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Abstract Despite the widespread use of functional mag-
netic resonance imaging (fMRI), few studies have addressed
scanner effects on performance. The studies that have exam-
ined this question show a wide variety of results. In this
article we report analyses of three experiments in which
participants performed a perceptual decision-making task
both in a traditional setting as well as inside an MRI
scanner. The results consistently show that response times
increase inside the scanner. Error rates also increase, but to
a lesser extent. To reveal the underlying mechanisms that
drive the behavioral changes when performing a task inside
the MRI scanner, the data were analyzed using the lin-
ear ballistic accumulator model of decision-making. These
analyses show that, in the scanner, participants exhibit a
slow down of the motor component of the response and
have less attentional focus on the task. However, the balance
between focus and motor slowing depends on the specific
task requirements.
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Introduction

Functional magnetic resonance imaging (fMRI) is one of
the most widespread methods to understand the relation-
ship between brain and behavior. fMRI measures the brain’s
local dependence on oxygenated blood, providing insights
in the metabolic response to neural activity (Huettel, Song,
& McCarthy, 2009). fMRI studies have increased our under-
standing of the brain and its relation to behavior tremen-
dously. However, given the popularity of fMRI, it is sur-
prising that only a few studies have examined the effects of
fMRI itself on behavior (to our knowledge, the only papers
that explicitly address this question are Assecondi et al.,
2010; Hommel, Fischer, Colzato, van den Wildenberg, &
Cellini, 2012; Koch et al., 2003; Koten, Langner, Wood, &
Willmes, 2013). These studies have not led to a consensus
on the effects of MRI scanner environment.

A possible reason for this lack of consensus lies in
the different ways the scanner environment was simu-
lated. Hommel et al. (2012) studied the effect of noise—as
generated by echo planar imaging (EPI)—and found that
performance on cognitive control tasks increased when par-
ticipants were subjected to acoustic noise sequences. That
is, in a series of three experiments, participants’ response
times (RT) decreased on trials where more cognitive control
was required relative to trials in which less cognitive con-
trol was required. Error rates displayed a similar pattern of
improvement. Hommel et al. (2012) interpreted their results
in terms of a stress-induced increase in attentional control
(Chajut & Algom, 2003; Plessow, Fischer, Kirschbaum, &
Goschke, 2011).

It is interesting to note that in the experiment by
Hommel et al. (2012) the effect of acoustic noise only
appeared in interaction with the cognitive control manip-
ulation. That is, when averaged across the levels of the
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cognitive control manipulation, RTs as well as error rates
were unaffected by hearing loud noises. This is in contrast
to Koch et al. (2003), who studied the effect of a hori-
zontal orientation of the participant in addition to noise,
and found that RTs increased. In a between-subject design,
participants either performed a spatial judgment task while
sitting behind a standard computer screen, or while lying
on a stretcher, or while inside an operating MRI scan-
ner. Mean RTs increased from sitting upright, to lying
down, to the actual scanner experience, while error rates
remained unaffected. The results were interpreted in terms
of response execution. Thus, post-cognitive stages of task
processing were thought to be affected by the different
environments, which would explain why only RTs and not
error rates were affected. Similar effects were reported by
Assecondi et al. (2010). In three experimental paradigms
(stimulus detection, go/nogo, and simple choice), these
authors found generally increased RTs inside the scanner
bore (without an actual scan sequence). No error rates were
reported. It should be noted that in this study several partic-
ipants displayed the opposite effect: mean RTs were shorter
inside the scanner. This study did not focus on the analy-
sis of errors, and so no interpretation of these results was
provided.

The apparent inconsistency of results across experimen-
tal paradigms, and even within paradigms (Assecondi et al.,
2010), is increased when considering a fourth study
(Koten et al., 2013). In a series of experiments including cat-
egorization, mental arithmetic, and working memory tasks,
Koten et al. (2013) found that RTs were decreased when
inside the scanner. Similar to Hommel et al. (2012), there
was no effect on error rates. The authors interpreted their
results in terms of stress-induced arousal during the scanner
sessions, leading to increased performance.

Explanations for the effect of scanner environment

The few experiments that have examined the effect of
MRI scanner environment on behavior show inconsistent
results, and consequently offer different explanations of the
effects of scanner environment. The first explanation is in

terms of motor slowing (Koch et al., 2003). Motor slow-
ing means that participants slow down because they take
more time to execute the response. This can for exam-
ple occur due to unfamiliar response devices or changes in
stimulus-response mapping due to orientation (Koch et al.,
2003).

The second explanation is in terms of response caution.
This account assumes that participants increase the control
over behavior by responding more cautiously when inside
the MRI scanner. Increased response caution leads to fewer
errors, but at the cost of slower responses (Bogacz, Wagen-
makers, Forstmann, & Nieuwenhuis, 2010; Wickelgren,
1977). The results of Koch et al. (2003) and Assecondi et al.
(2010) may be consistent with this interpretation, although
it predicts decreased error rates, which were not found in
these studies.

The third explanation is that participants are faster inside
the scanner because they are aroused by the scanner experi-
ence (Koten et al., 2013). This explanation is in some sense
related to a response caution explanation, because both
explanations predict improved performance of response
times. However, the explanations make different predic-
tions for speed-accuracy tradeoff behavior. The response
caution explanation predicts a slow down that allows more
accurate responding, whereas an arousal explanation pre-
dicts a speed-up that is possibly also accompanied by
more accurate responding. The results of Hommel et al.
(2012) are consistent with an arousal explanation, under the
assumption that increased control particularly affects trials
in which control is important, such as switch trials in a task
switching paradigm (Hommel et al.’s Experiments 1 and
2) or incongruent trials in a Simon task (Hommel et al.’s
Experiment 3).

The fourth explanation of the effect of scanner envi-
ronment on behavior is that participants are slower in the
scanner due to a decrease in attention. That is, atten-
tional focus is diverted from the imperative stimulus,
leading to slower (Assecondi et al., 2010) and poten-
tially more erroneous responding. Table 1 summarizes the
four explanations of the effect of scanner environment on
behavior.

