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Abstract

We introduce Primal-Dual Wasserstein GAN—a new learning algorithm for build-
ing latent variable models of the data distribution based on the primal and the
dual formulations of the optimal transport (OT) problem. We utilize the primal
formulation to learn a flexible inference mechanism and to create an optimal ap-
proximate coupling between the data distribution and the generative model. In
order to learn the generative model, we use the dual formulation and train the de-
coder adversarially through a critic network that is regularized by the approximate
coupling obtained from the primal. Unlike previous methods that violate various
properties of the optimal critic, we regularize the norm and the direction of the
gradients of the critic function. Our model shares many of the desirable properties
of auto-encoding models in terms of mode coverage and latent structure, while
avoiding their undesirable averaging properties, e.g. their inability to capture sharp
visual features when modeling real images. We compare our algorithm with several
other generative modeling techniques that utilize Wasserstein distances on Fréchet
Inception Distance (FID) and Inception Scores (IS).

1 Introduction

A prominent approach to unsupervised learning with deep latent variable models is the paradigm of
Variational Autoencoders (VAEs, [1, 2]), which apply the principles of maximum likelihood estima-
tion and variational posterior inference for learning. This paradigm provides a stable algorithmic
framework for capturing high dimensional and complex data distributions with good generalization
performance. However, it also requires generative models to have explicit densities and noise terms
in the sample space to make inference possible. In VAEs, as well as in other auto-encoding based
models, a combination of model mismatch and poor estimation of the posterior due to approxi-
mation/amortization gaps results in systematic biases in the learned distribution, e.g. undesirable
averaging effects that are reflected in the samples produced.

The framework of Generative Adversarial Networks (GANS, [3]) is an antithesis to the paradigm
of maximum likelihood estimation in several ways. Training of GANs requires neither an inference
mechanism, nor a generative distribution that admits an explicit density to learn the parameters of
the model. In GANs, estimation of the discrepancy between the data distribution and the generative
model is accomplished through a divergence approximator [4] that is learned adversarially using
independent samples from both distributions. This estimation is sound only at the non-parametric
limit and the gap between the actual discrepancy and the estimated lower bound needs to be reduced
through careful guidance of the functions selected to represent the divergence.

This work builds up on the theoretical analysis presented in [5, 6]. Our objective is to find a synthesis
of the desirable qualities of the auto-encoding models and GANs using the theory of Optimal
Transport [7] and statistical divergences associated with this framework, i.e. Wasserstein distances.
Although auto-encoding models like VAEs have been combined with GANs in many different ways
in recent literature (e.g. [8, 9, 10, 11, 12, 13]) in heuristic fashion, none of these succeed in bringing
out the best of both paradigms and provide a strong theoretic justification. In this work, we bring
together the two facets of the optimal transport problem by using the approximate auto-encoding
solution to the primal problem for guiding the functions that represent the dual Wasserstein distance
used for training the generative model.
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2 Notations and preliminaries

We will denote scalars and functions with lowercase italic letters (i.e. f ), random variables and
mappings with capital letters (i.e. X,G), and vectors with bold lowercase letters (i.e. x). We use
calligraphic letters (i.e. F ,X ) to denote sets. Prob(X) denotes the class of all probability measures
defined on X . Each probability measure is indicated with letters π, τ , P and Q with an appropriate
subscript where necessary (i.e. πY ∣X ,Pdata,QZ∣X ). Greek letter λ is reserved for (non-negative)
trade-off parameters. supp P denotes the support of a probability measure.

Given a mapping F ∈ F ∶ X → Y , the pushforward measure F#µ ∈ Prob(Y) is the distribution
obtained by the deterministic transformation of the probability mass of x ∼ µ ∈ Prob(X) according
to y = F (x). Given two probability measures, PX ∈ Prob(X) and PY ∈ Prob(Y), π ∈ Π(PX ,PY )
indicates the set of all couplings or joint probability measures in the product space X × Y with
specified marginals π(⋅,Y) = PX and π(X , ⋅) = PY . We will refer to the product measure PX ⊗ PY

with independence X á Y as the trivial coupling and denote it as π⊗ ∈ Π(PX ,PY ).

A divergence is defined as a function d ∶ A × A → IR
+, such that d (a,b) = 0 iff a = b (non-

negativity and identity of indiscernibles). A metric (or distance) is a divergence with symmetry
d (a,b) = d (b,a) and subadditivity d (a,c) ≤ d (a,b)+ d (b,c) for all a,b,c ∈ A. A statistical (or
probability) divergence D(µ ∣∣ν) ∶ Prob(X) × Prob(X) → IR

+ measures the discrepancy between
two probability measures defined over the same set. Wasserstein distances, which is the central
topic of this work, is a particular example of an integral probability metric (IPM), which is a class
of statistical divergences. In Appendix D, we summarize the benefits of using IPMs in generative
modeling in comparison to more commonly known f -divergences, such as KL divergence used in
maximum likelihood estimation.

3 Primal

In this work, we are interested in Wasserstein distances, a family of probability metrics based on the
theory of Optimal Transport. The optimal transport problem provides a way to measure the distance
between two distributions from the perspective of transportation of probability mass. The primal of
the optimal transport problem formulated by Kantorovich [7] is given as,

OTc(Pdata,PG) = inf
π∈Π(Pdata,PG)

∫
X×Y

c(x,y)dπ(x,y) = inf
π∈Π(Pdata,PG)

E
(x,y)∼π

[c(x,y)] (1)

where c ∶ X ×Y → R∪{+∞} is a given cost function for transporting a unit of mass and the infinimum
is over all couplings between Pdata and PG. The objective in optimal transport is to find an optimal
coupling π∗ ∈ Π(Pdata,PG) such that the aggregate transport cost of moving (probability) mass from
Pdata to PG (and vice versa if c is symmetrical) is minimized. Given Pdata and PG are defined on the
same (Polish) metric space (X , d ), the p-Wasserstein distance between them is

DW
p (Pdata ∣∣PG) = OTd p(Pdata,PG)1/p = ( inf

π∈Π(Pdata,PG)
E

(x,y)∼π
[d (x,y)p])

1/p

. (2)

Note that DW
p (Pdata ∣∣PG) is a metric proper in Prob(X ) for p ∈ [1,∞). In this work, we focus on

1-Wasserstein distances for Euclidean metric spaces, i.e. d (x,y) = ∣∣x − y∣∣.
3.1 Reparameterization

Searching over the space of couplings, Π(Pdata,PG), is a difficult task when Pdata and PG are
complex distributions in high dimensional spaces. In general, maintaining the marginal constraints,
π(⋅,X ) = PX and π(X , ⋅) = PG, of a given joint distribution π ∈ Prob(X ×X ) during optimization
is challenging.

