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I. INTRODUCTION

In this note we study the existence and regularity of solutions to the evolution equation

∂tu(t) = G(t)u(t) with G(t) = A+B(t) (I.1)

for finite times t ∈ [0, T ] in a Banach space X . The generator G(t) is composed of a principal
static part A and a potentially time-dependent (non-autonomous) perturbation B(t). The
conditions for existence of an evolution system (solution operator) U(t, s) are formulated
with respect to the domain D(A) of the principal part. Since A is assumed closed, this
domain is a Banach space in itself if equipped with the graph norm ‖x‖D(A) = ‖x‖X+‖Ax‖X
(lemma II.3). In fact we will show with theorem V.4 that if the generator belongs to a
(quasi)contraction semigroup and B fulfils higher-order relative boundedness with respect
to A (definition IV.1) and a Lipschitz property (IV.4), then U(t, s) is a bounded operator
D(Am) → D(Am). This stands in contrast to approaches that study regularity in pre-defined
classes, whereas here the respective regularity class is directly yielded by the generator’s
principal part.

This result in the setting of an N -particle Hilbert space X = L2(ΩN ) and Schrödinger-
type equations leads to the regularity of propagated wave functions in terms of the graph
norm of the iterated Laplacian. The perturbation B(t) can be considered as consisting of
external or inter-particle potentials of a certain Kato-perturbation type (definition VII.7).
Since the graph norm of D(∆m) is equivalent to the usual Sobolev space norm (theo-
rem VI.3), an important result considering the regularity of Schrödinger solutions with
respect to Sobolev spaces is achieved (see final theorem VII.9). The growth estimate for
the Sobolev norm over time is of exponential type (V.16). In the case of potentials that
can be assumed smooth in space and time and periodic in space notable results concerning
the (linear) growth of Sobolev norms have been achieved by Bourgain (1999) and more re-
cently by Delort (2010). A very nice recent work aimed at studying the time regularity of
solutions to facilitate the Runge–Gross proof of time-dependent density functional theory
(Ruggenthaler–Penz–van Leeuwen, 2015) can be found in Fournais et al. (2016).

The existence part of the proof of our main theorem V.4 is similar to the original treatment
of Kato (1953), the usual reference point is Reed–Simon II (1975, Th. X.70), but we give
more general conditions that are also easier to check. This is in the spirit of a recent effort by
Schmid–Griesemer (2014) to simplify and standardise the classical existence results for (I.1)
to the simple condition that t 7→ G(t)x is continuously differentiable for all x ∈ D(G). This
was followed in Schmid–Griesemer (2016) by a generalisation to Lipschitz continuity which
already bears some similarities to this work but includes no higher regularity estimates.
Further Schmid–Griesemer (2016) built their argument around uniformly convex spaces
which is, to our understanding, not necessary, since the more general notion of reflexivity
is sufficient. Reflexivity is especially convenient because it is conserved when switching to
equivalent norms, which is heavily used throughout this work, while uniform convexity is
not.

Note that this e-print article includes more detailed explanations, additional proofs, and
further references as compared to the published version.
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II. GRAPH-NORM SPACES

The setting is always a Banach space X with norm ‖x‖ = ‖x‖X . Domain and range
(image) of an operator will be denoted as D(A) and R(A) respectively. We define the
graph norm for a linear operator A : X → X , generally unbounded, and x ∈ D(A) as
‖x‖D(A) = ‖x‖ + ‖Ax‖. This definition yields an equivalent norm to the more frequently
given expression for the graph norm as a Pythagorean sum. The inequality

√

‖x‖2 + ‖Ax‖2 ≤ ‖x‖+ ‖Ax‖ ≤
√
2
√

‖x‖2 + ‖Ax‖2 (II.1)

is easily shown to hold by squaring it and using the inequality of arithmetic and geometric
means, i.e., ‖x‖ ‖Ax‖ ≤ 1

2
(‖x‖2 + ‖Ax‖2). The symbol “∼” will later be used to denote

equivalence of norms.
The domain D(Ak) of the iterated operator is the set of all Banach space elements x ∈ X

where for all 1 ≤ j ≤ k also Ajx ∈ X holds. (See Fournais et al. (2016) for a special emphasis
on this in the context of studying the time-regularity of solutions to the Schrödinger equation
with Coulomb potentials.) Note that D(A0) = D(I) = X . Since the main tool of analysis
will be higher-order graph-norm spaces D(Ak), we adopt a shorthand notation for their
norms and the respective operator norms.