Table 1 Theoretical accounts of the effect of scanner environment for correct and erroneous responses, respectively

Motor slowing

Cognitive explanation Motor execution time 1

Response time 4
Error rate =
LBA model parameter to 1

Response caution Arousal Attentional focus
Response caution 1 Attention 1 Focus |

? ! 1t/ =

! = 1=

b1 Ve + ve 1 Ve — Ve |

Arrows indicate the change in a parameter inside an MRI scanner relative to outside.

non-decision time parameter; v, and v,: LBA drift rate parameters

no change. b: LBA threshold parameter; #p: LBA
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Response-time modeling In order to assess and compare
the adequacy of the various competing explanations for the
effects of scanner environment, we analyzed three exper-
iments with the help of response-time models. To this
end, we applied response-time models to the experiments
described below. Response-time models are a class of cog-
nitive models that allow for the decomposition of RT distri-
butions and error rates into meaningful psychological con-
structs (Mulder, Van Maanen, & Forstmann, 2014; Smith &
Ratcliff, in press). In particular, these models hypothesize
that choice behavior can best be described as a gradual accu-
mulation of evidence for either response alternative until
enough evidence has been accumulated to give a response.
The response time is determined by the time required to
reach this level of evidence; whether this response is correct
or not also depends on this level of evidence. If the required
level of evidence is low, meaning that little evidence is
required to make a response, the probability of responding
incorrectly increases due to noise in the evidence accumu-
lation process; if the required level of evidence is high, the
probability of a correct response increases, but more time
is required for accumulation. This way, response-time mod-
els account for RT distributions and error rates in a unified
way. An additional benefit of response-time models is their
ability to deconstruct dependent variables in multiple latent
variables. That is, multiple cognitive processes may differ
across experimental conditions. Yet, their interplay may pre-
dict no effect on the level of the observed mean behavior.
Response-time modeling could uncover this by taking into
account the shape of RT distributions.

The linear ballistic accumulator model (LBA, Brown &
Heathcote, 2008, illustrated in Fig. 1) accounts for RT dis-
tributions and error rates by estimating the following set
of parameters. The average rate of evidence accumulation
for a particular response alternative is represented by the
drift rate v, which varies according to a Gaussian distri-
bution from trial to trial, with a standard deviation of swv.

Correct Response

>

\\\\\

start point

Each response alternative is represented by a separate drift
rate (here we use v, for the correct accumulator matching
the stimulus and v, for the error accumulator, the accu-
mulator mismatching the stimulus). The level of response
caution is represented by the threshold b. If participants
are more cautious, b will be higher. In some cases (e.g.,
Experiment 1 below), it is pertinent to assume that b differs
between response alternatives, because participants may be
more inclined to give one response over another. The level
of response caution may also differ from trial to trial, which
is indicated by a uniform distribution of start points of accu-
mulation bounded by A and 0. Finally, processes that do no
contribute to the decision are encoded in a non-decision time
parameter #p.

The decomposition of RT and error rate in drift rates,
threshold, and non-decision time provides clear predictions
for the four theoretical accounts outlined above. Firstly, if
non-decision times fyp are consistently higher in the MRI
scanner than outside of the scanner, then this suggests that
the execution of responses is hampered. This may reflect the
use of different response devices inside a scanner and would
be in line with a motor slowing interpretation (Koch et al.,
2003, see Table 1).

Secondly, an increase in response caution would be
reflected in an increased threshold parameter b. This param-
eter influences the speed—accuracy trade-off behavior of
the model, decreasing error rates at the expense of RT
(Bogacz et al., 2010; Wickelgren, 1977).

Thirdly, if participants are more aroused inside the scan-
ner (Koten et al., 2013) then this is reflected in increased
drift rates (Ratcliff & Van Dongen, 2011). If drift rates
for all alternatives are higher, then responses will be
faster, independent of which response is correct. Under this
account, the LBA model predicts that the sum of drift rates
ve. + v, will increase. If the drift rate of one alternative
increases more than the drift rate of the other alternative,
than the arousal theory also predicts that error rates are

Incorrect Response

r———-

Decision time

Decision time

Fig. 1 The linear ballistic accumulator model accounts for the RT distributions of correct and incorrect responses. See text for details
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different inside the scanner. For example, error rates will be
lower if the drift rate for correct responses increases more
than the drift rate for incorrect responses as compared to a
behavioral experiment outside the scanner.

Fourthly, the difference between drift rates reflects the
relative focus on one alternative over the other (Mulder &
Van Maanen, 2013, White, Ratcliff, & Starns, 2011). If
participants are better in extracting the relevant informa-
tion from the stimulus, than the drift rate of the intended
response is increased relative to the drift rate for the incor-
rect response alternative. Thus, the focus account predicts
that the drift rate difference v. — v, is smaller inside the MRI
scanner, because of a decrease in attentional focus.

Experiments

We analyzed three experiments (two re-analyses and one
new experiment) that were executed inside as well as outside
the MRI scanner. All three experiments involved a ran-
dom dot motion task, in which participants had to indicate
the direction of the flow of motion of a cloud of pseudo-
randomly moving dots (Ball & Sekuler, 1982; Palmer, Huk,
& Shadlen, 2005; Forstmann et al., 2008; Van Maanen et al.,
2012; Van Maanen, Grasman, Forstmann, & Wagenmakers,
2012). In the experiments the perceived motion is gener-
ated by a linear displacement of a proportion of the dots
either to the left or to the right. The remaining dots move
randomly. Each experiment manipulated a single prop-
erty that is known to affect a specific model parameter.
Experiment 1 manipulated response probability. Partici-
pants received a cue indicating the most likely direction of
motion on the upcoming trial. For example the cue “L9”
indicated that the motion direction would be leftward with
a 90 % probability. This kind of manipulation typically
biases participants to respond in the cued direction. In terms
of the LBA model, this kind of behavior is best described
by a decrease in the threshold parameter of the more
likely alternative (Forstmann, Brown, Dutilh, Neumann, &
Wagenmakers, 2010; Mulder, Wagenmakers, Ratcliff,
Boekel, & Forstmann, 2012).

Experiment 2 cued participants to respond either as fast
as possible, or as accurately as possible. Typically, partic-
ipants are faster and more error-prone on the speed-cued
trials. This trade-off between fast and inaccurate versus
slower but accurate responding can be accounted for by
a change in the threshold parameters of decision-making
models (e.g., Bogacz et al., 2010), possibly in combination
with changes in non-decision time (e.g., Rae, Heathcote,
Donkin, Averell, & Brown, 2014).

Experiment 3 manipulated the difficulty of the random
dot motion task by changing the proportion of coherently
moving dots. That is, on the hardest trials only 5 % of
the dots moved coherently to either left or right, with the

remaining dots moving randomly. On the easiest trials, 80 %
of the dots moved coherently. As the coherence increases
and the task becomes easier, participants tend to respond
faster and make fewer errors. In response-time models this
is often accounted for by the drift rate parameter (e.g.,
Palmer et al., 2005).