Consider the special case where the generative distribution PG can be specified as a latent variable
model that maps latent codes from a simple prior distribution z ∼ PZ ∈ Prob(Z) to the sample space
X through a deterministic decoder G, i.e. y = G(z) and PG = G#PZ . In this case, it is possible to
reparameterize the constrained optimization problem in Eq. 1 as ([6], see Fig. 1),

OT∣∣⋅∣∣(Pdata,PG) = inf
τ∈Π(Pdata,PZ)

E
(x,z)∼τ

∣∣x −G(z)∣∣ = inf
QZ∣X s.t.

QZ=PZ

E
x∼Pdata

z∼QZ∣X=x

∣∣x −G(z)∣∣
(3)

which is over all conditional distributions QZ∣X such that the aggregated posterior QZ , which is the
marginal distribution over Z when x ∼ Pdata and z ∼ QZ∣X=x, is equivalent to the prior, i.e. QZ = PZ .
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Figure 1: Reparameterization of
couplings: Given a latent variable
model PG specified by prior PZ and
a deterministic map G(z) (shown
in blue), optimal POT coupling π̃∗

(shown in green) can be reparame-
terized by combining G(z) with the
optimal encoderQ∗(x, ǫ) according
to Eq. 5. Sampler Q∗ parameter-
izes a probabilistic encoder Q

∗
Z∣X

(shown in red) that maps Pdata to PZ .

In effect, the reparameterization removes from the marginal constraints, the decoder of the generative
model G, a highly complex and nonlinear mapping between the latent space and the sample space, and
transfers it inside the expectation. Instead of matching PG, this simplified constrained optimization
problem requires us to match only the prior PZ , which is defined over a lower dimensional space and
corresponds to a much simpler distribution in general.

3.2 Penalized Optimal Transport

The constrained optimization problem in Eq. 3 can be relaxed by introducing a divergence between
the prior PZ and the aggregated posterior QZ as a penalty for violating the constraint QZ = PZ . This
is referred to as the penalized optimal transport objective [6, 14] :

POT∣∣⋅∣∣(Pdata,PG) = inf
QZ∣X

E
x∼Pdata

z∼QZ∣X=x

∣∣x −G(z)∣∣ + λZ ⋅D(QZ ∣∣PZ)
(4)

The divergence D can be chosen based on several considerations. In the case of an empirical data
distribution Pdata that can be viewed as a uniform mixture of Dirac measures, the density of the
aggregated posterior (assuming it exists) cannot be efficiently computed for large datasets. Therefore,
a direct application of divergences that require computation of this density, such as f -divergences, is
not tractable. Instead, a divergence computation that relies solely on samples from the distributions
would be much more suitable for this task (e.g. estimating integral probability metrics such as MMDs
or GAN based divergence approximators using independent samples).

Since its density does not need to be tractable in this case, the probabilistic encoder QZ∣X can
be parameterized by highly flexible function approximators without a fixed probability class (e.g.
unlike Gaussian encoders in regular VAEs [1]). This can be accomplished by introducing a random
noise component from a fixed distribution ǫ ∼ N(0, I) (i.e. a multivariate Normal distribution), and
parameterizing the encoder as a flexible deterministic sampler z = Q(x, ǫ) where Q ∈ Q ∶ X ∪E → Z :

POT∣∣⋅∣∣(Pdata,PG) = min
Q∈Q

E
x∼Pdata

ǫ∼N(0,I)

∣∣x −G(Q(x, ǫ))∣∣ + λZ ⋅D(Q#Pdata ⊗N(0, I) ∣∣PZ)
(5)

The sampler Q can represent any conditional distribution QZ∣X at the non-parametric limit, i.e. when
Q is a universal function approximator class, and when the intrinsic dimensionality of the random
noise component is (at least) as large as the dimensionality of Z .

3.3 Optimal POT Couplings

Minimizing the penalized optimal transport objective in Eq. 5 corresponds to learning a flexible
inference mechanism for a fixed generative model PG through a probabilistic encoder QZ∣X that is
parameterized by the sampler Q and regularized by the prior over latent codes PZ . For a given λZ ,
the optimal sampler Q∗ of Eq. 5, along with the decoder G, parameterizes an optimal POT coupling
π̃
∗

between Pdata and PG (see Figure 1). Under certain regularity conditions on the divergence D ,
the optimal encoder Q∗

Z∣X parameterized by Q∗ is confined into the feasible region2 (i.e. Q∗Z = PZ)

as λZ →∞; and results in a valid coupling, i.e. π̃
∗ ∈ Π(Pdata,PG).

Samples from this (possibly approximate) coupling, (x,y) ∼ π̃∗, can be obtained by first sampling
a point from the data distribution x ∼ Pdata and then reconstructing it under Q∗ and G, i.e. y =
G(Q∗(x, ǫ)), which gives its coupled pair (see Figure 1). In the dual problem, we use samples from
π̃
∗

as a source of regularization for learning the generative model.
2Equivalent to optimization with constraint D(QZ ∣∣PZ) ≤ rλZ

, where rλZ
→ 0 as λZ →∞.

3



4 Dual

The duality theorem for the optimal transport problem provide us with a different perspective. While
in the primal problem, the central notion is the minimal cost; in the dual problem, it is competitive
price. In the following, we present a special case of the Kantorovich duality [7] that is relevant to our
setting:

Theorem 1 (Kantorovich-Rubenstein Duality). Let (X , d ) be a compact metric space and µ and
ν be two (probability) measures in Prob(X). If the unit transport cost is the distance in this metric
space, c(x,y) = d (x,y), then,

(i) there is duality,

inf
π∈Π(µ,ν)

∫
X×X

d (x,y)dπ(x,y) = sup
f∈FLip

∫
X
f(x)dµ(x) −∫

X
f(y)dν(y) (6)

where the supremum is over the class of all bounded 1-Lipschitz3 functions f ∶ X → IR.

(ii) the following two statements are equivalent:

(a) π∗ is an optimal coupling for the primal;

(b) For any optimal potential function for the dual, f∗ ∈ FLip, f∗(x) − f∗(y) = d (x,y)

is satisfied π∗-almost surely, i.e. E
(x,y)∼π∗

[✶[f∗(x) − f∗(y) = d (x,y)]] = 1.

