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Summary

Studies of human decision making emerge from two
dominant traditions: learning theorists [1-3] study choices
in which options are evaluated on the basis of experience,
whereas behavioral economists and financial decision
theorists study choices in which the key decision variables
are explicitly stated. Growing behavioral evidence suggests
that valuation based on these different classes of informa-
tion involves separable mechanisms [4-8], but the relevant
neuronal substrates are unknown. This is important for
understanding the all-too-common situation in which
choices must be made between alternatives that involve
one or another kind of information. We studied behavior
and brain activity while subjects made decisions between
risky financial options, in which the associated utilities
were either learned or explicitly described. We show
a characteristic effect in subjects’ behavior when comparing
information acquired from experience with that acquired
from description, suggesting that these kinds of information
are treated differently. This behavioral effect was reflected
neurally, and we show differential sensitivity to learned
and described value and risk in brain regions commonly
associated with reward processing. Our data indicate that,
during decision making under risk, both behavior and the
neural encoding of key decision variables are strongly
influenced by the manner in which value information is
presented.

Results and Discussion

Experimental Paradigm

We used an event-related fMRI paradigm in which subjects
(n = 17) made choices between three cues whose win
probability they had previously learned (p = 0.1, 0.5, 0.9) and
cues whose values were described in terms of an explicit win
probability (nine cues, p = 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9,
0.95) (Figure 1). Probabilities were described both numerically
and with the aid of a pie chart (note that because we only
manipulate probability, and not magnitude, probability and
value are effectively equivalent in our study). We then applied
alogit analysis to subjects’ choice patterns to derive estimates
of the subjective value of the learned cues in terms of explicit
probabilities [9, 10]. We hypothesized that brain activity in
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regions associated with reward processing, specifically
ventromedial  prefrontal/medial  orbitofrontal cortices
(vmPFC/OFC), posterior cingulate cortex (PCC), and ventral
striatum (VS), would show differential patterns of activity
when subjects processed experienced and described values,
respectively [11-15].

Behavioral Findings

Our behavioral results, evident in both subjective valuation and
reaction time (RT) data, were consistent with learned and
described values being processed differently during choice.
Subjects significantly overvalued low (but not medium or
high) learned-probability relative to described-probability
cues (p < 0.005 two-tailed t test; Figures 2A-2C; see also
Table S1A available online). This suggests that, for low win
probabilities, the effect of learned value (LV) on choice was
stronger than that of described value (DV), congruent with
previous findings about explicit estimation of learned outcome
probabilities [16] (Supplemental Data).

Superficially, our behavioral findings seem to contradict
evidence suggesting that low described probabilities tend to
be overweighted and low learned probabilities underweighted
[7]. In fact, we believe there is no such contradiction, because
major procedural differences, most notably the focus of
previous studies on testing probability weighting within
domain, with subjects choosing between pairs of learned-
probability options or pairs of described-probability ones,
are likely to account for any apparent difference. In our task,
subjects were required to compare valuations across
domains—in other words, to make a choice between a
learned-probability option and a described-probability option.
Because all subjects received the same amount of feedback
about each learned cue, our data also suggest that behavioral
differences in handling learned and described probabilities are
unlikely to be due solely to sampling bias [7].

A multiple regression analysis of RT data showed no signif-
icant effect of either choice condition (whether subjects chose
the learned- or described-value cue) or the subjective value of
the chosen option. Importantly, there was a significant RT
choice-condition-by-value interaction (p < 0.01), indicating
that learned value facilitated behavioral responding, whereas
described value did not (Figure 2D; Table S1B). This effect of
learned value is entirely consistent with a well-established
facilitative effect of appetitive conditioning on reaction times
[15,17].

Brain Responses to Value

Our use of a sequential presentation paradigm allowed us to
examine value-correlated activity at separate times during
the trial. Here our primary focus is on value signals present
at choice-screen onset (reflecting the value signals present
during actual choice), but we also consider neural activity at
the presentation of the first offer to the subject (representing
initial encoding and evaluation of stimuli; Supplemental Exper-
imental Procedures; Supplemental Data). In addition, cogni-
zant of the fact that neuronal processes involved in valuation
might change as a function of time, we tested for temporally
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Figure 1. lllustration of a Single Trial of the Task Paradigm

