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Immediate action is the best strategy when facing
uncertain climate change
Maria Abou Chakra 1,2, Silke Bumann1, Hanna Schenk1, Andreas Oschlies 3 & Arne Traulsen 1

Mitigating the detrimental effects of climate change is a collective problem that requires

global cooperation. However, achieving cooperation is difficult since benefits are obtained in

the future. The so-called collective-risk game, devised to capture dangerous climate change,

showed that catastrophic economic losses promote cooperation when individuals know the

timing of a single climatic event. In reality, the impact and timing of climate change is not

certain; moreover, recurrent events are possible. Thus, we devise a game where the risk of a

collective loss can recur across multiple rounds. We find that wait and see behavior is

successful only if players know when they need to contribute to avoid danger and if

contributions can eliminate the risks. In all other cases, act quickly is more successful,

especially under uncertainty and the possibility of repeated losses. Furthermore, we

incorporate influential factors such as wealth inequality and heterogeneity in risks. Even

under inequality individuals should contribute early, as long as contributions have the

potential to decrease risk. Most importantly, we find that catastrophic scenarios are not

necessary to induce such immediate collective action.

DOI: 10.1038/s41467-018-04968-1 OPEN

1 Department of Evolutionary Theory, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany. 2 Donnelly Centre
for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, QC M5S 3E1, Canada. 3 Biogeochemical Modeling, GEOMAR
Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. Correspondence and requests for materials should be addressed
to A.T. (email: traulsen@evolbio.mpg.de)

NATURE COMMUNICATIONS |  (2018) 9:2566 | DOI: 10.1038/s41467-018-04968-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4895-954X
http://orcid.org/0000-0002-4895-954X
http://orcid.org/0000-0002-4895-954X
http://orcid.org/0000-0002-4895-954X
http://orcid.org/0000-0002-4895-954X
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-0669-5267
http://orcid.org/0000-0002-0669-5267
http://orcid.org/0000-0002-0669-5267
http://orcid.org/0000-0002-0669-5267
http://orcid.org/0000-0002-0669-5267
mailto:traulsen@evolbio.mpg.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Collectively working to manage climate change is one of the
most difficult social challenges we face today. It is
imperative to find a solution, because failing can mean

disaster for our own future and generations to come. However, in
spite of the obvious consequences, achieving cooperation at the
global level remains a challenge because individuals are tempted
to reduce their efforts while taking advantage of everyone else’s
contributions1,2. Such selfish behavior lies at the core of the
tragedy of the commons—a classic problem showing how the
pursuit of individual gain leads to the overexploitation of a
resource3,4. Social dilemmas are often modeled as public goods
games where individuals decide to contribute to a collective good.
Each individual receives a benefit that depends linearly on the
total contributions5–10. But in light of dangerous climate change,
the typical linear public good game is insufficient and, thus, the
collective-risk game with multiple rounds, threshold effects and
partial returns was devised11. Contrary to the usual case of a
collective benefit, this game is concerned with the prevention of a
collective loss. The collective-risk game is usually played over
several rounds. In each round, individuals must decide how much
they contribute to a public good. If the total contributions exceed
a specified target amount, the risk of a collective loss vanishes. In
contrast, failure to reach the target implies that individuals lose all
their belongings with some probability. This setup is motivated by
dangerous climate change, “the game we cannot afford to lose”12.

The collective-risk game was dubbed the climate game after
stimulating several fascinating experimental and theoretical stu-
dies13–19. While these studies have enhanced our understanding
about how collective losses influence cooperative behavior, they
all build on certain limiting assumptions11,14,19–21: loss is
devastating because individuals are deprived of all their posses-
sions, risk is typically characterized by threshold effects, and a
single potential loss occurs at the end of the game. However, real
global scale environmental crises that may be triggered by
climatic events—ranging from devastating heat waves, storms,
floods or droughts over shifts in monsoonal precipitation patterns
to a collapse of parts of the Antarctic or Greenland ice sheets—are
currently unpredictable with respect to their impact and timing.
Also, in the context of climate change, there is an ongoing
discussion about predicting when and how drastic the effects will
be22,23, as well as the advantage of intermediate climate
targets17,24. These real world examples represent situations where
disasters are unpredictable and possibly recurring, thus making it
difficult to assess how players should behave in these situations.

