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Abstract

Brain-computer interface (BCI) paradigms are usually tested when environmental and bio-

logical artifacts are intentionally avoided. In this study, we deliberately introduced different

perturbations in order to test the robustness of a steady state visual evoked potential

(SSVEP) based BCI. Specifically we investigated to what extent a drop in performance is

related to the degraded quality of EEG signals or rather due to increased cognitive load. In

the online tasks, subjects focused on one of the four circles and gave feedback on the cor-

rectness of the classification under four conditions randomized across subjects: Control (no

perturbation), Speaking (counting loudly and repeatedly from one to ten), Thinking (mentally

counting repeatedly from one to ten), and Listening (listening to verbal counting from one to

ten). Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate

the classification performance using features generated by canonical correlation analysis.

During the online condition, Speaking and Thinking decreased moderately the mean classi-

fication accuracy compared to Control condition whereas there was no significant difference

between Listening and Control conditions across subjects. The performances were sensi-

tive to the classification method and to the perturbation conditions. We have not observed

significant artifacts in EEG during perturbations in the frequency range of interest except in

theta band. Therefore we concluded that the drop in the performance is likely to have a cog-

nitive origin. During the Listening condition relative alpha power in a broad area including

central and temporal regions primarily over the left hemisphere correlated negatively with

the performance thus most likely indicating active suppression of the distracting presenta-

tion of the playback. This is the first study that systematically evaluates the effects of natural

artifacts (i.e. mental, verbal and audio perturbations) on SSVEP-based BCIs. The results

can be used to improve individual classification performance taking into account effects of

perturbations.
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Introduction

Brain-computer interfaces (BCIs) have potential to help severely disabled people by translating

the intentions of subjects into a number of different commands [1]. Due to its safety and high

time resolution, electroencephalogram (EEG) based BCIs have become popular and various

designs using different signals (e.g. P300 [2,3], sensorimotor rhythms [4,5]) have been pro-

posed. Among them, steady state visual evoked potentials (SSVEPs) are particularly attractive

due to high signal to noise ratio (SNR) [6] and robustness [7]. SSVEP is a resonance phenome-

non which can be observed mainly in electrodes over the occipital and parietal lobes of brain

when a subject looks at a light source flickering at a constant frequency [7]. In this case, there

is an increase in the amplitude of the EEG at flickering frequencies and their harmonics and

there are different methods to extract the frequency components of SSVEPs. Recently, canoni-

cal correlation analysis (CCA) has become a popular approach for analyzing these frequency

components as its performance was higher compared to traditionally used Fourier transform

[8] and minimum energy combination [9]. Several extensions to standard CCA method were

proposed and their performances were evaluated [10].

Robustness of CCA [11] and SSVEPs [12–14] to different experimental conditions were

mentioned in several papers. In [11], authors showed that CCA was robust to walking (move-

ment) conditions in SSVEP detection. In [12], authors systematically evaluated the effects of

walking locomotion on the SSVEPs using a mobile EEG system and showed that the SSVEP

offline detection accuracy decreased as the walking speed increased. In [13], the authors found

lesser mental load and fatigue for motion-reversal visual attention task compared to the para-

digm with the conventional flickering. In another study, authors showed that an addition of a

visual noise can boost both offline and online performances of an evoked potential-based BCI

[14]. Although the latter was a steady-state motion visual evoked potential-based BCI, the

study is relevant in terms of introducing perturbations. However, in none of the studies men-

tioned above, there were mental, verbal or audio perturbations introduced to the BCI system.

Yet it is exactly these types of perturbations and mental loads that are relevant for the everyday

use of BCI outside of the sterile environment of the research laboratories.

In this study, we evaluated a performance of a four-class BCI based on SSVEPs under differ-

ent perturbations where the subjects were speaking, thinking or listening depending on the

given task. We hypothesized that, although the SSVEP is a robust phenomenon, different per-

turbations (i.e. verbal, mental, audio) should have varying effects within and across subjects

due to concurrent performance of another task and thus due to the changes in the attention

dedicated to the BCI performance. To the best of our knowledge, this is the first study that sys-

tematically analyses the effects of these perturbations on the online performance of SSVEP

based BCI within and across subjects.

