2014b). Conservation agriculture represents no tillage, 
with soil cover of at least 30%, dependent on rainfall, with nitrogen applied as in subsistence farming 
but complemented with decomposed biomass from stock cover. Falbedia albida is an agroforestry 
type of technology and depicts conditions in which soils are tilled, that are dependent on rainfall, 
nitrogen is applied as in subsistence farming but complemented with decomposed biomass from 
Falbedia albida tree leaves. Under optimal fertilisation, soils are tilled, dependent on rainfall, 
nitrogen is applied as recommended (GoM 2014b), and hence faces no nitrogen stress. Intensive 
farming represents technology in terms of which soils are tilled, they are irrigated and nitrogen is 
applied as recommended by the Government of Malawi (GoM 2014b), hence crops experience neither 
water nor nitrogen stress. 
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Figure 2: The Malawi Agriculture Sector Model (MASM) framework 

MASM framework adopted from Kachulu (2017); EPIC diagram from Williams (1995); and EPA Map from Government of Malawi (GoM 1991a). National data 
obtained from product price data, consumption-level data, population data, income growth data, resource endowments data, resource and technology costs data; 
and SOC (soil organic carbon sequestration rates) 
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2.4 Data sources 
 
Data on the national population, farming population, population growth rate and income levels were 
sourced from the Integrated Household Survey (GoM 2012a) and the National Census on Agriculture 
and Livestock (GoM 2012b). Data on technology costs were sourced through a farm budget survey 
conducted in 2013. Historical EPA crop areas and crop yield data, district consumption levels and 
product prices for 2010 were sourced from the Department of Agro Surveys under the Malawi 
Ministry of Agriculture (GoM 2014b) and the Malawi Agricultural Commodity Exchange (MACE 
2014). The soil data were sourced from the Department of Land Resources and Conservation through 
the Land Resource Evaluation Project Database (GoM 1991b). In order to offer policy guidance under 
worst possible climate scenarios, the MASM uses the worst Representative Climate Pathway (RCP 
8.5). Following a review by Gama et al. (2014), MIROC5 was found to be the best among the 20 
evaluated GCMs in replicating Malawi’s observed climate data. On this basis, MIROC5 was chosen 
for the study. The climate data with daily precipitation, maximum and minimum temperatures and 
relative humidity, downscaled from MIROC5 using self-organising maps (Hewitson & Crane 2006) 
under RCP 8.5 was provided by the Climate Systems Analysis Group of the University of Cape Town. 
 
2.5 Crop biophysical simulation 
 
For crop simulation, the Environmental Policy Integrated Climate (EPIC) model (Williams 1995), 
was selected for two basic reasons. Firstly, unlike some crop models that are developed for specific 
crops, like CERES for maize and wheat simulation (Ritchie et al. 1989) or SOYGRO for soybean 
simulation (Jones et al. 1989), EPIC is able to simulate multiple crops. Secondly, EPIC has previously 
been widely used on climate crop impact studies in SSA (Adejuwon 2005; Schmid et al. 2006). EPIC 
functions in daily time steps and simulates crop growth by predicting the combined effects of crop 
technologies, water and nutrient availability in the soil. The leaf solar radiation interception is 
converted into ground and above-ground biomass, from which the economic yield is deduced as a 
product of crop biomass and harvest index. Due to the unavailability of observed data for calibration 
or the practicability of certain crop and technology combinations, only feasible crop and technology 
combinations were simulated, as presented in Table 2.  
 
Table 2: Crop and technology simulation combinations used in the study 

 
Crop 

Crop technology type 
Conservation 
agriculture 

Falbedia 
albida 

Optimal 
fertilisation 

Intensive 
farming 

Subsistence 
farming 

Cassava ✘ ✘ ✓ ✓ ✓ 

Cotton ✘ ✘ ✓ ✓ ✓ 

Groundnuts ✘ ✘ ✓ ✓ ✓ 

Maize ✓ ✓ ✓ ✓ ✓ 

Paprika ✓ ✓ ✓ ✓ ✓ 

Rice ✘ ✘ ✓ ✓ ✓ 

Sorghum ✓ ✓ ✓ ✓ ✓ 

Soybean ✓ ✓ ✓ ✓ ✓ 

Sugarcane ✘ ✘ ✓ ✓ ✓ 

Tobacco ✘ ✘ ✓ ✓ ✓ 

✓ = simulated crop and technology combinations, ✘ = not simulated due to lack of observed data for calibration. 