To shed further light on cooperative behavior given such
uncertainty, we develop a collective-risk game where multiple
losses can occur—similar to the experiment by Milinski et al.17

where losses may happen in every round when an intermediate
target is missed. Having a potential loss in every round also
introduces situations where losses are not devastating, i.e., indi-
viduals do not lose everything. In contrast to the typical single
catastrophic event that leads to full losses and the sudden ter-
mination of the game25, we further explore the effects when a loss
occurs at a fixed time, such as the start or end of a game, or at a
random time, where individuals do not know if and when a
disaster will occur. In addition, we consider factors that play a key
role in decision making: wealth inequality, heterogeneity in risk
probability and heterogeneity in the distribution of individuals
within a group. In such collective-risk dilemmas, heterogeneity,
risk, and coordination play a large role in decision mak-
ing15,17,26,27. Most often, heterogeneity renders negative out-
comes. Since nations and individuals vary on several factors, it is
difficult to assess which of these factors has the largest influence
on climate change decisions. For instance it is unclear how
individuals should interact under wealth inequality: previous
work has shown that the amount of contributions also depends

on the shape of the risk function9,26,28 or communication15,26.
Another problem under wealth inequality is determining which
distribution of efforts can be considered as fair29.

Using this general setup, we study the amount as well as the
timing of contributions under various risk scenarios. It turns out
that the risk scenario at stake has crucial effects on the evolu-
tionary optimal behavior in the game and in particular also on the
timing. While wait and see is a favorable strategy when the
potential loss happens at a well known time, an act quickly
behavior is more successful under uncertainty and repeated
threats.

Results
Model. We devise a game where the risk of a collective loss can be
unpredictable or can recur. The game is played by a group of m
individuals over Ω rounds. Initially, each individual i in the group
has a wealth, Wi,0. In each round, r, individual i contributes ci,r
fromWi,r−1 to a collective pot, Cr, that represents the public good.
To model collective loss, we assume that in each round a fraction
αi is removed from the remaining wealth of individual i with
probability pi[Cr], which depends on Cr, the total contributions so
far. Initially, we explore the homogenous case where Wi,0, pi[Cr]
and αi are identical for all players. Heterogeneity arises when we
change these parameters among the players, for example under
wealth inequality, W differs among players. For simplicity we
only consider two types, rich and poor individuals, and explore
the cases where WR ≥WP. We also explore heterogeneity in the
loss fraction αi, where individuals can lose different portion of
their wealth in a loss event. We also combine factors such as
wealth inequality and risk heterogeneity: where risk probability pi
could differ between populations of rich and poor individuals,
such that the risk curves and thus the contributions depend on
the wealth status (pR[Cr] ≠ pP[Cr]).

The probability to lose is monotonically decreasing in the total
contributions of the individuals in the group over all rounds so
far, Cr ¼

Pr
j¼1

Pm
i¼1 ci;j, and is captured by the risk curve pi[Cr].

In the event of a loss in round r, an individual keeps the amount
of wealth Wi,r= (1− αi)(Wi,r−1− ci,r) after that round. With
probability 1− pi[Cr] an individual evades the risk and keeps
Wi,r=Wi,r−1− ci,r. The remaining wealth can be used to
contribute to the collective pot in the next round. By the end of
the game, the expected payoff is calculated. For example, in a two-
round game: if a loss happens in round one, the remaining wealth
of a player i after the first round is Wi,1= (Wi,0− ci,1)(1− αi). In
round two, the player can then still contribute ci,2 ≤Wi,1, leading
to a payoff of (Wi,0− ci,1)(1− αi)− ci,2 if no second loss happens
(in the following, we implicitly assume that 0 ≤ ci,r <Wi,r−1).
There are four possible outcomes since the events with loss and
without loss can happen independently in each round. The
expected payoff is given by

πi ¼ 1� αipi C2½ �ð Þ 1� αipi C1½ �ð Þ W0 � ci;1
� �

� ci;2
� �

;

where pi is a function of the total contributions made over all
rounds within the group so far, Cr, and thus also of ci,1 and ci,2.