The fMRI sessions of Experiment 1 and 2 have been
previously published (Forstmann et al., 2010, 2008, respec-
tively). Both experiments, however, included a behavioral
session outside of the scanner, analyses of which have not
been previously published. Here, we focus on the differ-
ences in behavior and model parameters between the MRI
session and the behavioral session. The behavioral prac-
tice sessions were administered before the MRI session.
Therefore, to exclude the possibility that any effects related
to the experimental session are caused instead by session
order, we conducted Experiment 3. Experiment 3 involved
an “MRI” session in a mock MRI scanner and a behavioral
session, administered in an order that was fully counterbal-
anced across participants. To study the possible effect of the
timing of trials in a typical event-related fMRI experiment
(inter-trial intervals are usually much longer in a scanner),
Experiment 3 also featured a manipulation of inter-trial
interval. Before turning to the response-time modeling we
first discuss the behavioral results of all three experiments.

Experiment 1: Choice bias
Methods

Experiment 1 was previously published by Forstmann et
al. (2010). Nineteen participants performed a random dot
motion task in which each trial was preceded by a cue indi-
cating the most likely direction of motion. The cues could
either be reliable (meaning that they were valid on 90 %
of the trials), moderate (valid on 70 % of the trials), or
neutral (that is, no prior information is given). Because the
reliable and moderate cues were valid on a subset of the tri-
als, the experiment also includes invalid trials, on which the
cues incorrectly indicated the upcoming motion direction.
In total, there were, therefore, five conditions. Each partic-
ipant performed a behavioral session followed by an MRI
session.

The behavioral session preceded the MRI session by two
days. In the behavioral session, participants completed 840
trials. Each trial started with a cue presented for 1,000 ms,
followed by a cue-stimulus interval of 500 ms and the stim-
ulus for 1000 ms. Feedback on participants’ performance
was presented next for 350 ms. The MRI session consisted
of 240 trials. Here, each trial started with a variable jitter of
0, 500, 1,000, or 1,500 ms, followed by the cue (4,800 ms).
Next there was again a variable jitter sampled from the same
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Fig. 2 Mean behavior in Experiment 1 displays effects of cue validity
and session. Dashed red line MRI session; Solid black line Behav-
ioral session. Error bars represent within-subject standard errors of the

set of durations, and the stimulus for 1,500 ms. Feedback
was presented for 350 ms.

Bayesian analysis of variance To quantify the likelihood
that behavior differs across experimental manipulations, we
fit an ANOVA model to mean RTs for correct responses and
the error rates, and analyzed the factor of the model using
a Bayes factor (Rouder, Morey, Speckman, & Province,
2012).! The Bayes factor quantifies the odds that the
observed data occurred under the null hypothesis versus an
alternative hypothesis. In this case, the Bayes factor can be
quantified by the weighted likelihood ratio that compares
the full ANOVA model vs. a model that omits a particular
factor Thus, a Bayes factor of 2 indicates that the observed
data are two times as likely to be consistent with a model
that included a particular factor than a model that does not
include that factor.

The use of Bayesian statistical analyses permits quantifi-
cation of support for the null hypothesis. Thus, if an effect
is truly absent, this will be indicated a large Bayes factor
(Jeffreys, 1961; Rouder et al., 2012) in favor of the null
hypothesis. Conversely, if an effect is absent in the data due
to low statistical power, then this will result in a Bayes fac-
tor close to 1, indicating that the data does not clearly speak
in favor of the presence nor the absence of the effect.

In addition, Bayesian statistics provides a continuous
measure of support of the alternative and null hypotheses
allowing an interpretation that does not depend on specific
cut-off criteria (general introductions to Bayesian statistical
analyses are provided by Bolstad, 2007; P. Lee, 2012; M.
Lee & Wagenmakers, 2013).

'We used the BayesFactor package in R (Morey & Rouder, 2012).
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mean (Loftus & Masson, 1994). In this and subsequent figures the data
pertaining to the MRI sessions are indicated in red

In Experiment 1, we fit a model with Session, Cue, and
stimulus Direction as fixed factors, and Participant as a ran-
dom factor. Because a leftward (rightward) cue followed by
a left (right) motion is a valid cue, but a leftward (rightward)
cue followed by a right (left) motion is an invalid cue, the
bias effect is expected to be reflected by a Cue x Direction
interaction.

The Bayes factor represents the weighted likelihood ratio
that compares the full ANOVA model vs. a model that omits
a particular factor (Rouder et al., 2012). Thus, if a particu-
lar experimental manipulation is not reflected by effects in
the data, the marginal likelihood of the full ANOVA model
will be less than the marginal likelihood of the restricted
model that omits that manipulation as a factor, and the
Bayes factor will be in favor of the restricted model. For
brevity, we will indicate the Bayes factor of the full model
against a model that omits a factor with BFyucr0r. For
example BFsession = 10 indicates that the data are 10
times more likely under the full model (that includes Ses-
sion as a factor) than under the model that omits the factor
Session.

In Experiment 1, we fit a model with Session, Cue, and
stimulus Direction as fixed factors, and Participant as a ran-
dom factor. Because a leftward (rightward) cue followed by
a left (right) motion is a valid cue, but a leftward (rightward)
cue followed by a right (left) motion is an invalid cue, the
bias effect is expected to be reflected by a Cue x Direction
interaction.

Results
The behavioral data are summarized in Fig. 2. For clar-

ity, the figure represents the Cue x Direction interaction as
valid and invalid trials, showing that correct RTs and error
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rates decrease as the cue becomes more reliable. This illus-
trates the success of the experimental manipulation. Also
Fig. 2 shows that the behavioral session is on average faster
than the MRI session.

These results are supported by Bayesian ANOVAs. Omit-
ting the Session factor from the full model gives a Bayes
factor of B Fsession = 3.9 x 1020 relative to the full model.
This means that it is 3.9 x 10% times more likely that Ses-
sion had a systematic effect on the RTs than that it did not.
As expected, the Cue x Direction interaction also had a
strong effect, with B Fcyex pirection = 1.2 X 1013, Omit-
ting any of the other factors or interactions indicated that a
reduced model was more likely than the full model, indi-
cating that these factors did not systematically influence the
RTs.