Subjects fixate for 1000 ms. They are then presented with the first offer
(which can be either a described-value cue or a learned-value cue, fully
counterbalanced and in pseudorandomized order) for 2000 ms, and, after
a 500 ms delay, the second offer for 2000 ms. After another 500 ms delay,
they are then asked to make their choice within 2000 ms. Successful choices
were indicated by the appearance of a circle around the selected option.
The intertrial interval was jittered between 0 and 3000 ms. In the example
shown, the subject is being asked to decide between the option indicated
by the square (the value of which they have previously learned) and
a described-value option with a win probability of 0.2. (In this paradigm,
outcome magnitudes are held constant, and so probability and value are
equivalent.) For the fMRI analysis, events were modeled at both the first
offer and choice-screen onset time.

decaying value signals at both time points (Supplemental
Experimental Procedures; Supplemental Data).

At choice time, we observed activity correlating with learned
value in the vmPFC/OFC (p < 0.002 whole-brain cluster
corrected) and PCC (p < 0.05 region of interest [ROI] cluster
corrected; Figure 3A; Table S2). By contrast, described value
was correlated with activity in bilateral ventral putamen (VP)
and cerebellum (all p < 0.002 whole-brain cluster corrected;
Figure 3B; Table S2). Critically, a direct contrast showed that
these activation patterns differed significantly. The (LV — DV)
contrast showed differential activity in vmPFC/OFC (p < 0.03
ROI cluster corrected) and PCC (p < 0.02 whole-brain cluster
corrected; Figures 3Ci and 3D; Table S2). Conversely, the
opposite (DV — LV) contrast was associated with differential
activity in the left VP (p < 0.03 whole-brain cluster corrected)
and the thalamus (p < 0.002 whole-brain cluster corrected),
with activity also evident in the right VP, albeit not reaching
our criterion level of significance (Figures 3Cii and 3D; Table
S2). Of note, both LV-correlated activity in the vmPFC/OFC
and DV-correlated activity in the VP survived in a check model
in which learned and described value regressors were orthog-
onalized to a simple binary choice parameter. These activation
patterns, in regions repeatedly implicated in studies of value
(e.g., [11-15]), thus reflect option values rather than just

selected option type. We emphasize that our findings do not
conflict with an established relationship between activity in
VS and reward learning [15, 16, 18, 19]. In our paradigm,
learning about reward contingencies was asymptotic:
subjects merely retrieved previously learned information.
LV- and DV-correlated activity at offer time also differed from
one another markedly, although the regions involved were
different to those involved at choice time (Supplemental Data).

At both choice and offer time, we found regions where
activity significantly correlated with both LV and (LV — DV)
on the one hand and both DV and (DV — LV) on the other.
This raises the possibility that, rather than separately encoding
LV and DV, these regions actually process relative value
signals (LV — DV) and (DV — LV). Thus, rather than anatomically
dissociated networks processing different kinds of reward
information, the activity patterns we observe might reflect
differential processing of reward information within a distrib-
uted value-sensitive network.

In an exploratory post hoc ROI analysis, we addressed this
issue by assessing whether activity in regions showing signif-
icant responses to the (LV — DV) contrast showed significant
negative responses to DV in addition to positive LV responses.
We then performed a similar analysis for the (DV — LV)
contrast. Note that because we do not make use of unbiased
ROls, any results should be seen as suggestive rather than
conclusive. At choice time, a significant negative correlation
with DV was found in the PCC (p = 0.009) and with LV in the
VP and thalamus (VP: p = 0.046, thalamus: p = 0.007;
Figure S3B). A negative correlation with LV was found in
vmPFC/OFC, but this was not significant (vmPFC/OFC:
p = 0.291; Figure S3B). These findings provide suggestive
evidence that activity in PCC and thalamus is sensitive to
both LV and DV, though in distinct ways, together with weaker
evidence that the same considerations apply to activity in VP
and vmPFC/OFC. Based on these findings, we suggest that
our results are best seen as reflecting differential sensitivities
to different kinds of reward information within a valuation
network [11-15], with the establishment of the precise nature
of these differences remaining an issue for future work. We
note also evidence of relative value coding in a number of
regions at offer time (Supplemental Data).