 
2.6 Aggregation of crop yield  
 
As already stated, the homogenous response unit (HRU) concept of Schmid et al. (2006) was adopted, 
in terms of which an area with similar soils, a particular slope and a particular altitude range is 
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considered homogenous. Crop, crop technologies and climate data were coupled to HRUs to 
determine distinct crop simulation outcomes. The average EPA crop yield (̅ߛ௝,௠,௧,௥) was estimated in 
Equation (1) as a product of HRU yields (ߛ௝,௠,௧,௥,௛	) and HRU areas	ሺߚ௜,௧,௥,௛) divided by respective 
EPA area (∑ ௜,௧,௥,௛௛ߚ ሻ, where j is crop type, m is crop technology option, t is study period, h is HRU 
and ߚ is the resource endowment (land), which was constant in all study periods. 
 
࢘,࢚,࢓,࢐ഥࢽ ൌ ∑ ൫	ࢎ,࢘,࢚,࢓,࢐ࢽ	. ࢎ൯	ࢎ,࢘,࢚,࢏ࢼ	 ∑ ൗࢎࢎ,࢘,࢚,࢏ࢼ  (1)               ࢘,࢚,࢓,࢐∀										

 
 
2.7 Partial economic model 
 
2.7.1 Objective function 
 
In the MASM, all variables are endogenous and non-negative, except for the objective function (ܹ), 
which may be positive or negative. The variables are estimated at the optimal level of agricultural 
activity, where economic and technological conditions are at an equilibrium. Total welfare ( ௧ܹ) 
resulting from the decision to adapt or not to adapt, as              (2), was estimated as a 
product of consumption (ܳ௝,௧,௥) and market prices (݌௝,௧,௥), summed over all crop products (j) and 
regions (r), minus the cost of production (ҫ௝,௠,௧,௥	. .	௝,௠,௧,௥), cost of storage (ş௝,௧,௥ܮ ܵௗ,௝,௧,௥) and cost of 
trade (ƫ௥,௥̃	. ௝ܶ,௧,௥,௥̃). ҫ௝,௠,௧,௥ is the unit cost of production and ܮ௝,௠,௧,௥ is the actual hactarage used, ş௝,௧,௥ 
is the unit cost of storage and ܵௗ,௝,௧,௥ is the level of storage, ƫ௥,௥̃ is the unit cost trade between regions 
and ௝ܶ,௧,௥,௥̃ is the level of trade between regions.  
 

࢚ࢃ	࢞ࢇࡹ ൌ
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ۇ
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 (2)              ࢚∀						

 
 
Producer revenue (ܴ௧) was estimated as a product of price (ݎ,ݐ,݆݌

∗ ) and demand (݆ܳ,ݎ,ݐ
∗ ) at equilibrium 

point, as in Equation (3) below.  
 
࢚ࡾ ൌ ∑ ൫࢘,࢚,࢐࢖

∗ ⋅ ࢘,࢚,࢐ࡽ	
∗ ൯		࢘,࢐  (3)           ࢚∀																								

 
2.7.2 Model constraints 
 
2.7.2.1 Commodity balance constraints 
The commodity balance equation, Equation 											(4), ensured that the sum of consumption (ܳ௝,௧,௥ሻ, 
exports ( ௝ܶ,௧,௥,௥̃ሻ and quantity added to storage ( ௝ܵ,௧,௥

ା ሻ did not exceed the sum of production 
.	௝,௧,௥,௠ߛ) ) ௝,௧,௥,௠ሻ, importsܮ	 ௝ܶ,௧,௥̃,௥) and quantity subtracted from storage ( ௝ܵ,௧,௥

ି ሻ. 
 