In our model, contributions help avoid a collective loss in each
future round of the game. Contributions made early on in the
game are not in vain, as they reduce the risk of events leading to a
loss in future rounds—but they cannot recover what has already
been lost in earlier rounds. Thus, it would be socially optimal to
contribute as early as possible and to distribute contributions
evenly among players30. However, herein we consider players
who are only interested in their own individual advantage instead.
We apply evolutionary game theory14,19,20,31–33 to understand
and identify the set of stable contributions under various risk
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scenarios. This implies that we focus on stationary solutions of
the behavior dynamics in a large population (typically 100
individuals) from individuals interacting in groups within a game
(to disentangle group effects from risk effects we first focus on the
pair-wise case, m= 2. Qualitatively similar effects are seen in
larger groups, m > 2, (Supplementary Fig. 1)). Evolutionary
stability implies that a player with an altered contribution scheme
would have a lower payoff and thus be less successful34. In the
case of the rich and a poor scenario, the evolutionary processes
are independent—we assume two distinct populations. This setup
ensures that poor players will preferentially adopt behaviors that
have been beneficial for other poor players, but not try to imitate
the behaviors of rich players (and vice versa).

The emerging contribution scheme depends on the fraction of
wealth that is lost, α, the shape of the risk curve, p[Cr], and the
number of rounds Ω. We consider the influence of the fraction
lost, α, for different risk curves (Fig. 1a): linear or piece-wise
linear curves, as well as non-linear curves with threshold effects.
While linear curves represent particularly simple cases, threshold
effects might be especially relevant when it comes to the earth’s
climate22.

Model analysis. It is clear that risk can influence cooperative
behavior in various ways. However, in reality the precise shape of
the risk curve is unclear. For example, climate scientists generally
do not agree on the exact position of thresholds and how steep
the change in risk is22–37. To take this ambiguity into account, we
vary the shapes of our risk curves. This also allows us to better
understand how certain risk curve characteristics affect con-
tributions. For example, how are contributions influenced by
sudden changes in risk or by risk that does not decrease much
with collective effort?

High values of α imply that contributions are beneficial because
large potential losses can be avoided. Consequently, contributions
tend to increase with α (Fig. 1b, c). At high α individuals
contribute approximately half of their endowment in two-round
games with linearly declining risks. They tend to give slightly
more if threshold effects are present. Moreover, individuals
succeed in eliminating risk almost entirely when this can be
achieved with relatively little effort. If α is small, losses are minor
—individual contributions, therefore, remain relatively low.
Intermediate values of α lead to differentiated amounts of
contributions, because of the complex interactions between the
fraction of wealth lost and the risk curve. This effect becomes
especially apparent in the four-round game (Fig. 1d). Moreover,
the longer the game lasts, the more individuals contribute at
intermediate values of α—it can even make sense to contribute
less if α increases, as some risk curves demand such high
contributions that the remaining wealth becomes negligible and it
is beneficial to maintain higher risks. However, as the number of
rounds increases, intermediate losses may accumulate over the
course of the game, adding up to a large overall loss. The effects of
timing have only recently become apparent, experimental
evidence and theoretical framework all pointing to the trend
that increasing round number increases cooperation21,35,36.

In the case of linear risk curves and multiple rounds,
intermediate-sized losses elicit sizable contributions (for linear
risk curves with very steep slopes, contributions are reduced
accordingly (Fig. 1). Similar effects on contributions occur using
power function risk curves. Furthermore, linear and power
function risk curves illustrate that contributions can be largest at
intermediate values of α, if contributions have only small effects
on the probability to lose, or, if it requires a lot of effort to reduce
risk. Intuitively, the prospect of having nothing left depresses
cooperative effort when risk is high. By comparison,
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Fig. 1 Risk curves and the effect of the fraction lost on contributions. a Four different risk curves are explored: linear (orange), piece-wise linear (red), a
power function (black), and curves exhibiting threshold effects (blue). In the remaining panels, the average contributions for different values of the fraction
lost, α, are shown. b In the collective-risk game with one round (Ω= 1) exclusively large values of α elicit contributions. c In the game played over two
rounds contributions tend to rise in α. d Multiple potential losses induce a clear rise in contributions (games are between two individuals, m= 2,
evolutionary dynamics with a population size N= 100 and averages over 105 generations, 1000 games per generation, mutation probability μ= 0.03, and
the standard deviation for mutations in the individual thresholds determining contributions τr is set to σ= 0.15 (Methods section). The functional forms of
the curves are given in the Methods section)
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contributions for risk curves with threshold are increasing in α
(Fig. 1). This curve shows that in the one-round game
contributions are low when risk curves start at low risk for low
contributions (small λ3), but in the four-round game reach those
of the curves with high initial risk, provided α is large (Fig. 1d).
Interestingly, we find that for the game with multiple losses, high
risk probability at low contributions and full losses are not
necessary to observe cooperative behavior.