Materials and methods

Participants

Participants were recruited in the summer-autumn 2016 using the database of the Centre for

Cognition and Decision Making at Higher School of Economics (HSE). Most of them were

students at HSE. There was no payment for the participants and this was made clear before the

recruitment. Twenty-seven healthy subjects (eight males) between 18 and 41 years of age

(mean: 26 ± 1, SE) participated in the study after giving a written informed consent in accor-

dance with the Declaration of Helsinki. Experiments were approved by the Local Ethics Com-

mittee of National Research University Higher School of Economics, Moscow. All subjects

participated in both offline and online tasks. However, three subjects (two males) were
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excluded from the analyses due to their relatively low offline task performances. Two of them

reported that they were not able to focus properly in the offline task. Therefore, twenty-four

subjects (three left-handed) were included in the results.

Experiment setup

EEG were recorded in an electrically shielded dark cabin. Stimulus presentation and recording

computer was outside of the recording room. Stimulus paradigms were prepared in Matlab

software (The MathWorks, Inc., Natick, Massachusetts, United States) using Psychophysics

Toolbox Version 3 (http://psychtoolbox.org/). The main stimuli are composed of four circles

placed in different locations with individual flickering frequencies (f): 5.45 (up), 8.57 (down),

12 (right), and 15 (left) Hz). Participants followed the stimuli presented on a 28 inch Ultra HD

LED Monitor (Samsung LED LU28D590DS) with a resolution of 1920 x 1080 pixels and a

refresh rate of 60 Hz. Duty cycle was determined as 1/(60/f). Hence during one cycle, the

related circle was white only in one frame and it was black for the other frames. In this case,

when the frame color is reversed once in every four frames, we obtain 15 (i.e. 60/4) Hz. Simi-

larly 12 (60/5), 8.57 (60/7) and 5.45 (60/11) Hz were obtained. In order to avoid performance

problems due to the frequency resolution, there was at least 3-Hz gap between the selected fre-

quencies. We did not use frequencies that are multiples of each other in order to prevent the

coincidence of the first harmonics of one flicker frequency corresponding to the second har-

monics of another stimulus. During the experiment the distance between the participants and

the monitor was 90 cm. Fig 1 shows the positions of the flickering circles on the monitor.

Offline task

Offline experiment starts with a welcome message after a blank screen. For each of 25 trials,

there is an instruction on the screen informing a subject to focus on the presented circle. Sub-

jects then focus on each of the four randomly presented flickering circles indicated by a red

oval frame for three seconds with an inter-stimulus interval (ISI) of one second. Trial ends

with a blank screen. After all trials are finished, the experiment ends with a "thank you" mes-

sage. Subjects were instructed to blink during ISI in order to avoid blink-related artifacts dur-

ing the presentation of the flickering stimuli. This task lasts for about nine minutes. The

timing of the offline task is presented in Fig 2A. A demonstration of one trial of the offline task

is given in S1 Video.

Fig 1. Subject and the position of the flickering circles on LED monitor. Vertical and horizontal field of view were

23.48 and 39.42 degrees respectively. Diameter of the circles corresponded to 3.94 degrees. Circle centers were

positioned at 6.92 degrees from the central fixation point.

https://doi.org/10.1371/journal.pone.0191673.g001
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Online task

Online experiment starts with a welcome message after a blank screen. For each of 100 trials,

there is an instruction on the screen informing subject to focus on the circle. Then, subject

focuses on one of the four flickering white circles for three seconds. In this task, the subjects

were free to select the circle to focus on. In the end of three seconds, the classification result

(i.e. circle in a specific location) is presented on the screen with a red color. Subjects either

confirm (pressed ‘Y’ key) or reject (pressed ‘N’ key and then specify the correct response with

the arrow keys) the location using keyboard. There is no time limit for the subject feedback.

After all trials are finished, the experiment ends with a "thank you" message. The timing of the

online task is presented in Fig 2B. A demonstration of one trial of the online task is given in S2

Video.

The online task was performed under four conditions randomized across subjects:

1. Control: There is no counting (no perturbation).

2. Speaking: Subjects counted loudly and repeatedly from 1 to 10 (verbal perturbation).

3. Thinking: Subjects counted repeatedly from 1 to 10 mentally (mental perturbation).

4. Listening: Subjects listened to their pre-recorded voice in waveform audio file format (.

wav) with a sampling rate at 22 kHz and sample size of 16 bits) when they were counting

from 1 to 10 (audio perturbation).