	࢘,࢚,࢐ࡽ ൅ ∑ ෤࢘෤࢘,࢘,࢚,࢐ࢀ ൅ ∑ ࢘,࢚,࢐ࡿ

ା െ ∑ ൫࢓,࢘,࢚,࢐ࢽ	. ࢓൯࢓,࢘,࢚,࢐ࡸ	 െ ∑ ෤࢘࢘,෤࢘,࢚,࢐ࢀ െ ∑ ࢘,࢚,࢐ࡿ
ି ൌ ૙					∀(4)           ࢘,࢚,࢐ 
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2.7.2.2 Resource constraints 
The availability of arable land and labour restricted agricultural activity levels                     
(5)). The product of unit resource use, α௜,௝,௧,௥,௠,	and activity level, ܮ௝,௧,௥,௠, summed over all crops (j) 
and crop technologies (m), could not exceed resource endowments (ߚ௜,௧,௥ሻ	in each region (r) and study 
period (t). 
 
∑ ൫࢓,࢘,࢚,࢐,࢏ࢻ			.			࢓,࢘,࢚,࢐ࡸ൯ ൑ ࢓,࢐	  (5)                     ࢘,࢚,࢏∀                      ࢘,࢚,࢏ࢼ

 
 
2.7.2.3 Crop mix restrictions 
Farmers’ decisions were further constrained by a crop-mix equation 	 	 	 											
ሺ6)), which forced all activity levels (∑ ௝,௧,௥,௠௠ܮ ) to fall within a convex combination of historical 
crop ratios (	ߟ௝,௧መ,௥	ሻ and historical crop levels (ܺ௧መ,௥	ሻ	(Chen & Önal 2012), where ̂ݐ are observed years, 
i.e. 2005 to 2010. 
 
∑ ࢓࢓,࢘,࢚,࢐ࡸ െ ∑ ሺ	࢚,࢐ࣁො,࢘		.		࢚ࢄො,࢘	࢚ො ሻ ൌ ૙                     ∀(6)               ࢘,࢚,࢐ 

 
 
2.7.2.4 Storage level 
The outstanding product storage level, ( ௝ܵ,௧,௥,               (7)) was the sum of the 
previous storage level, ௝ܵ,௧ିଵ,௥, and the current quantity added to storage, 	 ௝ܵ,௧,௥

ା , minus the quantity 
subtracted from storage, ௝ܵ,௧,௥

ି . 
 
࢘,࢚,࢐ࡿ ൌ ࢘,૚ି࢚,࢐ࡿ	 ൅ ࢘,࢚,࢐ࡿ	

ା െ		࢘,࢚,࢐ࡿ
ି  (7)               ࢘,࢚,࢐∀																														

 
 
2.7.3 Model calibration 
 
Model calibration is an adjustment of a particular parameter within the model in order to reproduce a 
response accuracy specified by some criteria (Refsgaard & Henriksen 2004). The model was 
calibrated by adjusting the cost of production where a shadow price of a parameter, i.e. land (ξ௝,௧,௥,௠ሻ	
              (8)), was added to the original production costs in order to force the 
model to replicate observed, historical crop-activity levels (ܮ෠௝,௧,௥,௠). This adjustment reduced 
deviation between the observed welfare ( ෡ܹ௧ሻ and the model welfare output ( ௧ܹ) in the base year. 
While highlighted here separately, the cost of adjustments (ߦ௝,௧,௥,௠ሻ	in the model is essentially part of 
the production costs. 
 

࢓,࢘,࢚,࢐ࣈ ൌ ࢚෢ࢃࣔ

࢓,࢚,࢘,࢐෠ࡸࣔ
 (8)               ࢓,࢘,࢚,࢐∀                                                      

 
2.7.4 Model calibration report 
 
The model calibration report is presented in Table 3. The calibration results are presented for the base 
year, i.e. 2010. The model performance is estimated as a ratio of model solution to observed levels. 
On cultivated areas, the model performance ranged from 92.9% under tobacco to 99.6% under cotton 
and cassava, resulting in an average model performance of 96.6%. While consumption levels were 
for both national and foreign regions, only national consumption levels are presented for comparison. 
Crops like tobacco and paprika are mostly produced for external markets and were therefore assumed 
to have zero consumption levels in Malawi. The model performance for consumption ranged from 
82.7% for sugarcane to 99.2% for maize, resulting in an average model performance of 94.3%. 
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Table 3: MASM calibration report 

Crop 

Crop area levels  
(million hectares) 

Model 
performance 

(%) 

Crop consumption levels 
(million tons) 