Unpredictable timing of losses. So far, we have studied the case
of a potential loss in every round of the game, including the
possibility of recurrent events. However, the actual timing of
catastrophic events associated with climate change is still con-
troversial22. Previous empirical and theoretical research has
focused on losses in the last round of the game11,20,21. These
studies have found that low and intermediate loss probabilities
lead to a withdrawal of effort by individuals. To put these findings
into perspective, we explore the effects of different timings of

losses on contributions. In addition to a potential loss event in
every round or only in the last round, we now consider scenarios
with a potential loss only in the first round or in a single random
unknown round within the game. The random round captures,
most closely, our current state since the true timing of when
climate change will lead to catastrophic losses is unknown22. It
seems natural to assume that individuals will behave as if climate
events hit at random times.

Qualitatively, the game with multiple losses elicits a similar
temporal pattern of contributions as the game where the loss
occurs in the first round (Fig. 2a, b). The game where the loss
event is in the last round elicits a similar amount of contributions
as the game where the potential loss event is in a random round—
unless there is a threshold effect where players tend to increase
their contributions over time when the loss event happens in the
last round. However, the timing for these contributions differs
(Fig. 2c, d). In the game where a climatic event is fixed to the last
round, we recover wait and see behavior11,20,21 or the Schelling
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behavior of equal contributions across all rounds30. When the
occurrence of a loss is predetermined and exhibits strong
threshold effects, individuals can time their contributions and
only contribute in the round just before the expected loss. Moving
beyond this particular case, we find that act quickly is most robust
instead. Furthermore, our results show that one should not only
act early, but also contribute sufficiently to ensure protection in
the future.

Wealth heterogeneity and risk. Up to this point we have
assumed that the risk perceived by the players is identical. This is
far from the current situation where nations are impacted dif-
ferently from one another, for instance a climate disaster can
affect poor nations at a greater magnitude than rich nations. We
incorporate influential factors such as wealth inequality and
heterogeneity in risks into our evolutionary model, as shown in
the Methods section where a complete description of the methods
is given and the full range of heterogeneity effects is explored. To
put these findings into perspective, we explore the effects of
heterogenous loss fractions across different timings of loss events.
Intuitively, we expect that low values for the loss fraction α would
reduce contributions while higher values should promote con-
tributions irrespective of the heterogeneity between the players.
However, the drastic effects of the timing of the events on con-
tributions between rich and poor players was not as intuitive
(Fig. 3). Random unpredictable-risk events increased overall
contributions from the poor players relative to the game with a
single predictable events (Fig. 3a–d). Surprisingly, the games with
multiple loss events resulted in higher contributions by the rich
player even for low values of the loss fraction α ≤ 0.2. For high α
and for multiple loss events the rich players contributed more
than 60% of their initial wealth. Heterogeneity between players
only re-emphasized act quickly behavior, which is most robust in
the natural cases where multiple losses are possible or the event is
unpredictable (Fig. 4a, b). Just as in the homogenous case in the
game where a climatic event is fixed to the last round, we recover
the Schelling behavior of equal contributions across all rounds,
(Fig. 4c)30. For all other cases with uncertainty and heterogeneity
(Fig. 4a, b, d), we find that act quickly is most robust.

Discussion
Many unsettled questions about climate change remain. In par-
ticular, it is unclear how fast the probability of severe climate
change events declines for increasing event amplitudes. An
intense event does not have to have a direct effect on losses and
may only affect individuals in the distant future. Further uncer-
tainties in the risk probability can manifest because of uncer-
tainties regarding the magnitude of destruction incurred by
climate events or uncertainties about the appropriate discount-
ing38,39. Taken together, these unsettled grounds give rise to a
long chain of structural uncertainties40. To reflect some of these
uncertainties, we have expanded on the typical assumptions of the
literature on collective risk to capture some aspects of our current
state. The collective-risk game was developed to study social
dilemmas involving risk of a collective loss such as the mitigation
of climate change effects11,12. A main conclusion drawn from this
literature is that a high loss probability promotes contribu-
tions11,20,21. The collective-risk game became known as the cli-
mate game, but it assumed that there is a single loss in the last
round of the game and that individuals lose all their belongings.
This may be questionable in reality13–31. Thus, we have developed
a collective-risk game where individuals are faced with the risk of
a loss in each round, in a single fixed round or a random round.
Another distinct characteristic of our game is that individuals
may retain some of their belongings after an event.