Additionally, we hypothesized that between-subject vari-
ability in responses to learned and described value would
predict the degree to which individuals displayed choice
behavior biased toward selecting learned-value options. This
is precisely what we found (Figure 3E; Supplemental Data).
Individual subjects’ parameter estimates in the vmPFC/OFC
for the (LV — DV) contrast showed a significant positive corre-
lation with the extent to which they overvalued the low-proba-
bility learned cue (R = 0.644, p = 0.012, permutation test). Post
hoc testing showed both a strong positive correlation between
overvaluing and LV parameter estimates (R = 0.482, p = 0.021,
permutation test) and a strong negative correlation between
overvaluing and DV parameter estimates (R = —0.419,
p = 0.040, permutation test). This suggests that subjects who
showed greater (though opposite) responses to LV and DV in
the vmPFC/OFC showed an increased bias toward selecting
learned-value options.

Risk Processing

If learned- and described-value estimates generated during
risky decision making have distinct neuronal substrates, then
we might expect this to be reflected in distinct influences of
learned and described risk (here defined as outcome variance
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Figure 2. Behavioral Analysis

(A-C) Logit analysis of subjects’ pooled choice
data for the lowest learned-value cue (p = 0.1)

(A), the middle learned-value cue (p = 0.5) (B),
and the highest learned-value cue (p = 0.9) (C).
The probability of subjects choosing the
learned-value option, when it was offered against
each separate described-value option, was
calculated (indicated by open blue circles), and
this resulting probability distribution was fitted
with a logistic sigmoid (green line). The indiffer-
ence point (red filled circle) calculated from this
was used as an estimate of relative subjective

value (in other words, an estimate of each
learned-value cue in terms of described probabil-
ities). Indifference points were p = 0.23, 0.54, and
0.91, respectively, suggesting that subjects

considerably overvalued the lowest learned-
value cue. This can be seen by comparing the
actual estimated subjective values (red filled

circles) with the normative ones (indicated by
dotted vertical lines) and suggests that subjects
exhibited a bias toward learned options when
considering low value alternatives. (Note that
;[ 1 for the imaging analysis described here, indi-

vidual subjects’ choice patterns were analyzed

separately.)

(D) Normalized log reaction times (RTs) pooled
across all subjects from which the effects of
experimental session, difference in subjective
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value, and selected option type have been
regressed out (Supplemental Experimental
Procedures). These have been binned into low,
medium, and high chosen subjective value. Blue
lines indicate mean log RTs from trials in which

subjects chose the described-value cue, red lines indicate those in which they chose the learned-value cue, and vertical bars indicate 90% confidence inter-
vals. The figure illustrates that RTs were negatively correlated with increasing chosen value only if subjects chose a learned-value cue, showing no equiv-

alent effect of described value.

(E) Normalized log RTs pooled across all subjects from which the effects of experimental session, difference in subjective value, selected option type, and
chosen value have been regressed out (Supplemental Experimental Procedures). These have been binned into low and high chosen subjective risk. Blue
lines indicate mean log RTs from trials in which subjects chose the described-value cue, red lines indicate those in which they chose the learned-value cue,
and vertical bars indicate 90% confidence intervals. The figure illustrates that RTs were negatively correlated with increasing chosen risk only if subjects
chose a learned-value cue, showing no equivalent significant effect of described risk.

[20, 21]; Supplemental Experimental Procedures). Indeed, this
prediction is supported by our RT data, which show a signifi-
cant choice-condition-by-risk interaction, with learned risk
having a greater impact on hastening subjects’ responses
(p < 0.001; Figure 2E; Table S1B). By examining ROls previ-
ously associated with outcome risk and uncertainty [20-26],
we again show differential patterns of activity. Risk-related
activity reflecting choice of learned options (LR) was seen in
the anterior cingulate cortex (ACC) in precisely the same
region as that observed in previous studies involving learned
uncertainty about the decision environment [22, 24, 25]
(p < 0.05, family-wise error, small-volume corrected [FWE-
SVC]; Figure 4A; Table S3). In contrast, the risk of selected
described-value cues (DR) was correlated with activity in bilat-
eral anterior insula cortices (Al) in regions previously reported
as expressing risk in a task involving explicit assessment [21]
(both p < 0.05, FWE-SVC; Figure 4B; Table S3). Analyzing the
(LR-DR) and (DR-LR) contrasts indicated that these activation
patterns differed significantly from one another in ACC and the
left Al (both p < 0.05, FWE-SVC; Figures 4C and 4D; Table S3).
At offer time, only temporally decaying risk-correlated activity
was found (see Supplemental Data).

By testing for relative risk encoding using a post hoc ROI
analysis similar to that described above, we found that activity
in ACC showed a negative correlation with DR but was not

statistically significant (p = 0.090 Bonferroni), whereas activity
in the Al did not show a negative correlation with LR (Fig-
ure S3C). Our data are thus consistent with relative risk encod-
ing in the ACC, but at the same time they do not provide strong
support for this suggestion.