The subjects counted in a constant speed with which they felt comfortable.

EEG recordings

EEG were recorded with ActiCHamp amplifier using PyCorder software (Brain Products)

from 60 channels using the 64-Channel Standard Electrode Layout for actiCHamp

except for FT9, FT10, TP9 and TP10. Reference electrode was on the left mastoid. Three

Fig 2. Timing of the tasks. A: Offline, B: Online.

https://doi.org/10.1371/journal.pone.0191673.g002
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electrooculographic (EOG) electrodes were placed above the nasion and below the outer can-

thi of the eyes as indicated in [15]. Electrode impedances were kept under 20 kO. Sampling

rate was 1 kHz.

Preprocessing

EEG were segmented using the stimuli markers that specify the start and end of the flickering.

Trend in the segmented data was removed and the data was filtered with a band-pass filter

with cut-off frequencies of 0.53 and 40 Hz in order to remove DC component and high fre-

quency artifacts including power line noise (50 Hz). No extra artifact removal method was

used as SSVEPs are not sensitive to low frequency artifacts like eye or body movements [16].

All 60 EEG channels were included in the offline and online tasks to have consistency across

subjects. Fieldtrip toolbox was used for both offline and online analysis [17].

Power spectrum

Fast Fourier Transform was used with Hanning window to calculate the power spectrum of

the preprocessed EEG for a 3s stimuli length. The spectrum contained both the first and sec-

ond harmonics (The nth harmonic = n × the stimulation frequency) of the flickering frequen-

cies. Frequency spectrum included delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), and beta

(14–30 Hz) bands. Relative power was calculated as the ratio of the sum of the power at a spe-

cific band (e.g. delta) over the sum of the power in the broad spectrum (1–30 Hz).

Feature extraction

Canonical correlation analysis (CCA) was used to generate features for classification. For the

detailed implementation of the method see [18]. Briefly, we generated data composed of sine

and cosine functions that have the same lengths as the segmented EEG data. Then the canoni-

cal correlations were calculated between the EEG and the sine and cosine segments. The fre-

quencies of the sine and cosine functions corresponded to the first and second harmonics of

the stimulation frequencies. Therefore, two canonical correlation values were calculated for

each of the four stimulation frequencies and their second harmonics. These sixteen (8 × 2) cor-

relation values were used as the features for the classification.

Classification

Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate the BCI

classification performance using features generated by CCA. These classifiers were used in pre-

vious SSVEP-based BCI designs in the literature: K-NN [19], Naïve Bayes [20], and Decision

Tree [21]. All three classifiers were implemented with the Statistics Toolbox of Matlab. Offline

classification accuracy was calculated for different length (1s, 2s, and 3s) of the stimuli using

leave-one-out approach. Before the online classification, the classifiers were trained using the

whole data in the offline task. All three classifiers were used in the online classification. How-

ever, as each classifier generated different classification output, only one of them (Naïve Bayes

classifier prediction) was presented to the subject to prevent confusion. Here, the decision to

use Naïve Bayes classifier among others was based on its popularity in BCI research. Impor-

tantly, when selecting the classifier in advance, we did not know about the final results of

classification accuracy among all classifiers, which was only possible to assess upon the com-

pletion of all online experiments. Online classification was performed for the stimuli length of

3s.

SSVEP-based BCI performance under different perturbations
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Statistical analysis

Two-way repeated measures analysis of variance (ANOVA) was used to investigate the differ-

ences in the mean performance of subjects depending on the classifier and stimulus duration

factors for the offline task, and depending on the classifier and perturbation factors for the

online task. Differences between the classifiers in the offline task and the differences between

the conditions in the online task across subjects were evaluated by paired sample t-test with

false discovery rate (FDR) correction [22]. Correlations between the relative power during sti-

muli presentation and the performances across subjects were calculated for delta, theta, alpha

(low alpha: 8–10 Hz, high alpha: 10–13 Hz) and beta bands with Pearson correlation coeffi-

cient and the significance was estimated using cluster-based permutation statistics, which take

into account spatial proximity of the electrodes with significant effects [23]. Differences in the

duration of the experiments and power of oscillations in different frequency bands among

online conditions across subjects were evaluated using one-way analysis of variance

(ANOVA).