Our general setup explores cases where the risk of a collective
loss is unpredictable or can recur, and individuals can experience
a range of mild and catastrophic scenarios, see Figs. 1 and 5. In
contrast to wait and see, which is most successful for a game with
a single loss in a fixed round (i.e., the timing of risk is known) and
where the risk curve exhibits strong threshold effects, here we
obtain an act quickly behavior where individuals reduce the risk
by contributing a substantial amount in the first round. This is a
striking difference between our current work and previous
research on climate cooperation. Moreover, our results show that
catastrophic scenarios are not necessary, as we observe con-
tributions as long as individuals can make a difference and
change the risk they face.

The framework presented here may bring us a step closer
towards understanding the best actions of individuals in real and
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with λ3= 10,W0=WR+WP, population size N=

100, 1000 games per generation, mutation rate μ= 0.03, and the standard deviation σ for mutations of the individual decision thresholds τr is set to 0.15)
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often complex situations such as the environmental and global
challenges heading our way. In the case with multiple potential
losses, failure to act collectively can have severe consequences. By
the same token, failure to protect the climate can result in
devastating losses. As we have seen in our model, multiple
potential losses induce a very different kind of cooperative
behavior, Fig. 2. However, multiple losses are not the only factors
that affect decisions. One additional factor is group size, see
Supplementary Fig. 1, large groups typically reduce cooperation—
but we show that timing can quench its effects21. Another addi-
tional factor is perceived risk, which strongly influences decision
making. Our simulations show that wealth inequality can be the
factor that may quench risk effects rather than hinder it, as shown
in Figs. 3 and 4. Small differences in the risk perceived between
parties can lead to negotiation failures for reducing global green
house gas emissions; since some parties do not fear climate
impact while others have had several drastic climatic events and
thus consider risks in their decisions41. However, our results
indicate that under risk heterogeneity, players with heterogeneous
wealth contribute more than player of equal wealth, as observed
in Supplementary Figures 3 and 4. Unfortunately, including any
form of heterogeneity, such as wealth inequality or risk asym-
metries15,17,26,27,42, can complicate an already difficult situation
even further. Differences in wealth can alter decisions because the
diverse incentives cause overall uncertainty38; wealth inequality is

usually associated with negative outcomes9, however, this also
depends on whether subjects felt that this inequality is merited or
not. For instance, privileged subjects that feel they were inap-
propriately endowed equalized their profits with the less fortunate
subjects43. In contrast, subjects who justified their endowments
made no efforts to equalize44. Here, we show that even
in situations complicated with heterogeneity and uncertainty in
the timing of losses, the trends remains the same: it is beneficial
for individuals to increase their efforts from the start, ensuring
that contributions are sufficient not only for now, but also in the
future. Our model thus predicts that immediate climate action
can be advantageous at the individual level for a wide range of
risk and heterogeneous scenarios.

Methods
Simulations. We use evolutionary game theory to identify evolutionary robust
contributions between interacting players33. This means players do not know the
structure of the game and cannot apply advanced reasoning about their possible
actions. Instead, each individual has a fixed mode of behavior, i.e. it follows a
certain contribution behavior that only depends on the previous total contribu-
tions. Individuals play many games and their success in these games determines
how likely it is that their strategy will be adopted by the future generation. The
outcome of each interaction depends on the strategy used by each player, which is
hard-coded for any individual20,21. Each strategy is defined by a threshold, τr (that
depends on the collective contributions accumulated over all rounds so far, Cr) and
the contributions above and below the threshold for each round (τr; ar, br). Thus,
an individual will contribute an amount ar if Cr ≤ τr and br if Cr > τr. As an
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Fig. 4 Contributions for different timings of potential losses in a four-round game. The graphs depict average contributions in each round of a four-round

game with a potential loss in a every round, b the first round, c the last, or d a random round (games are pair-wise, p ¼ 1þ exp λ3
Cr
W0