Applying Theorem 1 to our setting, the dual optimal transport problem and 1-Wasserstein distance
between Pdata and PG can now be written as [5]:

OTd (Pdata,PG) = sup
f∈FLip

E
x∼Pdata

[f(x)] − E
y∼PG

[f(y)] = sup
f∈FLip

E
x∼Pdata

[f(x)] − E
z∼PZ

[f(G(z))]
(7)

The objective in the dual problem is to find an optimal potential f∗ ∈ FLip such that it assigns
the maximum aggregate value (price) to points that are concentrated on Pdata and the minimum
aggregate value to points that are concentrated on PG. The Lipschitz constraint, however, grounds
the potential function such that absolute differences between individual values that it assigns over all
X are bounded by a constraint of similarity, where similarity is measured by distance in this metric
space. Therefore, potential functions depend on the metric space in which the data points lie in and
are forced to assign similar values to points that are close to each other in this metric space.

In Wasserstein GANs (WGAN, [5]), the potential f ∈ FLip is represented by a critic network with
parameters that lie within a compact space [−b, b] to ensure a k-Lipschitz constraint is satisfied. Once
the parameters of the critic network f is learned sufficiently well by maximizing Eq. 7, the dual
distance based on this critic network is minimized to learn the parameters of the decoder G. However,
parameterizing the critic network such that it cannot lie outside the feasible set during any part of the
optimization process can over-constrain it and make WGANs prohibitively ineffective at reaching an
optimal potential (referred to as the capacity underuse problem in [15]).

4.1 Couplings and Potentials at Optimality

The optimal transport problem and its dual formulation have extensively studied geometric properties
that connect the geodesics (or shortest paths) of the metric space (X , d ), optimal couplings π∗ and
optimal potential functions f∗ together, e.g. the general statement given in Theorem 1 (ii) that is
valid for any metric space. In this section, we examine a corollary to Theorem 1 (ii) that applies to
Euclidean metric spaces [15] (see Appendix A for a proof):

Corollary 1. Let (X , d (x,y) = ∣∣x − y∣∣) be a compact metric space and the unit transport cost is
the distance in this metric space, c(x,y) = ∣∣x − y∣∣. Given π∗ is an optimal coupling for the primal
problem and f∗ is an optimal potential for the dual problem, if (x,y) ∈ supp π∗ with x and y distinct,

xt = (1 − t) ⋅ x + t ⋅ y with 0 ≤ t ≤ 1, and f∗ is differentiable at xt
4, then, ∇f∗(xt) = x−y/∣∣x−y∣∣ is

satisfied π∗-almost surely, i.e. E
(x,y)∼π∗

t∼Unif[0,1]

[✶[∇f∗(xt) = x−y/∣∣x−y∣∣]] = 1.

3(The best) Lipschitz constant of a function is defined with respect to a specific metric space (X , d ) as
∣∣f ∣∣L = supx,y∈X{∣f(y)−f(x)∣/d (x,y)}. 1-Lipschitz functions, f ∈ FLip, satisfy ∣∣f ∣∣L ≤ 1.

4We write ∇f(x) to indicate the gradient of f w.r.t its input instead of ∇xf(x) to simplify the notation.
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Figure 2: Optimal couplings π∗ and optimal potentials f∗: Left: We illustrate the conditional distribution
Y ∣X for an optimal coupling, π∗Y ∣X (in green). For an optimal potential f∗, gradient norms on the line segments

between pairs (x,y1) and (x,y2) are always one and the gradient direction (black arrows) is consistently the
unit vector pointing towards x from y1 and y2 (Corollary 1). Assuming it exists, this includes the gradient at
x (red arrow), i.e. ∇f∗(x). In this case, y1 and y2 (and the entire supp π∗Y ∣X ) must lie on the same half-line

(Proposition 2). Right: We illustrate the conditional distribution Y ∣X for the trivial coupling, π⊗
Y ∣X = PG (in

green). Corollary 1 does not apply to (all) line segments associated with π⊗, which significantly weakens the
theoretical justification given for the regularization scheme used in WGAN-GPs.

Note that this property determines the norm and the direction of the gradients of f∗ on line segments
between the coupled pairs (x,y) for any optimal coupling π∗. Authors of [15] use this property of
optimal potentials to motivate their choice of regularization for the critic network in their model,
WGAN with Gradient Penalty (WGAN-GP, [15]):

max
f∈F

E
x∼Pdata

[f(x)] − E
z∼PZ

[f(G(z))] + λf ⋅ E
(x,y)∼π⊗

t∼Unif[0,1]

[(∣∣∇f(xt)∣∣ − 1)2]
(8)

WGAN-GP objective encourages the norm of the gradients of the critic f to be close to 1 on certain
line segments in X . Unlike Corollary 1, however, WGAN-GP uses samples from the trivial coupling
(x,y) ∼ π⊗ to determine the line segments that the penalty in Eq. 8 is evaluated at, where the
endpoints x and y are independently chosen from Pdata and PG respectively. This is a practical choice
that stems from not having access to sample pairs from an optimal coupling (x,y) ∼ π∗. Note that
gradient directions are left unregularized since x−y/∣∣x−y∣∣ would be a random direction for samples
from the trivial coupling, which is the highest entropy (most random) coupling in Π(Pdata,PG) [16].

In general, Corollary 1 does not apply to samples from the trivial coupling since it is guaranteed
that supp π⊗ ≠ supp π∗ under mild conditions. We introduce the following set of propositions to
outline some of the common cases where the trivial coupling cannot be used to obtain samples from
an optimal coupling (see Fig. 2 for an intuition and Appendix A for proofs):

Monge-Mather shortening principle, [7]. No optimal coupling π∗ can have on its support two
distinct pairs (x1,y1) and (x2,y2) such that the line segments associated with them intersect at an
interior point, m = (1 − t1) ⋅ x1 + t1 ⋅ y1 = (1 − t2) ⋅ x2 + t2 ⋅ y2 where t1, t2 ∈ (0,1) (see Fig. 2).

Proposition 1. Given a neighborhood exists around any point y ∈ supp PG along ±(x2−x1)/∣∣x2−x1∣∣

for any two points x1,x2 ∈ supp Pdata, then supp π⊗ ≠ supp π∗.