Model 
performance 

(%) Observed Model Observed Model 
Cassava 0.1632 0.1625 99.6 2.012 2.335 86.2 
Cotton 0.063 0.0627 99.6 0.016 0.017 90.4 
Groundnuts 0.1853 0.1915 96.8 0.064 0.061 93.7 
Maize 1.9018 1.9953 95.4 1.683 1.697 99.2 
Paprika 0.003 0.0031 95.1 0.000 0.000 100.0 
Rice 0.0378 0.0353 92.9 0.069 0.071 97.6 
Sorghum 0.1015 0.1019 99.7 0.051 0.053 95.9 
Soybean 0.1238 0.1286 96.4 0.049 0.048 97.4 
Sugarcane 0.0165 0.0162 98.3 0.076 0.065 82.7 
Tobacco 0.1065 0.1146 92.9 0.000 0.000 100.0 
Average model performance 96.6%   94.3% 

 
3. Results  
 
Before the presentation of the results, a review of climate variables aggregated at the national level is 
presented in Figure 3. Mean annual precipitation is expected to decrease by -31 mm from the second 
decade (2011 to 2020) to the seventh decade (2061-2070). This, however, does not explain the annual 
precipitation variability or distribution. The average number of annual rain days over the two decades 
was almost the same, at 103 and 104 days respectively. Both the mean maximum and minimum 
temperatures increased by 1.9°C from the second to the seventh decade. All the climate variables over 
the two decades were found to be significantly different at p = 0.05. These significant changes, as 
shown in the preceding sections, affected crop productivity over the two decades. 
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Figure 3: Comparison of decadal climate variables (2011 to 2020 and 2061 to 2070) 

 
3.1 Climate change effects on crop yield 
 
Different climate variables have different influences on crop yield and crop yield changes. In this 
section, the coefficient of determination (R2) was selected to analyse the extent to which rainfall 
variability in the seventh decade explained crop yield changes under different crop technologies, 
using regression analysis. The results, as shown in Table 4, indicate that rainfall variability could 
explain the maize yield variability of 63% under optimal fertilisation (R2 = 0.63) and 64% under 
subsistence farming (R2 = 0.64), but could only account for 1% of maize yield variability under 
intensive farming (R2 = 0.01). This indicates that rainfall variability influenced crop yield variability 
more under subsistence and optimal fertilisation, whereas intensive farming, which is irrigated, was 
least affected by rainfall variability. 
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Table 4: Rainfall and yield coefficient of determination 
Crop 
technology 

Crop type 
Cotton Groundnuts Maize Paprika Rice Sorghum Soybean Sugarcane Tobacco 

Conservation  
agriculture -- -- 0.34 0.18 -- 0.37 0.14 -- -- 
Falbedia  
albida -- -- 0.63 0.14 -- 0.28 0.08 -- -- 
Intensive  
farming 0.02 0.05 0.01 0.001 0.17 0.12 0.06 0.07 0.08 
Optimal  
fertilisation 0.18 0.15 0.63 0.10 0.18 0.22 0.22 0.23 0.22 
Subsistence  
farming 0.17 0.16 0.64 0.10 0.22 0.23 0.22 0.25 0.23 

 
The results for crop yield and crop yield changes aggregated at the national level are presented in  
Figure 4 and  
Figure 5 respectively. The crop yield changes are in references to the base year of 2010. All crops, 
with the exception of paprika – as shown in  
Figure 4d – experienced yield losses. Average crop yield changes ranged from +10% to -30% for 
most crops and management options. The highest yield losses, of up to -52%, were observed for maize 
under Falbedia albida ( 
Figure 5c) and for soybeans, at -48%, also under Falbedia albida ( 
Figure 5g). All crops under intensive farming had the lowest changes in crop yield, where the 
maximum crop yield decrease was -1% for groundnuts. 
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Figure 4: Crop yield under different crop technology practices from 2010 to 2070 
Green = intensive farming; blue = optimal fertilisation; amber = Falbedia albida; black = conservation agriculture; 

red = subsistence farming 
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Figure 5: Change in ratio of crop yield in comparison to 2010 yields 

Green = intensive farming; blue = optimal fertilisation; amber = Falbedia albida; black = conservation agriculture;  
red = subsistence farming 

 
3.2 Effect of technology shifts on change in crop yield  
 
Changes in crop yield due to shifts in technology were calculated as a ratio of crop yield from 
alternative technologies to crop yield under subsistence farming. Shifting from subsistence farming 
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to any alternative technology had a positive effect on crop yield, as presented in Figure 6. In the 
second decade, intensive farming had the highest maize yield ratio, of up to 4.8, whereas conservation 
agriculture had the least increase, at 2.1. The results also show that the crop yield ratio changed from 
the second to the seventh decade. Intensive farming resulted in an increased maize yield ratio of 5.1 
in the seventh decade, whereas the maize yield ratio under conservation agriculture decreased to 1.6.  
 