Mean error rates decreased with cue validity
(BFcuex Direction = 1.3 x 1028). However, the MRI session
did not seem to affect the error rate, as indicated by Bayes
factors in favor of omitting the effect from the analysis
(B Fsession = 0.08; B FsessionxCuexDirection = 0.08).

Discussion

The interaction between the direction of the cue and the
stimulus direction in both RTs and error rates confirm that
the experimental manipulation was successful. That is, a
leftward cue followed by a leftward stimulus decreases RTs
and error rates, but a leftward cue followed by a right-
ward stimulus increases RTs and error rates (and similar
for rightward cues). This opposing mechanism explains the
observed interaction between cue and stimulus direction.

Experiment 1 clearly showed slower responses for the
MRI session as compared to the behavioral session, but no
clear effect on the error rates. This finding seems most con-
sistent with a motor slowing account, although both the
response caution account and an attentional focus account
cannot be ruled out completely. Both of these accounts are
consistent with slowed down responses in the MRI ses-
sion. However, a control explanation would also predict a
decrease in error rates, as a consequence of exerting more
control in the MRI session (Bogacz et al., 2010). In contrast,
an attention account would predict an increase in error rate.
A decrease in attentional focus would entail that the extrac-
tion of information from the stimulus is hampered, leading
to more errors.

Because RTs are longer in the MRI session, a gen-
eral arousal account seems unlikely. This account would
predict an opposite effect for the RTs. Also, because the
MRI session followed the behavioral session, an explana-
tion of these findings in terms of practice is also ruled
out. Such an interpretation would entail faster responses for
the second session, which stands in contrast to the current
findings.

Experiment 2: Speed-accuracy trade-off
Methods

Experiment 2 was previously published by Forstmann et al.
(2008). Nineteen participants performed a random dot
motion task in which each trial was preceded by a cue stress-
ing either response speed or response accuracy. Specifically,
on one-third of the trials participants received a cue indicat-
ing that speed was stressed, and on one-third of the trials
participants received a cue indicating that accuracy was
stressed. On the remaining trials the cue indicated that speed
and accuracy were equally important. Participants received
differential feedback depending on the condition. In the
speed-stressed condition, the participants received feedback
on their speed of responding; in the accuracy-stressed con-
dition, they received feedback on whether a response was
correct or incorrect; in the neutral condition, they received
both types of feedback. Similar to Experiment 1 (but in
contrast to Experiment 3), each participant performed a
behavioral session followed by an MRI session. The timing
and setup of the experiment was identical to Experiment 1.

Results

Figure 3 summarizes the results of Experiment 2. The effect
of the SAT cue is evident for both correct RTs and errors,
with slower responses but less errors for accuracy-stressed
trials as compared to speed-stressed trials. Also, responses
are slower in the MRI session than in the behavioral
session.

A Bayesian ANOVA supports these observations. The
ANOVA model included SAT and Session as fixed fac-
tors and Participant as a random factor. When the main
effect of Session is omitted from the ANOVA model, the
Bayes factor is B Fsession = 238. In addition, the results
showed that the SAT manipulation was successful, with
relatively slow responses in the Accuracy condition and rel-
atively fast responses in the Speed condition (BFssr =
2.0 x 10'%). There was slight evidence against an interaction
effect (B FsessionxsaT = 0.38).

Similar to Experiment 1, the effect of MRI session was
not clearly mirrored in the error rates, with only evidence
for a successful SAT manipulation (BFss7 = 6009), but
moderate evidence in favor of the simpler model without
the Session factor (B Fsession = 0.26) nor the interaction
(BFSessionXSAT = 018)

Discussion
Experiment 2 largely replicates the results from Exper-

iment 1. The MRI scanner environment led to slower
responses, but there is no clear analogous effect in the error
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Fig. 3 Mean behavior in Experiment 2 displays effects of cue and session. Dashed line MRI session; Solid line Behavioral session. Error bars
represent within-subject standard errors of the mean (Loftus & Masson, 1994)

rates. Again, this result mostly supports the motor slow-
ing interpretation of the effect of MRI scanner environment
advocated by Koch et al. (2003). The RT effect is also con-
sistent with a control and attention interpretation of the data,
but these accounts do make different predictions for error
rates. The general arousal interpretation of the data sug-
gested by Koten et al. (2013) does not seem to hold for this
particular data set.

Experiment 3: Task difficulty

The goal of Experiment 3 was two-fold. Firstly, we wanted
to extend the results of Experiments 1 and 2 to a third
experimental manipulation. Therefore, in Experiment 3
we manipulated task difficulty by adjusting the propor-
tion of coherently moving dots. When this proportion is
higher, the motion-direction is perceived more easily (e.g.,
Palmer et al., 2005). Secondly, we wanted to address two
methodological confounds that are present in Experiments 1
and 2 because these experiments had not been designed
for our particular analysis. The first confound relates to the
order of the sessions. In Experiment 1 and 2 the behav-
ioral session was intended as a training session and therefore
it always preceded the MRI session. This could have led
to differences between the sessions that are due to train-
ing rather than due to scanner environment. Although the
data from Experiments 1 and 2 are inconsistent with a prac-
tice effect, it is nevertheless desirable to control for this
confound explicitly. Therefore, in Experiment 3 we coun-
terbalanced the sessions across participants to control order
effects.

The second potential confound relates to the timing of
the events within a trial. The behavioral sessions from

@ Springer

Experiments 1 and 2 used shorter delays between cues
and stimulus, and shorter inter-trial intervals (ITI) than
those used in the MRI session. This was done to maximize
the number of trials in the behavioral session. However,
these timing differences could have led to unwanted effects
on performance. To control for timing effects, in Exper-
iment 3, we counterbalanced short and long ITIs within
participants.

Methods

The procedure of Experiment 3 was approved by the local
ethics committee of the University of Amsterdam. In Exper-
iment 3, participants had to indicate the direction of motion
of a cloud of moving dots (Ball & Sekuler, 1982). The
coherence of the dot cloud was determined on a trial-by-
trial basis and could be either 5 %, 10 %, 20 %, 40 %, or
80 %, which were pseudo-randomly selected on a trial-by-
trial basis, such that each coherence appeared equally often
for each participant, session, and block. Twenty participants
(15 women, mean age 22.1y) participated for course credit.
Each participant performed a behavioral session and an MRI
session. For the MRI session, we used a mock MRI scan-
ner in combination with recorded EPI sequences, played at
the same volume as live EPI sequences (110dB, Shellock,
Ziarati, Atkinson, & Chen, 1998). The mock MRI scanner
consisted of a fully functioning MRI set-up that was stripped
from the magnet. Participants were asked to lie down on
the scanner table that was placed inside the bore. Inside
the bore, participants wore noise-canceling headphones and
their head was fixated to prevent sudden head movements,
identical to normal MRI protocol. Thus, the MRI scan-
ner experience was preserved, although we did not deceive
the participants into thinking the MRI scanner was real.