Results

Offline classification

In Fig 3, mean accuracies (%) with standard errors are given for varying stimuli length from 1

to 3 seconds in the offline part of the experiment.

Fig 3. Mean accuracies (%) (N = 24) vs. stimuli length–offline task. �: p<0.05, ��: p<0.01, ���: p<0.001 (FDR

corrected). Comparisons (t-test) between the classifiers.

https://doi.org/10.1371/journal.pone.0191673.g003
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In Fig 3, when the stimuli length was short (i.e. 1s), Naïve Bayes classifier accuracy was higher

than the accuracy of K-NN and Decision Tree classifiers (p<0.001 in each case). However, there

was no significant difference between the performance of K-NN and Decision Tree classifiers.

For the larger stimuli length (i.e. 2s), Naïve Bayes classifier accuracy was still higher than the

accuracy of K-NN (p<0.05), and Decision Tree (p<0.01) classifiers. For this length, K-NN accu-

racy was also superior to Decision Tree (p<0.01). For the longest stimuli length (i.e. 3s), K-NN

accuracy was higher than the accuracies of Naïve Bayes (p<0.05) and Decision Tree (p<0.01)

classifiers. For this length, Naïve Bayes performance was still superior to Decision Tree (p<0.05).

Repeated measures ANOVA (see Table 1) showed significant difference in the mean accu-

racies in the offline task depending on the classifier, stimuli length and their interaction

(p<0.001 in each case).

Mean classification accuracies across subjects were> = 97% for all classifiers (mean ± SD;

K-NN: 99.54 ± 0.72, Naïve Bayes: 98.93 ± 1.69, Decision Tree: 96.62 ± 4.30) in offline condition

when the stimuli length was 3 s.

In Fig 4, median power spectrum of all subjects and the power spectrum of a representative

subject (Subject 18) are presented depending on the flickering frequency (F) in the offline task.

In Fig 4, peaks corresponding to the first and the second harmonics of the flickering fre-

quencies can be seen. As the alpha band coincides with the first or second harmonics of the

flickering frequencies (except F = 15 Hz), some of the stimuli peaks are overlapped with the

endogenous alpha oscillations.

In Fig 5, median power topography of all subjects and the power topography of a representative

subject (Subject 18) are presented depending on the flickering frequency (F) in the offline task.

In Fig 5, the increase of the power in the corresponding flickering frequency over the visual

cortex can be seen. Besides, the spatial shift of the peak power in the occipital channels depend-

ing on focusing to the left or right visual field is noticeable.

Online classification

In Fig 6, mean accuracies (%) with standard errors are provided for a stimuli length of 3 sec-

onds under different perturbations.

In Fig 6, for the K-NN classifier, accuracy in Control condition was higher than Speaking

(p<0.01) and Thinking (p<0.05) conditions. Besides, accuracy in Listening condition was

higher than in Speaking (p<0.05) condition. For the Naïve Bayes classifier, accuracies in Con-

trol and Listening conditions were higher than in Speaking (p<0.05 in each case) and Think-

ing (p<0.05 in each case) conditions. For the Decision Tree classifier, again, accuracy in

Control condition was higher than in Speaking (p<0.001) and Thinking (p<0.05) conditions.

Moreover, performance in Listening condition was also superior to Speaking (p<0.01) and

Thinking (p<0.05) conditions. Furthermore, accuracy in Thinking condition was higher

(p<0.05) than the accuracy in Speaking condition for this classifier.

Table 1. Two-way repeated measures ANOVA table for mean accuracies in the offline task depending on classifier

and stimuli length (i.e. duration).

Source SS df MS F p
Duration 3.391 2 1.695 82.07 <0.001

Classifier 0.081 2 0.040 25.62 <0.001

Duration x Classifier 0.049 4 0.012 11.87 <0.001

Duration x Subject 0.950 46 0.021 - -

Classifier x Subject 0.073 46 0.002 - -

Duration x Classifier x Subject 0.094 92 0.001 - -

https://doi.org/10.1371/journal.pone.0191673.t001
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Repeated measures ANOVA (see Table 2) showed significant difference in the mean accu-

racies in the online tasks depending on the classifier, perturbation, and their interaction

(p<0.001).

