English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional-Structural Analysis of Nitrogen-Cycle Bacteria in a Hypersaline Mat from the Omani Desert

MPS-Authors
/persons/resource/persons210257

de Beer,  Dirk
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons56955

Stief,  Peter
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Abed, R. M. M., de Beer, D., & Stief, P. (2015). Functional-Structural Analysis of Nitrogen-Cycle Bacteria in a Hypersaline Mat from the Omani Desert. Geomicrobiology Journal, 32(2): 1, pp. 119-129.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C49F-F
Abstract
Potential rates of ammonia oxidation, denitrification and anammox were measured in a hypersaline microbial mat. Ammonia oxidation and denitrification had potential rates of 0.8 ± 0.4 and 2.0 ± 1.0 nmol N g−1 h−1, respectively, anammox was not detectable. The rate of N2O production under anoxic conditions accounted for ca. 5% of total denitrification. Using qPCR, the ammonia-oxidation (amoA) genes of gammaproteobacteria had the highest copy number. The denitrification genes narG and nirS exhibited comparable estimates. Sequences of nirS gene were novel, whereas nirK sequences were related to sequences from the Rhizobiales group. Sequences of the nosZ gene were the most diverse and clustered with sequences from various genera. Our results demonstrate that the hypersaline mat from Oman harbors nitrifying and denitrifying bacteria with the potential to perform respective processes at detectable rates.