Proposition 2. Given (x,y) ∈ supp π∗, and f∗ is differentiable at x, then supp π∗
Y ∣X=x is confined

to (a subset of) the half line given by x + t ⋅ (y−x/∣∣y−x∣∣) where t ∈ [0,∞).
Corollary 2. Given there exists a point x ∈ supp Pdata where f∗ is differentiable at x and supp PG

does not lie on a single line, then supp π⊗ ≠ supp π∗.

These results weaken the theoretical justification given for the regularization scheme used in WGAN-
GPs, which in practice has been utilized even in algorithms that are not directly connected to
Wasserstein distances (e.g. [17]). Although regularization of gradient norms on line segments
associated with the trivial coupling may have practical benefits in general, it is difficult to firmly place
it in the optimal transport theory (e.g. [18] suggests a connection to Sobolev IPM as an alternative
characterization).
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In this work, we propose a gradient vector penalty that guides the training of the critic network such
that it satisfies Corollary 1 on line segments associated with optimal POT couplings π̃

∗
defined in

Section 3.3, i.e. a much better approximation to optimal couplings than the trivial coupling:

max
f∈F

E
x∼Pdata

[f(x)] − E
z∼PZ

[f(G(z))] − λf ⋅ E
(x,y)∼π̃∗

t∼Unif[0,1]

∣∣∇f(xt) − x − y

∣∣x − y∣∣ ∣∣
2

(9)

Note that unlike the gradient norm penalty used in WGAN-GPs, we regularize gradient norms and
directions since directions provided by the pairs of samples from π̃

∗
are not random and closely

approximate pairings from optimal couplings.

4.2 Auto-encoding Critic Networks

As we outlined in Section 3, optimal couplings interlink samples from Pdata with samples from PG in
an auto-encoding manner when latent codes constitute a part of the generative model. However, the
dual problem as formulated in Eq. 7 makes no direct reference to couplings aside from the solution at
the optimality. Only at the optimality, properties of potentials are connected to optimal couplings as
we have shown in Section 4.1.

In the following, we rearrange the dual problem such that samples from a (possibly sub-optimal) cou-
pling, π ∈ Π(Pdata,PG), are used in computing the dual Wasserstein distance along with independent
samples from PZ (see Appendix B for a derivation):

OTd (Pdata,PG) = sup
f∈FLip

E
(x,y)∼π

[f(x) − λmix ⋅ f(y)] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))]

= sup
f∈FLip

E
x∼Pdata

[f(x) − λmix ⋅ E
z∼QZ∣X=x

[f(G(z))]] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))] (10)

Eq. 10 is valid for any conditional distribution QZ∣X whose aggregated posterior is equal to the
prior, i.e. QZ = PZ , as defined previously in Section 3.1. In the following proposition, we highlight
the connection between the gradient of the first expectation term in Eq. 10 and the gradient of an
auto-encoder with respect to parameters of the decoder when the potential function f have certain
properties (see Appendix C for a proof).

Proposition 3. Assume θ is a set of variables that parameterizes the decoder G, x ∼ Pdata is any
given data sample and f ∈ FLip is a (possibly sub-optimal) potential function that QZ∣X=x-almost

surely satisfies ∇f(G(z)) = x−G(z)/∣∣x−G(z)∣∣ where QZ∣X is any conditional distribution. Then, the
following statement is true:

∇θEx∼Pdata
[f(x) − λmix ⋅Ez∼QZ∣X=x

[f(G(z))]] = λmix ⋅ ∇θEx∼Pdata
[Ez∼QZ∣X=x

∣∣x −G(z)∣∣].

When a critic network is trained with the gradient vector penalty in Eq. 9, it also approximately
satisfies the condition in Proposition 3 for Q∗

Z∣X associated with π̃
∗
. In this case, if π̃

∗
is chosen as

the coupling in Eq. 10, the first term of Eq. 10 will directly contribute to auto-encoding of the data
distribution if the decoder of the generative model is trained to minimize it with a gradient based
method.

5 Primal-Dual Wasserstein GAN

In this section, we introduce Primal-Dual Wasserstein GAN, a new algorithm for training an auto-
encoding latent variable model of the data distribution that combines the primal and the dual for-
mulations of the optimal transport problem. The main principle of our algorithm is to estimate the
dual Wasserstein distance as formulated in Section 4.2 through a critic network that is regularized by
the gradient properties of optimal potentials given in Section 4.1; and to minimize this distance by
optimizing the parameters of the decoder to learn the generative model. The objective of the critic
can be summarized as follows:

max
f

E
(x,y)∼π̃∗

[f(x) − λmix ⋅ f(y)] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))] − λf ⋅ E
(x,y)∼π̃∗

t∼Unif[0,1]

∣∣∇f(xt) − x − y∣∣x − y∣∣ ∣∣
2

(11)

In PD-WGANs, we train an encoder network Q that is used both for inference of latent variables
and for obtaining samples from the optimal POT coupling; a critic network f for computing the dual
Wasserstein distance between the data distribution Pdata and the generative model PG; and a decoder
G that parameterizes the generative model.

6



The objectives for each network in PD-WGANs are given as follows:

Q∗ = argmin
Q

E
x∼Pdata

ǫ∼N(0,I)

∣∣x −G(Q(x, ǫ))∣∣ + λZ ⋅D(Q#Pdata ⊗N(0, I) ∣∣PZ)
(12)

f∗ = argmax
f

E
x∼Pdata

ǫ∼N(0,I)

[f(x) − λmix ⋅ f(G(Q∗(x, ǫ)))] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))]

−λf ⋅ E
x∼Pdata

ǫ∼N(0,I)
t∼Unif(0,1)

RRRRRRRRRRR
RRRRRRRRRRR∇f(t ⋅ x + (1 − t) ⋅G(Q

∗(x, ǫ))) − x −G(Q∗(x, ǫ))
∣∣x −G(Q∗(x, ǫ))∣∣

RRRRRRRRRRR
RRRRRRRRRRR
2 (13)

G∗ = argmin
G

E
x∼Pdata

ǫ∼N(0,I)

[f∗(x) − λmix ⋅ f
∗(G(Q∗(x, ǫ)))] − (1 − λmix) ⋅ E

z∼PZ

[f∗(G(z))]
(14)

In Eq. 12, we minimize the penalized optimal transport objective to find the optimal encoder Q∗ in
order to produce samples from an optimal POT coupling π̃

∗
(see Section 3.3). Based on this optimal

encoder and the current decoder, pairs of samples from π̃
∗

can be obtained by reconstructing real

samples x ∼ Pdata, i.e. (x,y = G(Q∗(x, ǫ)) ∼ π̃∗.
In Eq. 13, we train the critic network f to maximize the dual formulation from 4.2, while endowing
it with properties of optimal potentials through the penalty term we proposed in 4.1. Minimization of
this penalty term aligns the gradients (norm and direction) of f with unit vectors that point in the

direction of real samples x ∼ Pdata from their reconstructions under π̃
∗
, G(Q∗(x, ǫ)), throughout the

line segments that connect them.