� 1
2

� �h i� ��1
, λ3= 10,

initial wealth of both players W0=WR,0+WP,0= 4+ 1= 5, population size N= 100, 1000 games per generation, mutation rate μ= 0.03, and the
standard deviation for mutations in the individual decision thresholds τr is set to σ= 0.15)
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example, consider a game with two players and two rounds and no risk, m= 2 and
Ω= 2. The strategy of player one is {(0.0;0.1,0.0), (0.2;0.1,0.5)}, where the first set of
three numbers definesthe strategy in the first round and the second set of three
numbers defines the strategy in the second round. Player two has strategy
{(0.1;0.5,0.1)round1, (0.7;0.2,0.5)round2}. Since the pot is empty in round 1 (C1= 0),
we have C1 ≤ τ1 for player one, who thus invests 0.1. For player two, we also have
C1 ≤ τ1, which leads to an investment of 0.5. Thus, in round 2 we have a pot of C2

= 0.6. Consequently, for player one C2 > τ2, which results in an investment of 0.5.
For player two, we have C2 ≤ τ2 results an investment of 0.2. As a result, the total
investment after two rounds is 1.2. Thus, player one obtains a payoff of 1− 0.1−
0.5= 0.4 and player two 1− 0.5− 0.2= 0.3. Players cannot spend more than what
they have, we do not allow negative payoffs.

In one generation, many games with several rounds r= 1,2,...,Ω are played
between groups of individuals chosen at random (herein we typically concentrate on
the two-player game, but in methods we show that this is not a fundamental
restriction of our model; see Methods section: Group Size). Each individual’s final
payoff, πi, is then calculated as the average payoff of all games played by the individual
in that generation. This payoff πi is translated into a fitness value fi= exp[πi]45. Since
payoff determines fitness, this means that the strategy that incurs the highest payoffs
also has the highest probability of being transferred into the next generation.

We use a Wright–Fisher process to select the next generation of individuals
where each offspring inherits the strategy of the parent (with the possibility of small
errors). The individual’s fitness is used to weigh the probability of an individual to
contribute to the new population20. Errors in reproduction occur at the end of the
generation with a probability μ for the thresholds τ and the contributions of each
round independently. If they occur, errors in the threshold values add Gaussian
noise with standard deviation σ to them. Errors in the contributions are made using
a uniform distribution between zero and W, see also20.

Once a new population is produced, the process is repeated for multiple
generations. Results reported in the figures represent the average of the dynamics over
many generations once the random initial condition no longer affects the dynamics.

Exploring the multi-loss game. Initially, we explored the homogenous case where
all players i start with the same wealth Wi,0, the same risk probability p, and the
same fraction of wealth lost α. To model collective loss, we assume that in each
round a fraction α of an individual’s remaining wealth is lost with probability pr.

We explore contributions for the case of linear risk curves (Fig. 5a) and their
effects on contributions with respect to 1–4 round games (Figs. 1–5) and an 8
round game (Supplementary Fig. 2).

p Crð Þ ¼ 1� Cr

W0
λ1; ð1Þ

where W0=mWi,0 is the total wealth of the players at the start, m is the number of
players, Cr is the total contribution in round r and λ1 controls how fast the risk
declines.

We also use power function risk curves (Fig. 5b)

p Crð Þ ¼ 1� Cr

W0

� �λ2

; ð2Þ

where λ2 controls the shape of the risk curve (convex or concave). The third choice
are step-like risk curves (Fig. 5c)

p Crð Þ ¼ 1

e
λ3

Cr
W0

�1
2

� �
þ 1

; ð3Þ

where the inflection point of the risk curve is at 12 and λ3 controls how rapid the risk
declines.

These risk curves are normalized such that only the relative contribution Cr/W0,
i.e., the fraction of initial total wealth that is invested, enters.

Group size. While we concentrate on the case of m= 2 in the main text, our model
allows for various group sizes. We find that large groups of such as m= 8 players
typically contribute less than two-player groups in a single round game (Fig. 2
versus Supplementary Fig. 1). However, the multi-loss game quenches the group
size effects (Supplementary Fig. 1a). Thus, just like the inclusion of time in general
collective-risk, facilitates coordination21, herein, we observe that the recurrence of
loss can also increase cooperation.

Heterogeneity. Under wealth inequality, W differs among players. For simplicity
we only consider two types, rich and poor individuals, and explore the cases where
WR ≥WP. We explore heterogeneity in the loss fraction α, where individuals share
the same risk probability, but differ in the proportion of their wealth they will lose,
as shown in Fig. 3. We also incorporate heterogeneity in risk: where risk probability
p could differ between populations of rich and poor individuals, such that the total
contributions results in different risk probability depend on the wealth status
(pR[Cr] ≠ pP[Cr]). The non-italic capital subscripts R and P now refer to rich and
poor, while the italic subscript r still stands for the current round.