Behav Res (2016) 48:184-200

191

Previous studies show that the absence of a magnetic field
in the mock scanner does not have an effect on behav-
ior (Atkinson, Renteria, Burd, Pliskin, & Thulborn, 2007;
Heinrich et al. 2013, 2011), which makes the results of
Experiment 3 comparable to the results of Experiments 1
and 2.

In the MRI session, the participants responded through
button boxes in their left and right hand. In the behavioral
session, participants used the Z and M keys on a regular key-
board. The order of the sessions was counterbalanced across
participants. Each of the participants finished two blocks
per session. In one block, the trials followed each other with
ITIs of 500 ms. In the other block, the ITI was 4,300 ms.
The order of the blocks was also counterbalanced across
participants.

In each block, participants performed 200 trials, for a
total of 800 trials per participant. Each trial started with
a fixation cross, followed after 500 ms by the stimulus.
The stimulus was presented for 1,500 ms. 500 ms after
the stimulus offset feedback appeared for 200 ms, which
could be either Goed (i.e., correct), Fout (incorrect), or Geen
antwoord (no answer).

Results

Figure 4 summarizes the results of Experiment 3. As the
coherence increases, correct RTs and error rates decrease. In
addition, RTs as well as error rates are higher for the MRI
session as compared to the behavioral session. The effects
of ITI are not clear from Fig. 4.

The full ANOVA model that we tested included Coher-
ence, Session, and ITI as fixed factors and Participant as
a random factor. Experiment 3 replicates the increase in
RT for the MRI session (B Fsession = 592) found in

Mean correct RT (s)

0.6 -

T 1 T T
5 20 40 80

Coherence (%)
Fig. 4 Mean behavior in Experiment 3 displays effects of stimulus

coherence and session, but not of inter-trial interval. Red lines MRI
session; Black lines Behavioral session. Solid line Long ITl; Dashed

Experiments 1 and 2. Also, responses were faster for more
coherent stimuli (B Fconerence = 1.5 X 1013). However,
the results show that in this data set it is not likely that
the ITI contributed to the RT variance (BF;r; = 0.12).
Also, the Bayesian ANOVA supported a model in which all
interactions were omitted (BFs < 0.14).

Contrary to Experiments 1 and 2, this experiment did
show a strong effect of Session on error rate, with a Bayes
factor of B Fses5ion = 4.3 X 10'® in favor of including the
Session factor in the model. As expected, the error rates
decreased with coherence, reflecting that higher coherences
are easier than low coherences (B Feonerence = 1.4 X 1042).
Again, there was no effect of ITI (B Fyr; = 0.32), and there
was no evidence for any interaction (all BFs < 0.20).

Discussion

Experiment 3 is mostly in line with an attentional focus
account of scanner environment effects. This account pre-
dicts slower responses as well as higher error rates. The
response caution and motor slowing accounts are consis-
tent with the RT data, but not with the error rate data.
These accounts predict a decrease in error rate and no error
effect, respectively. The arousal account is also unlikely, as
that would entail faster responses and decreased error rates.
One critical point is that participants were not deceived into
believing that they entered a real MRI scanner. This may
have affected their behavior differently than when they had
entered a real MRI scanner, or when they would have been
deceived. However, evidence suggest that mock MRI scan-
ners are comparable to real scanners in terms of anxiety
(McGlynn, Karg, & Lawyer, 2003; McGlynn, Smither-
man, Hammel, & Lazarte, 2007), stress (Lueken, Muehlhan,
Evens, Wittchen, & Kirschbaum, 2012), or noise annoyance
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40 — 0\\
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©
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line short ITI. Error bars represent within-subject standard errors of
the mean (Loftus & Masson, 1994). When not visible, the error bars
fall within the area of the data point
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(Pripfl, Robinson, Leodolter, Moser, & Bauer, 2006), sug-
gesting that affects of these stressors on behavior are also
comparable.

Note that in Experiments 1 and 2 the difference in ITI
that was confounded with Session did not contribute to
the effects observed in Experiment 3. Thus, it is unlikely
that ITT is the major contribution to behavioral differences
inside and outside the MRI scanner, at least for perceptual
judgment tasks. This could be different for tasks in which
trial dependencies are more prominent, such as the Stroop
task (Juvina & Taatgen, 2009), the Simon task (Hommel,
Proctor, & Vu, 2004), or related interference tasks
(Botvinick, Braver, Barch, Carter, & Cohen, 2001; Gratton,
Coles, & Donchin, 1992; Van Maanen & Van Rijn, 2010).

Response-time modeling of the effect of scanner
environment

All three experiments displayed slowed responses as a result
of the MRI environment, but only Experiment 3 showed
increased error rates. Consequently, based on mean correct
RTs and error rates, the most likely candidate explanation
of these effects is the attentional focus account. Because the
attentional focus account assumes that the stress induced
by the MRI scanner diverts attention away from the imper-
ative stimulus, responses slow down and become more
error-prone. One reason why this accuracy effect is not
observed in Experiments 1 and 2 might be that another
mechanism counters the increase in erroneous responses.
That is, if participants are less focused, they might respond
to the potential behavioral deterioration with an increase in
response caution. In terms of the LBA model, this means an
increase in the threshold parameter.

This hypothesis is scrutinized using formal LBA mod-
eling of the RT distributions for both correct and error
responses and error rates. First, we present our general
approach for obtaining the best set of model parameters (in
terms of different way of equating parameters across condi-
tions). Next, we present the results of this analysis and what
that means for the parameter estimates.

Methods

For each experiment, we defined the top model as the model
in which all parameters were allowed to vary across ses-
sions (Behavioral and MRI; some exceptions are discussed
below). In addition, the top models only allowed those
parameters to vary across other experimental conditions for
which there is consensus in the literature. For example, to
account for directional cueing in Experiment 1 we allowed
the threshold parameter in LBA to vary between response
alternatives (cf. Forstmann et al., 2010. This parameter
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allows for a difference in the amount of evidence that is
required for a response between the choice options, simi-
lar to the difference in prior probability that is induced in
Experiment 1.