 
Figure 6: Effect of technology shifts on crop yield ratio (compared to subsistence farming) 

CA = conservation agriculture; FA = Falbedia albida; IF= Intensive farming; OF = optimal fertilisation 
 
3.3 Technology crop yield and cost of production 
 
The ratio of crop yield to cost of production per hectare for each technology is presented in Figure 7. 
In the second decade, maize under intensive farming had the highest crop yield per cost of production, 
at 12.2 kg/$, followed by Falbedia albida, at 10.2 kg/$, with subsistence farming being the lowest, at 
5.7 kg/$. However, the ratio of maize yield to cost of production decreased in the seventh decade to 
10.4 kg/$ for intensive farming, 5.6 kg/$ for Falbedia albida and 4.11 kg/$ for subsistence farming. 
This simply shows the effect of climate change on crop productivity over the two decades. 
 
3.4 Optimal land use options 
 
3.4.1 Crop choices 
 
Crop choices for the second and seventh decades are presented in Table 5. While there were changes 
in terms of crop area for all crops in the different decades, the changes were insignificant, at p = 0.05. 
This is partly due to the influence of the crop-mix equation in the model and the shift in technology 
adoption by the farmers. If technology adoption rates were held constant, total cultivated area would 
be expected to increase significantly due to an increase in demand for agricultural products as a result 
of population growth over the decades. However, due to farmers shifting from subsistence to more 
productive technologies (see section 3.4.2), there is not much of an increase in total cultivated area in 
future decades. This shows that adaptation may also be used as a solution to relieve the pressure of 
land scarcity among smallholder farmers in Malawi. 
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Figure 7: Technology yield cost ratio (compared to subsistence farming costs) 

CA = conservation agriculture; FA = Falbedia albida; IF= Intensive farming; OF = optimal fertilisation;  
SF = subsistence farming 

 
Table 5: Optimal crop choice levels aggregated at the national level 

Crop type 

Crops area (000 ha) Crop mix ratios (%) 
Observed 

(2010) 
Optimal 

(2nd decade) 
Optimal 

(7th decade) 
Observed 

(2010) 
Optimal 

(2nd decade) 
Optimal 

(7th decade) 
Cassava 162.421 166.884 163.46 5.78 5.73 5.74 
Cotton 62.672 64.535 60.807 2.23 2.22 2.14 
Groundnuts 191.464 202.702 197.054 6.82 6.96 6.92 
Maize 1 995.267 2 044.445 2 005.057 70.98 70.13 70.39 
Paprika 3.100 3.513 3.305 0.12 0.13 0.12 
Rice 35.256 37.560 39.657 1.26 1.29 1.4 
Sorghum 101.812 105.793 100.586 3.63 3.63 3.54 
Soybean 128.537 120.036 123.391 4.58 4.12 4.34 
Sugarcane 16.152 20.046 18.548 0.58 0.69 0.66 
Tobacco 114.587 149.819 136.894 4.08 5.14 4.81 
Total 2 811.268 2 915.333 2 848.759 100 100 100 

 
3.4.2 Technology choices 
 
Technology choices for the different decades are presented in Table 6. Changing from observed crop 
area levels to optimal adaptation levels resulted in reduced adoption of subsistence farming, from 
60.3% in 2010 to 47.9% in the second decade and 41.33% in the seventh decade. Instead, subsistence 
farming was replaced by more productive technologies, like conservation agriculture and Falbedia 
albida, which in total contributed to more than 22% of the total cultivated area in both the second and 
the seventh decades. 
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Table 6: Optimal technology choice levels aggregated at national level 