Risk heterogeneity. We explore heterogeneity in risk: where risk probability p
could differ between populations of rich and poor individuals, such that the total
contributions results in different risk probability depending on the wealth status
(pR[C] ≠ pP[C] with the total contribution C= cR+ cP), Supplementary Figure 3.
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(games are between two individuals, initial wealth of both players W0= 2, population size N= 100, averages over 105 generations, 1000 games per
generation, mutation rate μ= 0.03, and the standard deviation for mutations in the thresholds τr is set to σ= 0.15), see ref. 20 for a similar simulation
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From now on we limit the results to one-round games (Ω= 1) so that the r
subscript is no longer needed.

Using a general framework developed for the case of homogeneous wealth34, we
also analyze the expected contributions under wealth inequality and risk
asymmetries for a one-round game. This method has broad applications, it allows
us to understand the effect of general risk functions and their implications if we
implement them into experimental setup. These experimental and theoretical
insights could then be used to extrapolate how changes in perceived risk could
affect climate change negotiations. This general framework can be applied to any
risk function as has been previously demonstrated for a homogeneous situation34;
however, herein, we broaden the analyses to heterogeneous situations that
combines both wealth and risk inequalities. Since the heterogenous setup of the
game is inherently complex, we limit our analysis to the single round setup and
consider a 2 player game, and ask how much would a focal player f contribute if her
endowment and her risk of losing it is greater or less than her co-player’s.

The payoff of a player f with endowment Wf and who invests cf is given by

πf ¼ Wf � cf
� �

1� pf
� �

; ð4Þ

where the probability of catastrophe is given by functions pf ∈ {pR, pP} for rich and
poor players respectively, which depend on the total contribution C= cR+ cP and
the total endowment W=WR+WP. We then can analyze under which
circumstances these players cannot improve their payoffs from altering their
behavior. In Supplementary Fig. 3 we do this numerically and then analyze the
special case of linear risk curves analytically.

Analytical approach. While a full analytical treatment of our computational model
is challenging due to finite population size and stochastic effects, we can improve
our understanding by looking at the evolutionary stable strategies. As an example,
we analyze the case of linearly declining risk more thoroughly. The rich have a
higher endowment than the poor WR >WP and a faster declining risk pR ≤ pP.
While the risk for the poor approaches 0 only when both players contribute all
their wealth (C=W), the risk for the rich is smaller and already 0 when C ¼ W

λR
with λR ≥ 1. Thus, we now set λP= 1 (in contrast to the figures above).

pR ¼ 1� C
W λR if C<W

λR

0 else

(
ð5Þ

pP ¼ 1� C
W

: ð6Þ

Then the average payoff of a player is

πR ¼ WR � cRð Þ 1� pRð Þ ¼ WR � cRð Þ cRþcP
W λR if cR þ cP<

W
λR

WR � cR else

(
ð7Þ

πP ¼ WP � cPð Þ 1� pPð Þ ¼ WP � cPð Þ cR þ cP
W

: ð8Þ

The evolutionary stable state is the payoff that decreases when the player
deviates from his strategy (a local maximum). Since payoffs depend on the co-
player’s contribution we can only calculate the best response of a player to another
players action.

In the case where the rich have a nonzero risk cR þ cP<
W
λR

� �
, we first take the

derivative of the payoff to the player’s contribution and set it to zero.

∂πR
∂cR

¼ λR
WR � 2cR � cP

WR þWP
¼! 0 ð9Þ

∂πP
∂cP

¼ WP � 2cP � cR
WR þWP

¼! 0 ð10Þ

Then for λR > 0, WR+WP ≠ 0 and C ¼ cR þ cP<
W
λR

we get the best response
functions in dependence of the co-player’s contribution

cR ¼ 1
2

WR � cPð Þ ð11Þ

cP ¼ 1
2

WP � cRð Þ: ð12Þ

In case the curves intersect in 0 ≤ cR ≤WR and 0 ≤ cP ≤WP and the intersection
is in the region where the risk for the rich is still positive C<W