Using the top model, we generated a model hierar-
chy of simpler models (Heathcote & Love, 2012). That
is, we generated all possible models that contained fewer
free parameters by fixing a parameter across conditions.
Thus, the simplest models that were fit estimate the same
parameters of each type for all conditions. The best fitting
parameter values of the simplest models were used as initial
guesses for more complex models. This way, we reduce the
impact of local minima in the parameter space. The mod-
els were fit using maximum likelihood (Donkin, Brown, &
Heathcote, 2011).

The best model across participants was determined using
AIC (Akaike, 1974). AIC is a measure that balances the fit
of a model with the number of free parameters. The num-
ber of free parameters is a proxy for model complexity, as
models with more parameters are inherently more flexible.
Because of this, in a model hierarchy more complex mod-
els necessarily fit better (e.g., Collyer, 1985; Myung & Pitt,
1997). Thus, AIC allows for inferences on which parame-
ter should be kept free across experimental conditions and
which parameters should not. To determine the best model,
we summed the AIC score of individual participants, and
computed the AIC weights of each model (Wagenmakers &
Farrell, 2004). This reflects the probability that a particular
model is the best model of the set of fitted models (given the
data).

In addition to AIC, we also computed Bayesian Infor-
mation Criterions (BIC; Schwarz, 1978). BIC is typically
more conservative than AIC in allowing model complexity.
This was also observed in our model comparisons; neverthe-
less, the results of the BIC analyses generally agreed with
the AIC analyses. For this reason, we focus our analysis on
the AIC based results, and will only briefly mention any
deviations from these according to BIC.

We performed Bayesian analysis of variance—similar to
the analyses on the behavioral data—on the parameters of
the top model. This analysis allows us to infer whether a
parameter was free because of differences due to the exper-
imental manipulations, or whether individual differences
between participants forced AIC model selection to allow
a free parameter, even though the variance in the estimates
is not systematic with respect to conditions. The parame-
ter estimates used in this analysis were a weighted average
of estimates from all of the different model parameteri-
zations we fit obtained using model averaging (Hoeting,
Madigan, Raftery, & Volinsky, 1999; Raftery, 1995). We
could have first selected one model as the frue model for
all participants, based on a criterion like having the small-
est total AIC and analyzed the parameter estimates from
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only that model. However, this fails to take account of all of
the available information (e.g., the total AIC might not be
much larger for some other models, making selection of just
one model questionable) and individual differences (e.g.,
different models maybe better for different individuals).
Instead, we used the AIC values for each model to weight
(Wagenmakers & Farrell, 2004) the contribution of their
parameters to the overall estimates used in the Bayesian
analysis of variance. The resulting estimates were fairly
close to those of the model with the best overall AIC but
better take into account uncertainty in the model selection
process.

Experiment 1: Choice bias The top LBA model allowed
all five model parameters to vary across sessions. Thus, the
drift rate v, non-decision time (fy) and b — A as well as the
variance parameters A and sv were free to vary across ses-
sions. We estimated the difference between the upper bound
of the start point distribution and the threshold (b — A) to
ensure that the threshold b could not be below the start point.
Because LBA estimates separate drift rates for correct and
incorrect response accumulators, v and drift rate variance
sv were also allowed to vary with the type of response (that
is, correct vs. incorrect). In addition, we allowed b — A to
vary per accumulator as a function of the cue type (left vs.
right), in line with previous models estimating bias effects
(Forstmann et al., 2010).

Experiment 2: Speed-accuracy trade-off As for Experi-
ment 1, the top LBA model allowed all model parameters
to vary across sessions. Also similarly, separate drift rate
parameters (both mean drift rate v and the standard devia-
tion of drift rate sv) were estimated for correct and incor-
rect responses. In addition, the threshold, drift rates, and
non-decision time were all free to vary with the speed-
accuracy manipulation. Many studies show that speed-
accuracy trade-off behavior can be obtained through differ-
ent threshold values (e.g., Boehm, Van Maanen, Forstmann,
& Van Rijn, 2014; Forstmann et al., 2008; Mulder et al.,
2010; Van Maanen et al., 2011; Winkel et al., 2012). How-
ever, some studies also show different parameter estimates
for non-decision times (Heitz & Schall, 2012; Mulder et al.,
2013) or drift rates (Dambacher & Hiibner, 2014; Heitz &
Schall, 2012; Ho et al., 2012; Mulder et al., 2010; Rae et al.,
2014).

Experiment 3: Task difficulty Again, all model parameters
were free to vary across sessions. Because there was no
credible effect of ITI (see Results), the top LBA model
for Experiment 3 did not include the ITI as a factor on all
parameters. Instead, we allowed only the threshold param-
eter to vary with the ITI. Based on the literature (Church-
land et al., 2011; Donkin, Averell, Brown, & Heathcote,

2009; Ho, Brown, & Serences, 2009; Mulder et al., 2013;
Palmer et al., 2005), we allowed drift rate (mean and
standard deviation) to vary with coherence.

Results

Experiment 1: Choice bias AIC model selection preferred
the following model with an AIC weight of wa;c =
1.0: Threshold was allowed to vary with the cue, drift
rate was allowed to vary with session and response type
(correct/incorrect), and non-decision time was allowed to
vary with session only. Thus, these free parameters con-
tributed to the explanation of the data, according to AIC.?
Fig. 5 shows that this model indeed captures both accuracy
as well as the RT distribution. Allowing a parameter to be
free across conditions does not necessary entail that it will
also systematically differ across participants. To test this,
we submitted each parameter to a Bayesian ANOVA. The
factors that were included in the ANOVA model depended
on the conditions for which a free parameter value was esti-
mated, but in all cases included the sessions. Here, we focus
the analysis on the likelihood that a parameter differed per
Session. In particular, we focus our analysis on the thresh-
old parameter b, the non-decision time parameter fy, and the
sum and difference of the drift rates for correct and incorrect
responses, . + v, and v, — v,, respectively.

These four parameters represent the four theoretical
accounts that we focus on. Fig. 6 (Left column) shows the
mean parameter estimates across participants representing
the four theoretical accounts. Table 2 shows Bayes factors
for omitting the crucial Session factor from an ANOVA
model. For Experiment 1, there is evidence that the non-
decision time parameter f( varied with Session, as the Bayes
factor for including it in the ANOVA model is quite large.
For the remaining parameters b, v, + v, and v, — v, the
evidence for including the Session factor is inconclusive.?
The threshold parameter did show evidence in favor of
including the cue factor in the ANOVA model (BF =
1.3 x 10'"), consistent with previous studies that induced
a bias in responding (Forstmann et al., 2010; Mulder et al.,
2012). Also, the start point variability parameter (A) showed
evidence in favor of a cue-related effect (BF = 681),
indicating that variability due to the distance towards the
threshold was smallest for neutral cues, and larger for both
valid and invalid cues.