Technology 

Crops area (000 ha) Technology mix ratio (%) 
Observed 

levels (2010) 
Optimal 

(2nd decade) 
Optimal 

(7th decade) 
Observed 

levels (2010) 
Optimal 

(2nd decade) 
Optimal 

(7th decade) 
Conservation  
agriculture 13.599 329.307 360.818 0.49 11.3 12.67 
Falbedia  
albida 13.514 335.803 287.179 0.49 11.52 10.09 
Intensive 
farming  119.082 142.943 159.241 4.24 4.91 9.59 
Optimal  
fertilisation 968.509 708.7 721.975 34.46 24.31 25.35 
Subsistence  
farming  1 696.564 1 398.578 1 319.544 60.35 47.98 41.33 
Total 2 811.268 2 915.333 2 848.759 100 100 100 

 
3.5 Welfare sensitivity analysis 
 
The results of the welfare sensitivity analysis results are presented in Table 7. The sensitivity analysis 
considered welfare changes under farmers’ decisions to adapt or not to adapt to climate change 
effects, and also under a scenario in which it was assumed that there were no climate change effects. 
Under no adaptation, the model assumed that the farmers maintained the observed crop and 
technology levels of the base year throughout the study period. The assumption of no climate change 
meant that there were no changes in crop yield over the entire study period. As such, the model was 
forced to adopt the crop yields of the base year, i.e. 2010, throughout the study period. It should be 
noted that crop yields in the second decade (2011 to 2020) were relatively higher than in 2010, whilst 
crop yields in the seventh decade were relatively lower than in 2010. The results show that, in the 
second decade, the decision not to adapt or to operate at non-optimal land-use levels under no climate 
change led to total welfare loss of -9%. This is understandable, since crop yields in the second decade 
were higher than in 2010, and as such climate change in second decade had a positive influence on 
total welfare even under no adaptation. However, when farmers adapted or operated at optimal levels 
under the no climate change scenario in the second decade, this increased farmers’ welfare by 5.0%. 
This shows that adaptation does not just avert the negative effects of climate change, but also 
increases farmers’ production efficiency even without climate change effects. The decision to adapt 
to climate change in the seventh decade also had a positive effect on welfare when compared to the 
decision not to adapt. 
 
Table 7: Welfare sensitivity analysis under different scenarios of adaptation and no adaptation, 
climate change and no climate change in the different decades (2011 to 2020 and 2061 to 2070) 

Decision Climate outcome 

Type of welfare 

Total welfare change (%) Producer revenue change (%) 

2nd decade 7th decade 2nd decade 7th decade 

Observed levels 
(no adaptation) 

Climate change  
(yield changes) 

0.00 0.00 00.00 0.00 

No climate change  
(constant yields) 

-0.09 0.09 -0.13 0.22 

Optimal land use 
(adaptation) 

Climate change 
(yield changes) 

0.02 0.24 0.10 0.44 

No climate change 
(constant yields) 

0.05 1.02 0.86 1.36 
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4. Discussion 
 
In the preceding section, the results of the effects of climate change on crop productivity, land-use 
options and welfare sensitivity analysis were presented. The following section discusses the 
significance of these results. While it is not possible to discuss all crop yield results due to the 
unavailability of comparable studies in SSA, a few crop yield results are discussed. The crop yield 
results mostly indicate a general decrease under each crop and crop technology. Rainfall variability 
had a higher coefficient of determination on maize yield – of 0.64 under subsistence farming and 0.63 
under optimal fertilisation, while maize yield under intensive farming had the lowest coefficient of 
determination – of 0.01. This is to be expected, as intensive farming is practised under irrigation and 
therefore is least affected by rainfall variability. The crop yield changes under intensive farming may 
emanate from other factors, like changes in temperature and relative humidity. Conservation 
agriculture had a lower coefficient of determination when compared to subsistence farming. This 
supports the argument expressed by many authors that conservation agriculture improves soil water 
conservation (Hatfield et al. 2001; Bossio et al. 2010; Thierfelder et al. 2015). 
 