Finally, in Eq. 14, parameters of G are learned by minimizing the dual Wasserstein distance based on
the trained critic network. Ideally, each equation is solved to optimality and the optimal function is
used in subsequent equations. In practice, we optimize each equation relatively well before updating
the ones that depend on it. The details of the training procedure is described in more depth in
Algorithm 1 in Appendix E.

The choice of hyperparameters λmix and λf depends on several factors such as the complexity of the
data distribution Pdata, and expressivity of the function classes that are used during optimization. A
crucial factor to consider is whether the optimal encoder Q∗ and the associated π̃

∗
correspond to a

valid coupling (whether it is within the set Π(Pdata,PG)), and further, how closely π̃
∗

approximates
an optimal coupling π∗ for the primal problem. If π̃

∗
is a valid coupling or close to a valid coupling

(i.e. Q∗Z ≈ PZ), then λmix can take a larger value within the range [0,1]. If π̃
∗

is close to an optimal
coupling, a larger λf for a stronger gradient penalty may be suitable.

From the perspective of gradient-based optimization, Wasserstein Autoencoders [14] are an edge
case of Primal-Dual Wasserstein GANs when λmix = 1 and λf →∞, i.e. when the gradients of f are
perfectly aligned on line segments associated with π̃

∗
. Therefore, hyperparameter pair (λmix, λf)

provide us with a space of generative modeling solutions that transition smoothly from emphasizing
auto-encoding of the data distribution and stronger mode coverage with an approximately optimal
coupling π̃

∗
, as in WAEs, to emphasizing generated sample quality (λmix → 0, λf <∞) and a closer

approximation to optimal couplings (compared to π̃
∗
) through a learned and gradient regularized

critic network.

6 Empirical Results

In this section, we empirically evaluate the proposed model. We would like to test if PD-WGANs
can simultaneously achieve (i) accurate reconstructions of data points, (ii) reasonable geometry of
the latent manifold, and (iii) random samples of good (visual) quality that avoids averaging effects
seen in VAEs and WAEs. Importantly, the model should generalize well; requirements (i) and (ii)
should be met on both training and test data. Further, we quantitatively and qualitatively compare our
algorithm with Wasserstein Autoencoders (with GAN based regularizer for better quality samples)
and WGAN-GPs on Inception and Frèchet Inception Distance (FID) scores. Due to limited space, we
summarize our main results in this section and refer the reader to Appendix F for additional results.

We use the DC-GAN architecture as implemented in [15] for the decoder and the critic networks,
which is commonly used in recent work on GANs and WAEs. We use a network similar to the critic
network for the encoder sampler and use (batch) normalization only in the decoder.
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Gradient Vector Penalty In Appendix F, Fig. 3 (middle-right), we show that the penalty term in Eq.
8 for WGAN-GPs and the penalty term in Eq. 9 for PD-WGANs, have distinct effects on the learned
critic function, i.e. minimizing one does not minimize the other during training. This empirically
shows that the two regularizers guide the critic network to two distinct regions in the function space.

CIFAR-10 CUB Birds Oxford Flowers

Model FID IS FID IS FID IS

WAE-GAN 87.7 4.18 ± 0.04 143.3 3.42 ± 0.04 145.9 2.30 ± 0.01
WGAN-GP 34.4 6.58 ± 0.06 70.4 4.51 ± 0.04 98.7 3.42 ± 0.04

PD-WGAN (λmix = 0) 33.0 6.70 ± 0.09 68.6 4.65 ± 0.04 84.9 3.75 ± 0.04

Table 1: FID and Inception scores (IS) on different datasets when using DC-GAN as implemented in [15].

Sample Quality In Table 1, we compare our algorithm (using λmix = 0, which emphasizes sample
quality) against WAEs with GAN based regularization (for better sample quality compared to WAE-
MMDs) and WGAN-GPs, in terms of FID and Inception scores on three different vision datasets.
PD-WGAN performs better from both baselines across all datasets. Since the regularization of the
critic is the only difference between PD-WGAN and WGAN-GP in this case (λmix = 0), our results
favor the gradient vector regularization we proposed compared to the gradient norm regularization
used in WGAN-GPs for the critic network, as is theoretically motivated in this work. In Appendix F,
Fig. 4, we provide random samples from WGAN-GPs and PD-WGANs for a visual comparison.

WAE (GAN) WGAN-GP (MMD) PD-WGAN (MMD, λmix = 0.5)
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s

Sample FID = 87.7 Sample FID = 34.4 Sample FID = 37.8

Table 2: Comparison of test reconstructions and sample quality on CIFAR-10 dataset.

Reconstructions and Latent Manifold In Table 2, we visually compare PD-WGANs (λmix = 0.5)
to WAEs and WGAN-GPs in terms of quality of test reconstructions and quality of samples. In
Appendix F, Table 3, we also show the latent manifolds learned by each algorithm by interpolating
real samples across latent space. The encoder for WGAN-GP is trained with the same objective as
the encoder of PD-WGANs, and does not have any effect on the training of its generative model.

Our results show that PD-WGANs have a much better generalization performance in terms of mode
coverage and reconstruction quality for test samples compared to WGAN-GPs while suffering a
minor degradation of sample quality in terms of FID scores. The quality gap between λmix = 0 (FID
= 33.0) and λmix = 0.5 (FID = 37.8) is related to the limited capacity of the generative model and
may be reduced with models with higher fidelity, as we will explore in future work.

