Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Corotation Plasma Environment Model: An Empirical Probability Model of the Jovian Magnetosphere

MPG-Autoren
/persons/resource/persons104169

Roussos,  Elias
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104038

Krupp,  Norbert
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103914

Fränz,  Markus
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Futaana, Y., Wang, X.-D., Roussos, E., Krupp, N., Wahlund, J.-E., Ågren, K., et al. (2018). Corotation Plasma Environment Model: An Empirical Probability Model of the Jovian Magnetosphere. IEEE Transactions on Plasma Science, 46(6), 2126-2145. doi:10.1109/TPS.2018.2831004.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-5984-5
Zusammenfassung
We developed a new empirical model for corotating plasma in the Jovian magnetosphere. The model, named the coro-
tation plasma environment model version 2 (CPEMv2), considers
the charge density, velocity vector, and ion temperature based on
Galileo/plasma system (PLS) ion data. In addition, we develop hot
electron temperature and density models based on Galileo/PLS
electron data. All of the models provide respective quantities in
the magnetic equator plane of 9–30RJ
, while the charge density
model can be extended to 3-D space. A characteristic feature of
the CPEM is its support of the percentile as a user input. This
feature enables us to model extreme conditions in addition to
normal states. In this paper, we review the foundations of the
new empirical model, present a general derivation algorithm,
and offer a detailed formulation of each parameter of the
CPEMv2. As all CPEM parameters are of the analytical form,
their implementation is straightforward, and execution involves
the use of a small number of computational resources. The
CPEM is flexible; for example, it can be extended, as new data
(from observations or simulation results) become available. The
CPEM can be used for the mission operation of the European
Space Agency’s mission to Jupiter, JUpiter ICy moons Explorer
(JUICE), and for future data analyses.