In Thinking and Speaking conditions during the online task the mean classification accu-

racy was decreased across subjects in all classifiers compared to the Control condition. How-

ever, this decrease was surprisingly small amounting to only about 5%. There was no

significant difference between Listening and Control conditions. In Fig 7, median power spec-

trum of all subjects and a representative subject (Subject 18) were presented depending on the

online task using the SSVEP responses from all focused circles.

In Fig 7, median power of all subjects did not reveal pronounced artifacts among the online

conditions due to perturbation conditions. Only in the Speaking condition, one could observe

that the median delta band power was visibly higher than in the other conditions. To further

verify this observation, we averaged power spectra across channels individually for each sub-

ject and condition and compared then the power in delta, theta, alpha and beta power bands

using ANOVA (See Table 3).

The results of this comparison showed that the power of oscillations was different only in

delta (p<0.001) and theta (p = 0.005) frequency range. Post-hoc comparisons showed that the

power of oscillations in Speaking condition was significantly higher compared to all other con-

ditions (p<0.001 in each case) in delta range and it was significantly higher than in Control

(p = 0.015) and Listening (p = 0.009) conditions in theta frequency range. No significant

differences at other frequencies were observed. When we restricted the same analysis to Oz

electrode, the power of oscillations was different only in delta frequency range (p<0.001,

F = 16.49) and post-hoc analysis showed that the power of delta oscillations in Speaking

Fig 4. Median power spectrum of all subjects and the power spectrum of a representative subject (Subject 18) depending on the

frequency (F) of the circle with attentional focus. Left: f = 15 Hz, Right: f = 12 Hz, Down: f = 8.57 Hz, Up: f = 5.45 Hz. flickering frequency

(f) in the offline task. Power was averaged across trials. Each single trace represents one of the 60 EEG channels.

https://doi.org/10.1371/journal.pone.0191673.g004
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condition was significantly higher (p<0.001 in each case) compared to all other conditions in

this range.

In Fig 8, median power topography of all subjects and the power topography of a typical

subject (Subject 18) are presented depending on the perturbation conditions in the online

tasks. In agreement with the results presented above, the increase in the delta and theta power

Fig 5. Median power topography of all subjects (A) and the power topography of a representative subject (Subject 18) (B) in different

frequency bands depending on the flicker frequency (F) of the circle with the attention focus in the offline task. Left: f = 15 Hz, Right:

f = 12 Hz, Down: f = 8.57 Hz, Up: f = 5.45 Hz. Power was averaged across trials.

https://doi.org/10.1371/journal.pone.0191673.g005
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in frontal channels can be observed in Speaking condition for the median power of all subjects

(A).

For the Naïve Bayes classifier, in Speaking, Thinking, and Listening conditions, the number

of subjects with higher performance with respect to the Control condition was 5, 4, and 9

respectively. However, the number of subjects having lower performance with respect to their

Control condition was 16, 18 and 12 respectively. The number of subjects who did not show

any difference in their performance was 3, 2, and 3 respectively. Among them one subject had

100% accuracy in all conditions.

Correlation of alpha power with the performance. Alpha oscillations are known to

relate to task performance [24,25]. In order to gain further insight into the role of alpha oscilla-

tions during the online performance we correlated classification accuracy with the power of

alpha oscillations in low (8–10 Hz) and high (10–13 Hz) frequency bands. In Fig 9, a

Fig 6. Mean accuracies (%) under different perturbations (N = 24)–online tasks (3 s). �: p<0.05, ��: p<0.01, ���:

p<0.001 (FDR corrected). Comparisons (t-test) between the perturbations.

https://doi.org/10.1371/journal.pone.0191673.g006

Table 2. Two-way repeated measures ANOVA table for mean accuracies in the online task depending on classifier and perturbations.

Source SS df MS F p
Perturbation 2347.8 3 782.6 11.47 <0.001

Classifier 6445.0 2 3222.5 24.65 <0.001

Perturbation x Classifier 201.7 6 33.6 4.55 <0.001

Perturbation x Subject 4707.2 69 68.2 - -

Classifier x Subject 6012.5 46 130.7 - -

Perturbation x Classifier x Subject 1018.7 138 7.3 - -

https://doi.org/10.1371/journal.pone.0191673.t002
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significant negative Pearson correlation (cluster p = 0.02) between the relative high alpha (10–

13 Hz) power and the Naïve Bayes classifier performance in the Listening task is presented. In

none of the other conditions we observed significant correlation between alpha power and the

BCI performance.