Both RT and imaging correlates of risk could, in principle, be
explained by nonlinear value encoding rather than risk encod-
ing per se. This is highly unlikely in the case of our imaging
findings, because there is no overlap between brain regions
correlated with value and risk; given the fit between our RT
data and imaging, we suggest that this is not the most prob-
able explanation here, either.

Discussion

Neuroscientific studies of human decision making tend to
situate themselves conceptually within one of two frameworks:
learning theory (most commonly reinforcement learning [1, 19])
and behavioral economics (most often in the shape of prospect
theory [12, 27-29]). Although it is conceivable that value esti-
mates, based on different kinds of information, are treated
equivalently at the neural level, here we show this is not the
case. Instead, our data show that during decision making under
risk, value estimates based on learned and described informa-
tion evoke differential patterns of activity within value-sensitive
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Figure 3. Neural Correlates of Learned and Described Value at Choice Time

(A) This shows that learned value correlated with activity in the ventromedial prefrontal/medial orbitofrontal cortices (vmPFC/OFC) and posterior cingulate
cortex (PCC). vmPFC/OFC: peak cluster voxel ([—15, 57, —3], z = 4.20), p < 0.002 whole-brain cluster corrected. PCC: peak voxel ([—3, —48, 33], z = 2.62),
p < 0.05 cluster corrected for the PCC region of interest (ROI). Image is at x = 0.

(B) Described value correlated with activity in the bilateral ventral putamen (VP). Peak voxels: ([—30, 12, —6], z = 4.29) and ([27, 0, 6], z = 3.60). Both p < 0.002
whole-brain cluster corrected. Image is aty = 10.

(Ci) A direct comparison between responses to learned and described value (the (LV - DV) contrast) shows that activity in the vmPFC/OFC and PCC was
greater for learned than described value. vmPFC/OFC: peak cluster voxel ([—15, 57, —3], z = 3.66), peak voxel within ROI ([—3, 45, —21], z = 2.73), p < 0.03
cluster corrected for the vmPFC/OFC ROI. PCC: peak voxel ([—9, —48, 30], z = 3.22), p < 0.02 whole-brain cluster corrected. This shows that value-sensitive
activity in these regions was selective for learned-value options. Image is at x = —5.

(Cii) The opposite (DV - LV) contrast shows that activity in left VP was better correlated with described relative to learned value. Peak voxel: ([—27, 9, 0],
z = 3.17), p < 0.03 whole-brain cluster corrected. This shows that value-sensitive activity in these regions was selective for described-value options. Image
isaty=10.

(D) Mean parameter estimates for activation in the vmPFC/mOFC (red) and left VP (blue) for the (LV - DV) contrast. This illustrates that activity in the vmPFC/
OFC was correlated more strongly with the value of learned cues than described ones, whereas the left VP showed the opposite pattern (this presentation is
for illustrative purposes only; black bars indicate 90% confidence intervals).

(E) Plot of individual subjects’ parameter estimates for the (LV - DV) contrast in the vmPFC/OFC (y axis) against their estimated subjective value for the
lowest learned-value cue (objective win probability = 0.1; x axis). These show a strong positive correlation (R = 0.644, p < 0.01, permutation test), indicating
that subjects that showed a greater degree of sensitivity to learned value relative to described value in the vmPFC/OFC also showed a bias toward selecting
learned-value options. (Red line indicates the line of best fit generated by linear regression.)

regions. These results speak against the application of a single The finding that activity in the vmPFC/OFC shows a strong
unifying theoretical framework to relate empirical findings con-  positive response to learned value fits neatly with a large
cerning learning to those based on microeconomics. body of evidence linking this region with subjective valuation
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Figure 4. Neural Correlates of Learned and Described Risk at Choice Time

Learnt Risk - Described Risk
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(A) The risk of chosen learned options was correlated with activity in the anterior cingulate cortex (ACC). Peak voxel: ([12, 30, 27], z = 3.52), p < 0.05, family-
wise error, small-volume corrected (FWE-SVC). Image is at x = 11; red p < 0.005, orange p < 0.001.

(B) The risk of chosen described options was correlated with activity in the bilateral anterior insula cortices (Al). Peak voxel: ([27, 24, 0], z = 3.49, [-24, 27, 6],
z = 3.66), p < 0.05, FWE-SVC. Image is at y = 25; dark blue p < 0.005, light blue p < 0.001.