λR
, we have the two

best response functions (Eqs. (11) and (12)). The intersection gives the

evolutionary stable equilibrium

c�R ¼ 2WR �WP

3
ð13Þ

c�P ¼ 2WP �WR

3
: ð14Þ

We have repeatedly stated that this only holds for C<W
λR
. But we also notice that

for c�P � 0 we need 2WP ≥WR. This means that the best response curves (Eqs. (11)
and (12)) only cross to give the evolutionary stable state (Eqs. (13) and (14)) when
the endowment of the rich is smaller than two times that of the poor. We thus
divide our problem into two cases. Case 1 is when WR ≤ 2WP and case 2 is when
WR ≥ 2WP, see Table 1.
Case 1: The above calculation assumes C<W

λR
but we have C� ¼ c�R þ c�P ¼ W

3 and so the
above calculation is only valid for λR ≤ 3. For λR > 3 the risk for the rich vanishes pR= 0
and so the payoff is maximized by using the minimal value of cR that keeps the risk at a
value of 0 (Eq. (5)). Thus the best response for the rich is now cR ¼ W

λR
� cP but the

response for the poor stays the same (Eq. (12)). The intersection is

c�R ¼ 2
WR þWP

λR
�WP ð15Þ

c�P ¼ WP �
WR þWP

λR
; ð16Þ

which is non-negative for λR<2
WRþWP

WP
(with 2WRþWP

WP
2 4; 6½ � considering the condition

for case 1. For even higher λR the lines do not cross anymore. The minimum requirement
for pR= 0 is cR þ cP � WP

2 which corresponds exactly to the amount that the poor player
contributes (Eq. (12)) if the rich contributes nothing, so c�R ¼ 0 and c�P ¼ WP

2 .
Case 2: When the endowment of the rich gets larger than two times the poor’s (WR ≥
2WP) the two best response curves Eqs. (11) and (12) do not intersect anymore. Now
there are four regimes of λR. If the poor contribute nothing, cP= 0, the best response of
the rich is to give half of their wealth c�R ¼ WR=2 (Eq. (11)). According to the condition
WR ≥ 2WP the best response (Eq. (12)) for the poor is then cP ¼ WP � c�R

� �
=2 � 0. The

poor player has no incentive to contribute and so the evolutionary stable state is c�R ¼
WR=2 and c�P ¼ 0 as long as the condition C<W

λR
or (with C=WR/2) λR<2

W
WR

is fulfilled.
As λR increases to λR � 2 W

WR
the risk for the rich becomes 0 and we cannot calculate the

best response. The rich now contribute as little as possible to just about fulfill this
condition of zero risk
(c�R ¼ W

λR
, see Eq. (5)) and the poor still pay nothing as long as c�R>WP (Eq. (12)). Once

that threshold is met, which is equivalent to λR � W
WP

, the best response function for the
poor (Eq. (12)) starts to matter and solving for this and the threshold condition (Eq. (5))
results in the optimal strategies c�R ¼ 2W

λR
�WP and c�P ¼ WP � W

λR
. The value c�R declines

and c�P increases as λR increases further and when c�P ¼ WP
2 (equivalent to λR ¼ 2 W

WP
) the

best response for the rich is again the minimum amount that results in pR= 0, but since
the poor already contribute enough this is no longer necessary cR ¼ W

λR
� c�P � 0

� �
and

thus c�R ¼ 0. See Table 1 for a summary of the results. An alternative way to show the
interplay between wealth and risk inequality is given in Supplementary Figure 4. With
decreasing risk for the rich, they tend to invest less and at some point completely rely on
the contributions of the poor.

Code availability. Our simulation code is available at https://github.com/
abouchakra/Collective-Risk-Dilemma.

Table 1 Evolutionary stable state c�P and c�R for a decreasing
linear risk curve for the rich λR calculated by intersecting
two linear curves

Assumption WR < 2WP c�P c�R

1≤ λR≤ 3 2WP�WR
3

2WR�WP
3

3 � λR � 2WRþWP
WP

WP � WRþWP
λR

2WRþWP
λR

�WP

λR � 2WRþWP
WP

WP
2

0

Assumption WR > 2WP c�P c�R

1 � λR � 2WRþWP
WR

0 WR
2

2WRþWP
WR

� λR � WRþWP
WP

0 WRþWP
λR

WRþWP
WP

� λR � 2WRþWP
WP

WP � WRþWP
λR

2WRþWP
λR

�WP

2WRþWP
WP

� λR
WP
2

0
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Data availability. The authors declare that no additional data was used in this
study beyond that used in the code simulations.
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