One-way ANOVA showed no difference in duration of the experiment among online con-

ditions across subjects. The mean duration for each of the online conditions was ~14 min.

Discussion

To evaluate a dependency of the classifier accuracy, an instance based (K-NN), a probabilistic

(Naïve Bayes) and an entropy based (Decision Tree) classifier were used. Different classification

Fig 7. Median power spectrum of all subjects and the power spectrum of a representative subject (Subject 18) depending on the online

conditions: Control, Speaking, Thinking, and Listening. Power was averaged across trials. The activity relates to all flickering frequencies.

Each trace represents one of the 60 EEG channels.

https://doi.org/10.1371/journal.pone.0191673.g007

Table 3. One-way ANOVA table for power depending on perturbation.

Frequency band Source SS df MS F p
Delta Perturbation 1084 3 361.332 25.2 <0.001

Error 1146.89 80 14.336

Total 2230.89 83

Theta Perturbation 3.25 3 1.082 4.5 0.0055

Error 21.17 88 0.241

Total 24.42 91

Alpha Perturbation 0.23 3 0.078 0.88 0.4533

Error 7.03 80 0.088

Total 7.26 83

Beta Perturbation 0.06 3 0.021 1.88 0.1405

Error 0.85 76 0.011

Total 0.92 79

https://doi.org/10.1371/journal.pone.0191673.t003
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approaches can help in capturing the individual differences in brain responses and provide a

clue to the understanding of the appropriate classification scheme for each subject.

Interestingly, there was no difference in the duration of the experiments among conditions

across subjects. One might expect that the Speaking and the Thinking conditions would last

longer as the mean accuracies for these conditions were lower than the Control and the Listen-

ing conditions. As subjects should indicate their correct choice in the presence of a mismatch

Fig 8. Median power topography of all subjects (A) and the power topography of a representative subject (Subject 18) in different

frequency bands (B) depending on the perturbation condition in the online tasks. Power was averaged across trials and all target frequencies.

https://doi.org/10.1371/journal.pone.0191673.g008
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between the classifier prediction and their selection, this potentially might add some extra

time to the overall length of the experiment. We assume that subjects were trying to compen-

sate for this loss involuntarily in order to sustain their internal rhythm of counting.

Another interesting observation relates to the individual differences in the evaluation of the

difficulty of the conditions. In general, there was no consistency among subjects indicating

that one condition was harder than the other, for some of the subjects Speaking was the hard-

est condition, yet for others Thinking or Listening condition.

Spectral analysis revealed that even during the Speaking condition the spectra of the EEG

signals were not strongly contaminated with muscle or motion artifacts in the frequency

ranges other than the delta and the theta range. These ranges, however, are usually not used

for SSVEP. Because of this we conclude that the decrease in the classification accuracy during

the Speaking condition is not only due to decreased quality of the EEG signal in theta band but

also due to the other considerations, most likely having a cognitive origin as explained below.

This observation is further corroborated by the fact that we also observed a decrease in the

classification in the Thinking condition where EEG signals have not demonstrated the pres-

ence of artifacts. Silently counting is equivalent to motor imagery which in general activates

similar areas as during the performance of real movements [26]. In this sense these two condi-

tions in addition to BCI performance might be considered as an example of a dual task para-

digm, which indeed is known to split the attention [27]. This in turn might explain the

decrease in BCI accuracy exactly in these two conditions due to the drop in attention relating

to focusing on the flickering stimuli. Recently, Brandl et al. [28] investigated the effects of five

different distractions in addition to the Control condition on the motor-imagery based BCI

performance using Common Spatial Patterns and Regularized Linear Discriminant Analysis.

They showed that the decreased performance in distraction conditions can be improved using

an ensemble of classifiers and a two-step classification method that first separates the corre-

sponding distraction condition from the other conditions using one-vs-all approach and then

applies different classifiers for each group to classify the data into left or right hand motor

imagery. The distractions were based on visual (eyes-closed, watching video with a flicker),

Fig 9. Pearson correlation between relative high alpha (10–13 Hz) power and the Naïve Bayes classifier performance in the Listening condition across

subjects. A–Topography of the correlations. Black dots represent the channels that belong to the negative cluster (p = 0.02, 1000 permutations). B—An exemplary

scatter plot for one of the channels (C4) from the significant cluster.

https://doi.org/10.1371/journal.pone.0191673.g009
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tactile, muscular and auditory conditions. Although there are similarities between their and

our study in terms of the introducing perturbations, there are also considerable differences.