Future Work We will investigate the generalization performance of these algorithms in more depth
in the future, over a larger selection of datasets, architectures and more expressive generative models.
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Appendix A Proofs for Section 4.1: Couplings and Potentials at Optimality

Corollary 1. Let (X , d (x,y) = ∣∣x − y∣∣) be a compact metric space and the unit transport cost is the distance
in this metric space, c(x,y) = d (x,y) = ∣∣x − y∣∣. Given π∗ is an optimal coupling for the primal and
f∗ is an optimal potential for the dual, if (x,y) ∈ supp π∗ with x and y distinct, xt = (1 − t) ⋅ x + t ⋅ y
with 0 ≤ t ≤ 1, and f∗ is differentiable at xt, then, ∇f∗(xt) = x−y/∣∣x−y∣∣ is satisfied π∗-almost surely, i.e.

E
(x,y)∼π∗

t∼Unif[0,1]

[✶[∇f∗(xt) = x−y/∣∣x−y∣∣]] = 1.

Proof:

Throughout, we assume (x,y) is an element of supp π∗ with x and y distinct, i.e. x ≠ y.

(i)
xt−y
∣∣xt−y∣∣

=
x−y
∣∣x−y∣∣

for all t ∈ [0,1).
Using the definition xt = (1 − t) ⋅ x + t ⋅ y,

xt − y∣∣xt − y∣∣ =
(1 − t) ⋅ (x − y)∣∣(1 − t) ⋅ (x − y)∣∣ = x − y∣∣x − y∣∣

(ii) −∣t − t′∣ ⋅ ∣∣x − y∣∣ ≤ f∗(xt) − f∗(x′t) ≤ ∣t − t′∣ ⋅ ∣∣x − y∣∣ for all t, t′ ∈ [0,1].
Using the fact that all potentials are Lipschitz bounded, ∣∣f∗∣∣L ≤ 1,

−∣∣xt − xt′ ∣∣ ≤ f∗(xt) − f∗(x′t) ≤ ∣∣xt − xt′ ∣∣
−∣∣(t − t′) ⋅ (x − y)∣∣ ≤ f∗(xt) − f∗(x′t) ≤ ∣∣(t − t′) ⋅ (x − y)∣∣
−∣t − t′∣ ⋅ ∣∣x − y∣∣ ≤ f∗(xt) − f∗(x′t) ≤ ∣t − t′∣ ⋅ ∣∣x − y∣∣

(iii) f∗(xt) = f∗(y) + (1 − t) ⋅ ∣∣x − y∣∣ = f∗(y) + ∣∣xt − y∣∣ for all t ∈ [0,1].
Using Theorem 1 (ii) and (ii) above to upper bound,

∣∣x − y∣∣ = f∗(x) − f∗(y) = f∗(x0) − f∗(x1)
= f

∗(x0) − f∗(xt) + f∗(xt) − f∗(x1)
≤ ∣t∣ ⋅ ∣∣x − y∣∣ + ∣1 − t∣ ⋅ ∣∣x − y∣∣ = ∣∣x − y∣∣

Since the l.h.s and the r.h.s of the inequality are identical, inequalities are in fact equalities.

f
∗(x0) − f∗(xt) = f∗(x) − f∗(xt) = ∣t∣ ⋅ ∣∣x − y∣∣
f
∗(xt) − f∗(x1) = f∗(xt) − f∗(y) = ∣1 − t∣ ⋅ ∣∣x − y∣∣

Therefore f∗(xt) = f∗(y) + (1 − t) ⋅ ∣∣x − y∣∣. Since (1 − t) ⋅ ∣∣x − y∣∣ = ∣∣xt − y∣∣, f∗(xt) =
f∗(y) + ∣∣xt − y∣∣, where f∗(y) is a constant for a given line segment.

(iv) Directional derivative along
xt−y
∣∣xt−y∣∣

is 1, i.e. limh→0

f∗(xt+h⋅
xt−y
∣∣xt−y∣∣

)−f∗(xt)

h
= 1.

f
∗(xt + h ⋅

xt − y∣∣xt − y∣∣ ) − f∗(xt) = ∣∣xt + h ⋅
xt − y∣∣xt − y∣∣ − y∣∣ − ∣∣xt − y∣∣

= (1 + h∣∣xt − y∣∣ )∣∣xt − y∣∣ − ∣∣xt − y∣∣ = h

Therefore limh→0

f∗(xt+h⋅
xt−y
∣∣xt−y∣∣

)−f∗(xt)

h
= limh→0

h

h
= 1

Using (iv), the gradient∇f∗(xt) can be decomposed as∇f∗(xt) = 1 ⋅xt−y/∣∣xt−y∣∣+v⊥ where xt−y/∣∣xt−y∣∣ ⋅v⊥ =
0, i.e. v⊥ represents the component of ∇f∗(xt) that is perpendicular to xt−y/∣∣xt−y∣∣. Then, ∣∣∇f∗(xt)∣∣ =√
1 + ∣∣v⊥∣∣2. Since the norm of the gradient is bounded as ∣∣∇f∗(x)∣∣ ≤ 1 (all potentials f are Lipschitz bounded),

the perpendicular component must be v⊥ = 0⃗. Therefore, in combination with (i), ∇f∗(xt) = xt−y

∣∣xt−y∣∣
=

x−y

∣∣x−y∣∣
.

This completes the proof. ◻
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Monge-Mather shortening principle, [7]. No optimal coupling π∗ can have on its support two distinct
pairs (x1,y1) and (x2,y2) such that the line segments associated with them intersect at an interior point,
m = (1 − t1) ⋅ x1 + t1 ⋅ y1 = (1 − t2) ⋅ x2 + t2 ⋅ y2 where t1, t2 ∈ (0,1).
Assume π is a coupling and m exists for two distinct pairs on its support as given. Then, coupling π+ that swaps
the pairs (x1,y1) and (x2,y2) with (x1,y2) and (x2,y1), has a strictly lower aggregate transport cost than
π, since (using the triangle inequality, see Figure 2),

∣∣x1 − y2∣∣ + ∣∣x2 − y1∣∣ < ∣∣x1 − y1∣∣ + ∣∣x2 − y2∣∣.
This breaks the c-cyclic monotonicity property of optimal couplings [7]. Therefore, π cannot be an optimal
coupling.

Proposition 1. Given a neighborhood exists around any point y ∈ supp PG along ±(x2−x1)/∣∣x2−x1 ∣∣ for any two
points x1,x2 ∈ supp Pdata, then supp π⊗ ≠ supp π∗.