Based on the results of Experiment 1, the most likely
explanation is that participants increase the amount of motor
control they exert on responding while inside the MRI

2The BIC result was similar, except that the best model according to
BIC constrained the mean drift rate to only vary with response type.

3In fact, the variability of b across sessions was so small that a Bayes
factor could not be computed using the BayesFactors package.

@ Springer



Behav Res (2016) 48:184-200

194
Behavioral
0.9 1
—e— Data
08 - -0 LBA
0
o i -
8 07 [ ] i\g
g 0617 T~3—%
] a | (e
E 0.5 \!\
0.4 —a = x
4 —=
T—a—=
0.3
T T T T T
2 o ® o o
3 S 3 S 8
g 3 2 3 ¢
= =
Invalid Valid
Behavioral
40 7 —e— Data
—_ o LBA
S 30
Q
: i
5 20 B
]
C
S 104 \
= T—3
O_
T T T T T
° ) w o o
e} © = © o
8 ] 3 @ g
g 3 2 g &
= s
Invalid Valid

MRI
0.9 7 —e— Data
08 % ; -0 LBA
@ - %,‘, Y YO
3 0.7 $-- i
T 06 -~ 8~
£ 059 - - ‘= B
o R S
04 banialk <
0.3
T T T T T
o o ® ] 2
e 3 =z 38 &
= =
Invalid Valid
MRI
40 —eo— Data
— -0 LBA
S 30
o .
‘§ \
— \
g 20 B JEN
| TR
c ..
3 10 [N
S ~ .
T
‘X
0 —
T T T T T
o I = o )
o E s E Qo
2 o} 3 o} 2
g 8 2 % &
s =
Invalid Valid

Fig. 5 The LBA model fits the data of Experiment 1 well. Upper panels .1, .5, .9 RT quantiles for correct responses; Lower panels Error rates.

The data as well as the model predictions are averaged across participants

scanner. This is reflected by an increased non-decision
time parameter, resulting in slower yet equally accurate
responses.

Experiment 2: Speed-accuracy trade-off AIC model selec-
tion on the LBA model hierarchy showed that, in order to
best balance model complexity and fit across the whole set
of participants, the threshold and non-decision time should
be allowed to differ for the two sessions as well as the
variability parameters A and sv (AIC weight of this model
warc = 1.0). Also, the threshold and drift rate parame-
ters should be allowed to vary as a function of the SAT
manipulation, and drift rate (mean and standard deviation)
should differ for correct and incorrect response accumula-
tors. This model provided a good fit to the data (Fig. 7).*
Fig. 6 (middle column) shows the mean parameter estimates
across participants, and Table 2 again shows Bayes factors
for omitting the Session factor from an ANOVA model.
Onmitting the Session factor from the ANOVA model yielded
no conclusive evidence for any of the theoretical accounts.

4 As for Experiment 1, BIC is in agreement with AIC with respect to the
Session factor, although the additional constraints are that the thresh-
old parameters b and A should not vary with SAT, yet the non-decision
time should.
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The SAT manipulation did influence the estimate of the
threshold (BFsar = 6.3 x 10%!, but again there was no
interaction (all BFs < 0.20). This finding is in line with pre-
vious work that reports that SAT involves adjustments in
response caution (e.g., Boehm et al., 2014; Forstmann et al.,
2008; Mulder et al., 2010; Van Maanen et al., 2011; Winkel
et al., 2012). However, in addition to a change in thresh-
old, there were also effects of SAT on the drift rates. In
particular, the drift rate difference, which according to AIC
could only be affected by the SAT manipulation, was indeed
higher on accuracy trials relative to speed trials (B Fsar =
1.2 x 10'%). This finding is in agreement with recent litera-
ture reporting similar results (Dambacher & Hiibner, 2014;
Heitz & Schall, 2012; Ho et al., 2012; Mulder et al., 2010;
Rae et al., 2014). Finally, there is also evidence for includ-
ing separate non-decision time parameters for the three SAT
conditions (B Fsar = 40). Previous studies also report that
non-decision time parameters may differ between speed and
accuracy instructions (Heitz & Schall, 2012; Mulder et al.,
2013).

Experiment 3: Task difficulty The LBA model that was pre-
ferred by AIC was a model in which threshold varied with
ITI and session, mean drift rate varied with session and
coherence, and non-decision time varied with session only
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Fig. 6 LBA model parameters for the best models for Experiments 1—
3. Left column Experiment 1; Middle column Experiment 2; Right
column Experiment 3. Top row non-decision time fy, representing
delayed response execution; second row threshold of the correct accu-
mulator b, representing response caution; Third row sum of drift rates

(wazc = 1.0). As is common for LBA models, mean drift
rate as well as the standard deviation varied depending on
whether a response was correct or not.> The fit of this
model is generally quite good (Fig. 8). The mean parameter
estimates are presented in the right column of Fig. 6.
According to a Bayesian ANOVA, the non-decision
parameter was higher in the MRI session than in the behav-
ioral session (BFs = 6.2, see also Table 2). The threshold
parameter did not differ between the sessions, the ITIs, nor
the interaction (BFs < 0.32, see also Table 2). Neither did

SBIC was again a bit stricter, with no effect of Session on b, A, nor v,
but an effect of session on sv.

ve + ve, representing overall arousal; Bottom row drift rate difference
Ve — Ve, representing attentional focus. Error bars are within-subject
standard errors of the mean

the sum of drift rates (all BFs < 0.22). The drift rate differ-
ence however increased with both the coherence as well as

Table 2 Bayes factors in favor of an LBA parameter effect in Experi-
ment 1-3

to b Ve + Ve Ve — Ve
Experiment 1: Bias 381 - 0.69 0.25
Experiment 2: SAT 0.29 1.06 0.56 0.21
Experiment 3: Difficulty 6.2 0.26 0.22 75

Bold face indicate strong evidence in favor of including the Session
factor in the ANOVA model
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Fig. 7 The LBA model fits the data of Experiment 2 well. Upper panels .1, .5, .9 RT quantiles for correct responses; Lower panels Error rates.