Compared to [28] we used SSVEP based BCI. Moreover, we consistently investigated effects of

mostly encountered distractors in real world, namely speaking (both loud and internal) and

listening. Both studies demonstrate a necessity for further investigation of other perturbations

for the development of robust BCI systems.

We did not find a difference in the performance between Listening and Control conditions.

If we consider Listening task as a steady-state speech sound condition, this result is consistent

with another study, where authors did not find any difference between quiet (i.e. Control in

our case) and steady-state speech noise (i.e. Listening in our case) performances in a serial

recall task [29].

In addition we also provide a possible implication of our study for the effect of noise on

learning processes. Increase in the accuracies under different perturbations for some subjects

shows that perturbations should not always be considered as negative in terms of BCI perfor-

mance. In fact, there is an ongoing debate about the impact of noise and music on the perfor-

mance in different tasks [30]. It has been shown that white noise improved the working

memory performance in a delayed response task in monkeys [31]. However, in a recent study,

white noise was detrimental in the working memory task whereas it had beneficial effects in

other tasks [32]. Therefore, authors concluded that white noise has differential effects on per-

ception and cognition depending on various factors (e.g. timing of white noise presentation)

[32].

Specific to the Listening condition, here we present a neural marker of the task performance

based on relative high alpha power in a broad range of cerebral cortex including central, tem-

poral and parietal regions. Subjects with higher relative high alpha power during the stimuli

presentation in the Listening condition had lower performance. Interestingly the negative cor-

relation was strongest over the left hemisphere (Fig 9) which is known to be primarily respon-

sible for the language processing [33]. Stronger alpha power usually indicates active inhibition

over the areas whose activity should be suppressed [34] for instance in order to avoid effects of

task distractors. In our case playback of the counting can actually be considered as a distractor

with respect to the performance of the BCI task. Negative correlation between the relative

alpha power and performance might indicate that in subjects where the listening to the pre-

sented speech had stronger distracting effects (i.e. worse performance)–the suppression was

strongest leading to larger power of alpha oscillations over the centro-temporal areas of the left

hemisphere. The lack of such correlation in other two distracting conditions (Speaking and

Thinking) can also be due to abovementioned presence of two tasks where additional neuronal

processing, involved with task switching, cause extra modulation of alpha oscillations thus

leading to the masking of the correlation.

We believe that various classification techniques used in our study are sufficient for the

demonstration of the effects of perturbations on SSVEP-based BCI performance for the follow-

ing reasons:

1. As we argue in the discussion, the drop in the performance is likely to be due to the cogni-

tive factors such as divided attention because of the presence of the second task and not due

to the degraded signal quality where the use of other classifiers indeed might have an

advantage.

2. Although absolute performance might potentially have a boost of a few percent when using

other classifiers, the relative effect of perturbations is likely to be similar.
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3. The fact that we detected a moderate effect of perturbations using all three classifiers indi-

cates that the detection of perturbations is not related to a specific classifier.

In this study, we limited our feature extraction method to CCA and used CCA-based fea-

tures with different classifiers. Using lately introduced methods (e.g. multivariate synchroniza-

tion index [35], temporally local multivariate synchronization index [36]) to detect the

frequency in SSVEPs can be a subject of future study.

Conclusions

We quantified the robustness of a SSVEP-based online BCI under different perturbations

using CCA features. Conditions requiring active performance such as loud or silent counting

resulted only in slight decrease in BCI performance which indicates that SSVEP-based BCI

can be used in parallel during the conversations. The fact that in some subjects perturbations

resulted even in better performance indicates that the different cognitive strategy can be used

for improving the accuracy of BCI within individuals.

Supporting information

S1 Video. A demonstrative video showing one trial from the offline task. Subject focuses on

each of the four randomly presented flickering circles indicated by the red oval frame for three

seconds with an inter-stimulus interval (ISI) of one second.

(MP4)

S2 Video. A demonstrative video showing several trials from the online task. Subject

focuses on one of the four flickering circles for three seconds and confirms (presses ‘Y’ key) or

rejects (presses ‘N’ key and then specifies the correct response with the arrow keys) the classifi-

cation result using keyboard.

(MP4)
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