Proof:

Given x1,x2 ∈ supp Pdata and there exists an ǫ ∈ [0,∞) such that y1 = y + ǫ ⋅ x2−x1∣∣x2−x1 ∣∣ ∈ supp PG and

y2 = y − ǫ ⋅
x2−x1∣∣x2−x1 ∣∣ ∈ supp PG, then, the two pairs (x1,y1), (x2,y2) ∈ supp π⊗. Consider the line segment

between x1 and y1; and the line segment between x2 and y2. Given t1 = t2 =
∣∣x2−x1 ∣∣

2ǫ+∣∣x2−x1 ∣∣ ∈ (0,1), these line

segments meet at an interior point m:

m = (1 − t1) ⋅ x1 + t1 ⋅ y1 = (1 − t2) ⋅ x2 + t2 ⋅ y2

m = (1 − ∣∣x2 − x1∣∣
2ǫ + ∣∣x2 − x1∣∣ ) ⋅ x1 +

∣∣x2 − x1∣∣
2ǫ + ∣∣x2 − x1∣∣ ⋅ (y + ǫ ⋅

x2 − x1∣∣x2 − x1∣∣ )
m =

2ǫ ⋅ x1 + ∣∣x2 − x1∣∣ ⋅ y + ǫ ⋅ (x2 − x1)
2ǫ + ∣∣x2 − x1∣∣

Since no optimal coupling can have on its support such a point (according to Monge-Mather shortening
principle), supp π⊗ ≠ supp π∗.

This completes the proof. ◻

Proposition 2. Given (x,y) ∈ supp π∗, and f∗ is differentiable at x, then supp π∗Y ∣X=x is confined to (a subset

of) the half line given by x + t ⋅ (y−x/∣∣y−x∣∣) where t ∈ [0,∞).
Proof:

Using Corollary 1, gradient of f∗ at x is given as ∇f∗(xt) = x−y

∣∣x−y∣∣ . If there exists y′ ∈ supp π∗Y ∣X=x, then

(x,y′) ∈ supp π∗ as well. Then, for any such y′, gradient of f∗ at x must also be∇f∗(xt) = x−y′

∣∣x−y′ ∣∣ . Therefore,

x−y′

∣∣x−y′ ∣∣ =
x−y

∣∣x−y∣∣ . This can only be true if any such y′ is an element of the half line given by x + t ⋅ (y−x/∣∣y−x∣∣)
where t ∈ [0,∞). Then, supp π∗Y ∣X=x cannot lie outside this half line.

This completes the proof. ◻

Corollary 2. Given there exists a point x ∈ supp Pdata where f∗ is differentiable at x and supp PG does not lie
on a single line, then supp π⊗ ≠ supp π∗.

Proof: Given x ∈ supp Pdata, y ∈ supp PG, then (x,y) ∈ supp π⊗. If supp PG does not lie on a single line,
then supp π⊗

Y ∣X=x does not lie on a single line since π⊗
Y ∣X=x = PG. Since for any π∗, supp π∗Y ∣X=x is a

subset of the half line given by x + t ⋅ (y−x/∣∣y−x∣∣) where t ∈ [0,∞), supp π⊗
Y ∣X=x ≠ supp π

∗

Y ∣X=x. Therefore,

supp π⊗ ≠ supp π∗.

This completes the proof. ◻
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Appendix B Coupling Based Reformulation of the Dual Problem

Assume π is a coupling between Pdata and PG, i.e. π ∈ Π(Pdata,PG). Then, the dual optimal transport problem
can be rewritten as follows:

OTd (Pdata,PG) = sup
f∈FLip

E
x∼Pdata

[f(x)] − E
y∼PG

[f(y)]
= sup

f∈FLip

E
x∼Pdata

[f(x)] − [λmix ⋅ E
(x,y)∼π

[f(y)] + (1 − λmix) ⋅ E
y∼PG

[f(y)]]
= sup

f∈FLip

E
x∼Pdata

[f(x)] + E
x∼Pdata

[ − λmix ⋅ E
y∼πY ∣X=x

[f(y)]] − (1 − λmix) ⋅ E
y∼PG

[f(y)]
= sup

f∈FLip

E
x∼Pdata

[f(x) − λmix ⋅ E
y∼πY ∣X=x

[f(y)]] − (1 − λmix) ⋅ E
y∼PG

[f(y)]
= sup

f∈FLip

E
(x,y)∼π

[f(x) − λmix ⋅ f(y)] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))]
Similar to the reparameterization introduced in Section 3.1, when the generative model PG is defined through
a prior over latent codes and a deterministic decoder, we can replace couplings with conditional distributions
QZ∣X with aggregated posteriors equal to the prior PZ . Given QZ = PZ , the dual OT distance is

OTd (Pdata,PG) = sup
f∈FLip

E
x∼Pdata

[f(x) − λmix ⋅ E
z∼QZ∣X=x

[f(G(z))]] − (1 − λmix) ⋅ E
z∼PZ

[f(G(z))].

Appendix C Proofs for Section 4.2: Auto-encoding Critic Networks

Proposition 3. Assume θ is a set of variables that parameterizes the decoder G, x ∼ Pdata is any given
data sample and f ∈ FLip is a (possibly sub-optimal) potential function that QZ∣X=x-almost surely satisfies
∇f(G(z)) = x−G(z)/∣∣x−G(z)∣∣ where QZ∣X is any conditional distribution. Then, the following statement is
true:

∇θEx∼Pdata
[f(x) − λmix ⋅ Ez∼QZ∣X=x

[f(G(z))]] = λmix ⋅ ∇θEx∼Pdata
[Ez∼QZ∣X=x

∣∣x −G(z)∣∣].
Proof:

We are given E
x∼Pdata

z∼QZ∣X=x

[✶[∇f(G(z)) = x−G(z)
∣∣x−G(z)∣∣ ]] = 1. Therefore the following is true also,

E
x∼Pdata

z∼QZ∣X=x

[✶[−∇θG(z) ⋅ ∇f(G(z)) = −∇θG(z) ⋅ x−G(z)
∣∣x−G(z)∣∣ ]] = 1. Integrals of almost-surely equal functions

are equal as well under the same measure. We use this fact in step 4.