(Ci) Activity in the ACC was correlated more strongly with the chosen learned risk than chosen described risk (showed a positive correlation with the (chosen
learned risk — chosen described risk) contrast). Peak voxel: ([12, 33, 30], z = 3.49), p < 0.05, FWE-SVC. This shows that risk-sensitive activity in these regions
was selective for learned-value options. Image is at x = 13; red p < 0.005, orange p < 0.001.

(Cii) Activity in the left Al correlated more strongly with chosen described risk than chosen learned risk (showed a negative correlation with the (chosen
learned risk — chosen described risk) contrast). Peak voxel: ([—30, 33, 6], z = 3.59), p < 0.05, FWE-SVC. This shows that risk-sensitive activity in these regions
was selective for described-value options. Image is at y = 25; dark blue p < 0.005, light blue p < 0.001.

(D) Mean parameter estimates for activation in the ACC (red) and left Al (blue) for the (chosen learned risk — chosen described risk) contrast. This illustrates
that activity in ACC was correlated more strongly with the value of learned cues than described ones, whereas the left Al showed the opposite pattern.

(This presentation is for illustrative purposes only; black bars indicate 90% confidence intervals.)

[11, 30-35], in particular the finding that the vmPFC/OFC
encodes the value of a variety of different goods [30, 32, 35,
36], which is likely to depend upon prior experience of identical
or similar goods. It also tallies with a more specific proposal
derived from reinforcer devaluation studies, which indicate
that the OFC is essential for using and updating outcome value
[37-40].

It is less clear, by contrast, how precisely to interpret posi-
tive striatal responses to described value, because little prior
work speaks directly to the issue of valuation by description.
One possibility is that explicitly presented information has
access to dopaminergic circuits akin to those involved in
generating reward prediction errors [15, 41]. This is somewhat
in tension with the finding that RT was related to LV but not DV,
but there remains uncertainty about exactly what aspect of
performance is mechanistically related to reaction time, which
can be taken as a measure of both Pavlovian and instrumental
responding.

In PCC, VP, and thalamus at choice time and in various
regions at offer time, we find evidence of relative value encod-
ing. Our data are consistent with this being the case also for

vmPFC/OFC. This suggests that, rather than a strict anatom-
ical dissociation, LV and DV processing may be reflected in
differential sensitivities to these types of information in valua-
tion regions. This can explain why prior studies, none of which
force an explicit dissociation between LV and DV, report value-
correlated activity across these regions (e.g., [12, 13)),
because in these instances activity need reflect only a single
value, irrespective of what type of information is used to
generate it.

A similar point can be made in relation to our finding of differ-
ential sensitivity to learned and described risk in two areas
previously implicated in encoding risk [20-26]. Existing litera-
ture indicates ACC risk-correlated activity in the context of
learning [22, 24, 25] and insula activity where there is an explicit
assessment of probabilities [20, 21, 23] (though feedback is
often present in these latter experimental paradigms).
However, at least one study has reported risk-related activity
in both areas [26]. The activity patterns we observe here could
again point to differential sensitivity to different kinds of risk
information in a network of risk-sensitive areas rather than to
an absolute anatomical dissociation.
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A potential concern in our study is the fact that learned and
described cues are not exactly matched, because there were
more described than learned cues (nine compared with three)
and because described cues were more novel than learned
ones. We do not think either difference explains our results.
On the one hand, it is unlikely that a jump from three to nine
types of cue would radically alter valuation mechanisms, and
in any case subjects effectively had to order a combined set
of 12 cues rather than simply generate preferences within
separate sets of three (learned) and nine (described) options.
On the other hand, novelty responses also seem unlikely to
explain our data, because there is no reason to suppose that
they would covary parametrically with value. Additionally, we
do not find any resemblances between temporally decaying
and stable activity across the conditions, which would be
expected if simple prior experience (as opposed to value
learning) could explain our data.

Studying how evaluations are processed based on different
kinds of information is of direct practical importance for under-
standing choice behavior in a range of real-life scenarios (e.g.,
medical decision making, financial trading). On this basis, we
suggest that our results represent a modest first step toward
understanding decision making in such complex but quotidian
situations.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-
dures, Supplemental Data, three tables, and four figures and can be found
with this article online at doi:10.1016/j.cub.2010.08.048.
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