The data as well as the model predictions are averaged across participants

the Session (B Feonerence = 7.3 % 10%2: BFgussion = 15).
There was no evidence in favor of an interaction between
these effects (B Fconerencex Session = 0.21).

The decrease in drift rate difference that we found is con-
sistent with an attentional focus explanation of the effects
of scanner environment. That is, if attentional focus is less,
then the extraction of information from the stimulus is
negatively affected, which is reflected in decreased drift
rates.

The increase in drift rate difference with coherence
is consistent with the literature (Churchland et al., 2011;
Donkin et al., 2009; Ho et al., 2009; Mulder et al., 2013;
Palmer et al.,, 2005). That is, as the motion direction
becomes more recognizable, the extraction of informa-
tion from the stimulus in favor of the correct alterna-
tive increases. Consequently, the difference in drift rates
between the correct and the incorrect alternative increases
as well.

In agreement with the RT and accuracy analyses, the
model parameters did not differ between the first and the
second session, neither in isolation (all BFs < 0.75) nor in
interaction with the session type (all BFs < 1.14). Thus, the
conclusion that there is no appreciable practice effect from
the first to the second session seems justified. This result
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adds justification to the interpretation of Experiment 1 and
2, since it is likely that there too is no large effect of practice
across session orders.

General discussion

In this paper we report behavioral analyses and response-
time modeling of three experiments, focused on the differ-
ences between sessions inside and outside the MRI scanner.
The behavioral analyses show that participants respond
slower during scanner sessions (Experiments 1-3), some-
times in relation to more errors (Experiment 3). Based on
the response-time modeling of the data of all three experi-
ments, it seems that behavioral differences between sessions
inside and outside of the MRI scanner are driven by slower
motor execution times (Experiments 1 and 3), sometimes in
combination with a decrease in attentional focus inside the
MRI scanner (Experiment 3).

Although the LBA modeling of Experiment 2 was not
conclusive, this combination of mechanisms is also consis-
tent with the behavioral pattern observed in Experiment 2.
Experiment 2 displays RT slowing and no effect on error
rate inside the MRI scanner. The LBA model explains this
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Fig. 8 The LBA model fits the data of Experiment 3 well. Upper panels
The data as well as the model predictions are averaged across participants

data by a combination of small effects, none of which is
strong enough by itself to have strong evidence. In par-
ticular, the parameter estimates for non-decision time are
slightly higher for the MRI session (Fig. 6).

It should be noted that although an explanation of these
effects in terms of motor slowing is plausible and con-
sistent with previous findings (Koch et al., 2003), there
are other possible interpretations as well. Firstly, increases
in non-decision time estimates are theoretically linked to
time that is not spent on the decision process. Although
in the current study we advocate a post-decision increase
in RT—non-decision time is larger due to motor response
slowing—effects on RT could also be due to increases
in pre-decisional stage durations. For example, a increase
in the time required for perceptual encoding of the stim-
ulus (without a change in the probability of success of
that process) would also yield a larger non-decision time.
Although typically included in the non-decision time com-
ponent in theoretical studies, pre-decision stages are almost
never considered when fitting accumulator models to data
(but see Van Maanen, Van Rijn, & Taatgen, 2012, for an
exception). More research is needed to distinguish pre- from
post-decision stages in the analysis of response times.
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Secondly, the results may be partly attributed to a differ-
ence in lag from the actual motor response to the logging
of that response by the experiment computer. That is, the
use of different hardware between sessions might partly
be responsible for a difference in the logged RT, which
would show as a different in the non-decision time parame-
ter. We deem this explanation unlikely however. The typical
lag of a PC keyboard (USB or PS/2) is ~20 ms (Plant &
Turner, 2009). In order to explain the effect sizes on #y that
are observed in Experiment 1 the lag of a response box
used in the MRI scanner would have to be in excess of
~70 ms. Given the sub-millisecond precision of optical tim-
ing devices used in MRI setups, this is extremely unlikely,
even if the differences in physical cable length is considered.

It is perhaps surprising that there are such marked differ-
ences between the experiments, but it aligns well with the
general picture of the plethora of effects reported in the lit-
erature. In this case, given the overall similar nature of the
three experiments we analyzed, it seems likely that multiple
mechanisms are at play in each experiment. However, the
relative contribution of each to the observed behavior may
differ between experiments. That is, in some experimental
paradigms the effect of decreasing focus might outweigh
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the effect of increased motor control. This seems to hold
in particular for Experiment 3. Here, a decrease in atten-
tional focus has a differential effect on each condition,
with a larger impact on the difficult conditions (with lower
coherence) than on the easy conditions (high coherence).
In Experiments 1 and 2, the random-dot kinematograms
are not so difficult that a potential decrease in focus leads
to strong effects on error rates, resulting in much smaller
effects on v, — v,.

The extent to which our results generalize to other
imaging modalities or experimental paradigms is not clear.
Firstly, the motor slowing that was the most prevalent effect
of the MRI scanner environment was not of the same mag-
nitude across experiments. It is therefore plausible that this
estimate is also not stable across different experimental
paradigms. Secondly, since we did not isolate the contribut-
ing factors that make up the MRI scanner environment, it is
unclear how behavior would differ from behavioral sessions
in for example a magneto-encephalogram or a combined
electro-encephalogram fMRI experiment. However, follow-
ing Koch et al., (2003), it seems that motor slowing is related
to body posture in relation to the response device. Therefore,
any neuro-imaging study that affects these factors should
take tour findings into account.

The results of our study are important for the field of
model-based neuroscience (Mulder et al., 2014). From the
response-time modeling, it is clear that model parameters
are affected by the scanner environment. However, it is also
clear that there are no interaction effect between Session and
the experimental manipulations in any of the model param-
eters. Thus, even though the scanner environment affects
behavior, it does so equally for all conditions in the three
experiments we analyzed. This is reassuring as it shows that
behavioral findings and MRI findings are comparable.

Nevertheless, it would be unadvisable to determine
model parameters based on behavioral sessions alone.
Rather, we suggest to model both the behavioral session
and the MRI session simultaneously. This allows for greater
power in determining the model parameters because of more
observations, and also allows inspection of possible scanner
effects.

In conclusion, we note that the effects of a scanner
environment on behavior are not yet fully understood. A
good approach to unraveling these is model-based analyses
that uncover the underlying mechanisms of behavior. Here,
we have shown that multiple mechanisms interact to cope
with a different experimental environment. Future research
should disentangle the sources of the experimental environ-
ment that affect these mechanisms, such as stress, noise,
spatial orientation, or response mode.
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