∇θ E
x∼Pdata

[f(x) − λmix ⋅ E
z∼QZ∣X=x

[f(G(z))]] = λmix ⋅ E
x∼Pdata

[ E
z∼QZ∣X=x

[∇θ[−f(G(z))]]]
= λmix ⋅ E

x∼Pdata

[ E
z∼QZ∣X=x

[−∇θG(z) ⋅ ∇G(z)[f(G(z))]]]
= λmix ⋅ E

x∼Pdata

[ E
z∼QZ∣X=x

[−∇θG(z) ⋅ ∇f(G(z))]]
[Step 4] = λmix ⋅ E

x∼Pdata

[ E
z∼QZ∣X=x

[ −∇θG(z) ⋅ x −G(z)∣∣x −G(z)∣∣ ]]
= λmix ⋅ E

x∼Pdata

[ E
z∼QZ∣X=x

[∇θG(z) ⋅ ∇G(z)∣∣x −G(z)∣∣]]
= λmix ⋅ E

x∼Pdata

[ E
z∼QZ∣X=x

[∇θ ∣∣x −G(z)∣∣]]
∇θ E

x∼Pdata

[f(x) − λmix ⋅ E
z∼QZ∣X=x

[f(G(z))]] = λmix ⋅ ∇θ E
x∼Pdata

[ E
z∼QZ∣X=x

∣∣x −G(z)∣∣]

This completes the proof. ◻
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Appendix D Divergences and Metrics in Probability Space

A commonly used family of statistical divergences are called f -divergences, Df(µ ∣∣ ν) = Eµ[f(dν/dµ)], such
as the popular Kullback-Leibler (KL) divergence used in maximum likelihood estimation. Although popular, f -
divergences compare relative probabilities between measures for identical outcomes (i.e. the class of divergences
invariant to invertible transformations [16]) and do not take into account how close two different outcomes may
be in the geometry of the sample space, which is desirable in certain cases [19, 20].

A related limitation of this relative probability based approach is that the divergence may saturate or go to infinity
if the two measures are not absolutely continuous with respect to each other, e.g. when a set of outcomes has a
non-zero measure under one distribution but not the other. A mismatch between supports is exceedingly likely in
high dimensional spaces when dealing with distributions that have intrinsically lower-dimensional supports. This
is especially problematic for gradient based optimization methods since a saturated or maxed-out discrepancy
does not provide useful gradients for training.

These limitations motivate the use of other flexible families of divergences that induce weaker topologies [5]
such as Integral Probability Metrics (IPMs), DF(µ ∣∣ ν) = supf∈F ∣ Eµ[f]−Eν[f] ∣, which can take into account
the underlying geometry in the sample space and can be applied to measures with non-overlapping supports.

Based on the choice of the function class5 F , examples of this family of metrics include Total Variation (TV)
distance, Dudley metric, Cramer distance, Maximum Mean Discrepancy (MMD), and Wasserstein distances.

Appendix E Algorithm

Algorithm 1 Primal-Dual Wasserstein GAN for λmix = 0. All experiments in the paper use the default
values: λf = 1, λZ = 10, nencoder = 1, ncritic = 5, α = 10−4, β1 = 0.5, β2 = 0.9, m = 50.

Require: The encoder penalty coefficient γ, the critic penalty coefficient λ, the number of encoder iterations per
critic iteration nencoder, the number of critic iterations per generator iteration ncritic , Adam hyperparameters
α,β1, β2, the mini-batch size m.

Require: Initial encoder parameters φ0, initial critic parameters ω0, initial generator parameters θ0.
1: while θ0 is not converged do

2: Sample {x(l)}ml=1 ∼ Pdata, a batch from the empirical data distribution.

3: Sample {z(l)}ml=1 ∼ PZ , a batch from the prior distribution.

4: Sample {ǫ(l)}ml=1 ∼ N(0, I), a batch of random noise components.

5: Sample {t(l)}ml=1 ∼ Unif[0,1], a batch of uniform samples.
6:
7: for i = 1, ..., ncritic do
8: for j = 1, ..., nencoder do

9: KPZ =
1

m(m−1) ∑m
l=1∑l′≠l k(z(l),z(l′))

10: KQ =
1

m(m−1) ∑m
l=1∑l′≠l k(Q(x(l), ǫ(l)),Q(x(l′), ǫ(l′)))

11: KPZ ,Q =
1

m2 ∑m
l=1∑m

l′=1 k(z(l),Q(x(l′), ǫ(l′)))
12:
13: J

Penalty

Q = −(KPZ +KQ − 2KPZ ,Q) ▷MMD based penalty.

14: JQ = −
1

m ∑m
l=1 ∣∣x(l) −G(Q(x(l), ǫ(l)))∣∣

15: φ← Adam(∇φ(JQ + γ ⋅ JPenalty

Q ), φ,α, β1, β2)
16: end for

17: J
Penalty

f
= −

1

m ∑m
l=1

RRRRRRRRRRR
RRRRRRRRRRR∇ψ(t

(l)
⋅ x(l) + (1 − t(l)) ⋅G(Q(x(l), ǫ(l)))) − x(l)−G(Q(x(l),ǫ(l)))

∣∣x(l)−G(Q(x(l),ǫ(l)))∣∣
RRRRRRRRRRR
RRRRRRRRRRR
2

18: Jf =
1

m ∑m
l=1 f(x(l)) − f(G(z(l)))

19: ω ← Adam(∇ω(Jf + λ ⋅ JPenalty

f
), ω,α, β1, β2)

20: end for
21: JG = −

1

m ∑m
l=1 ∣∣x(l) −G(Q(x(l), ǫ(l)))∣∣ + 1

m ∑m
l=1 ψ(G(z(l)))

22: θ ← Adam(∇θ(JG), θ, α, β1, β2)
23: end while

5A subset of real-valued, bounded, measurable functions.
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Appendix F Additional Results

Figure 3: Left: Estimated primal and dual optimal transport distance during training for WAEs (primal–in blue)
and PD-WGANs (primal and dual–red and green). Middle: Evaluation of the gradient norm penalty used in
WGAN-GPs when the model being trained is WGAN-GP (green) and PD-WGAN (red). Right: Evaluation of
the gradient vector penalty we propose for PD-WGANs in Eq. 13 when the model being trained is WGAN-GP
(green) and PD-WGAN (red). In practice, minimization of one penalty does not minimize the other and each of
them guides the critic network f to a distinct region in the function space.

Figure 4: Left: Random samples from WGAN-GP when using the DC-GAN architecture as implemented in
[15]. Right: Random samples from PD-WGAN with λmix = 0 when using the same architecture.

WAE (GAN) WGAN-GP (MMD) PD-WGAN (MMD, λmix = 0.5)
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Table 3: Latent space interpolations for different algorithms for CIFAR-10 dataset.
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