The results for the change in aggregated crop yield agree with the findings of Saka et al. (2003), who 
also noted a crop yield decrease in maize, ranging from -5% to -25%. However, the results are 
different from the findings of Gama et al. (2014), whose results portrayed an increase in maize yield 
ranging from +5% to +10%. The difference from the results of Gama et al. (2014) may be attributed 
to a number of factors. Firstly, the difference may arise due to different geographical resolutions used 
in the two studies. Gama et al. (2014) did not consider the HRU approach, but instead analysed a 
particular EPA, without any differentiation of soil type, slope and altitude within the EPA. Secondly, 
the difference in the results may also be attributed to the level of aggregation of the results. In this 
study, the results, even though generated from a higher geographical regional resolution, viz. 1 300 
HRUs, are presented as aggregates at the national level for ease of discussion, whereas the results of 
Gama et al. (2014) were only for one particular EPA. Yield crop and cost of production ratios in all 
decades were found to be the highest under intensive farming. This suggests that, despite higher 
production costs, intensive farming has higher returns on investment. The increase in crop yield in 
relation to cost of production for intensive farming in the seventh decade is mainly due to the negative 
effects of climate change on crop yields under subsistence farming.  
 
In order to maximise total welfare, technology adoption rates for conservation agriculture and 
Falbedia albida need to be increased from the observed levels of 0.48% in 2010 to around 12% for 
conservation agriculture and 10.5% for Falbedia albida in the seventh decade. Such adoption levels, 
although optimal, may be argued as being too high to be easily achieved by smallholder farmers. 
Smallholder farmers are known to face a number of challenges in adopting such technologies on a 
larger scale (Mfune 2014). Apparently, only 3% of cultivated area has been estimated to be under 
conservation agriculture in Southern Africa (Ngwira et al. 2014). The results also show that it would 
be advisable to increase the proportion of intensive farming from the observed levels of 4.23% in 
2010 to 9.5% by the seventh decade. This would require increasing the area equipped with irrigation 
infrastructure from the current 110 000 hectares to 248 000 hectares. The study’s findings on the 
required increase in irrigated area is lower, but within the 650 000 hectares estimated by Ferguson 
and Mulwafu (2005) to be easily irrigable using gravity-fed irrigation. However, when compared to 
the Greenbelt Initiative, an initiative of the government of Malawi that aims to develop two million 
hectares under irrigation (GoM 2011), such a target would be deemed too high and therefore 
economically inefficient with reference to the findings of this study. The results also show that a shift 
in crop technology would reduce the total cultivated area that would otherwise have increased 
significantly assuming there was no technology shift or adaptation by farmers. This entails that 
adaptation to climate change effects may be a solution to relieve pressure on the already dwindling 
land-holding sizes among smallholder farmers in Malawi. 
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The results of the welfare sensitivity analysis show that climate change in the seventh decade will 
have negative effects on welfare, as indicated by the welfare differences between the no climate 
change and climate change scenarios. Secondly, the welfare sensitivity analysis also shows that 
adaptation improves welfare when compared to no adaptation, especially in the seventh decade. What 
is also important under these results is the need to operate at optimal level, even without the envisaged 
climate change effects. Many subsistence farmers were noted to operate at non-optimal land-use 
levels, regardless of climate change effects. Adjusting to optimal land use or adaptation would not 
only avert the negative climate change effects, but would also improve productivity, even under the 
no climate change scenario or the absence of climate change effects. The literature review did not 
find any previous studies related to climate change and welfare analysis in the Malawian agricultural 
sector. However, the results on producer revenue are in agreement with the findings of Gama et al. 
(2011), who also found that farmers who adapted to climate change effects had 5.1% more revenue 
compared to those who did not adapt, even though they analysed only the maize crop from one EPA.  
 
While the study considered almost all the important crops and technology used by smallholder 
farmers in Malawi, it is not certain that farmers would continue to grow or use the selected 
technologies in the future. As it is difficult to know which crop and technology preferences farmers 
may actually have, the results and discussions in this study, as in many other similar studies, are based 
on the assumption that farmers would stick with what are currently observed to be the most important 
crops and technologies. 
 
5. Conclusion  
 
In this study, the effect of climate change on the crop productivity and welfare of smallholder farmers 
under different crops and crop technologies was analysed. Most crops experienced crop yield 
decreases under all technologies, but alternative technologies provided better crop yields and crop 
yield returns when compared to subsistence farming. For policy planning, it has been shown that 
adaptation is not just necessary to improve farmers’ productivity and offset the future negative effect 
of climate change, but it may also be used as a solution to relieve the pressure on total available arable 
land. The study has also shown that, in order to achieve optimal land-use levels, policy makers and 
smallholder farmers in Malawi should focus more on technology adoption than on changing crop 
preferences. 
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