‖x‖(k) = ‖x‖D(Ak) = ‖x‖+ ‖Ax‖+ . . .+ ‖Akx‖ (II.2)

‖T‖(k,l) = ‖T‖B(D(Ak),D(Al)) = sup
x∈D(Ak)

x 6=0

‖Tx‖(l)
‖x‖(k)

(II.3)

The parentheses in the subscript shall discern this notation from the usual Lp and W k,p

norms ‖ · ‖p and ‖ · ‖k,p. We directly note the following chain of continuous embeddings.

D(Ak) →֒ D(Ak−1) →֒ . . . →֒ D(A) →֒ X (II.4)

In correspondence with spaces equipped with the graph norm the notion of closed operators
is all-important.

II.1 Definition. A linear and generally unbounded operator A : X → X is called closed, if
for every sequence xn in D(A) with xn → x ∈ X and Axn → y ∈ X it holds that x ∈ D(A)
and y = Ax. An operator is called closable if it has a closed extension.

II.2 Note. An equivalent notion of closedness is often given in terms of the graph of the
operator Γ(A) = {(x,Ax) | x ∈ D(A)} ⊂ X ×X . A is now closed if and only if its graph is
closed as a subset of X ×X . The concept of graph norm is also derived from this picture,
as the natural norm for elements of Γ(A), and used in the following lemma for a further
equivalence. (Engel–Nagel, 2000, Def. B.1)

II.3 Lemma. An operator A is closed if and only if D(A) equipped with the graph norm
‖ · ‖D(A) is a Banach space.

Proof. If xn → x,Axn → y are sequences as in definition II.1 above then xn converges in
graph norm and thus x ∈ D(A), ‖xn − x‖ → 0, and ‖Axn − Ax‖ → 0. This establishes
y = Ax and thus closedness of A.
Starting from the definition of closedness we need to show completeness, i.e., every Cauchy
sequence xn with respect to the graph norm converges in D(A). This means xn and Axn
are Cauchy in X and have the limits x and y respectively. Because A is closed this yields
x ∈ D(A) as the proper limit of the sequence in D(A).
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II.4 Note. In this sense a closed operator is always bounded as A : D(A) → X because
clearly ‖Ax‖ ≤ ‖x‖(1) and closedness can be seen as a notion of almost boundedness. It is
not even that simple to come up with examples of non-closable operators.1

II.5 Lemma. A closed and injective operator has a closed inverse.

Proof. Since the restricted operator A : D(A) → R(A) is bijective we can define A−1 :
R(A) → D(A). Now the graph Γ(A) = {(x,Ax) | x ∈ D(A)} can be rewritten with
y = Ax as Γ(A) = {(A−1y, y) | y ∈ R(A)} which is isomorphic to Γ(A−1). Thus from Γ(A)
closed follows Γ(A−1) closed which is equivalent to closedness of operators as explained in
note II.2.

II.6 Definition. The resolvent set ρ(A) of a closed operator A is the set of all λ ∈ C

such that A− λI has full range X and a bounded inverse (A− λI)−1, called the resolvent

operator. The elements of ρ(A) are called regular values of A, their complement forms
the spectrum of the operator.

II.7 Note. A popular alternative definition of the resolvent set merely demands a dense
range for A − λI without mentioning closedness, see for example Yosida (1980, VIII.1)
or Renardy–Rogers (2004, 8.3). The resulting bounded resolvent operator is then densely
defined and can in principle be continuously extended. Since an operator that is everywhere
defined is closed if and only if it is bounded (closed graph theorem), in our setting the
resolvent operator is automatically closed. A closed, invertible operator has a closed inverse
as shown in lemma II.5, so one directly concludes A − λI and thus also A closed from a
non-empty resolvent set if definition II.6 is used. Without the condition of full range in the
case of a non-empty resolvent set the operator is still closable. In any case it seems strange
that closedness is listed here as an additional condition. This is because if one concentrates
only on closed operators, like in our case and also in Engel–Nagel (2000, IV.1) or Kato (1995,
III.6.1), then R(A − λI) = X is just an equivalent condition to a dense range, so the two
possible definitions of resolvent sets actually agree again. To keep matters straight in what
follows, both closedness and non-empty resolvent set will be noted as requirements side by
side.2

II.8 Lemma. If A is closed with non-empty resolvent set then all its iterations Ak, k ∈ N,
are closed.

Proof. Take λ ∈ ρ(A) then the iterated resolvent operator (A−λI)−k is everywhere defined
and bounded and thus closed (closed graph theorem). Since a closed, invertible operator
has a closed inverse (lemma II.5) we also have (A−λI)k closed. This expression expands to

(A− λI)k =
k∑

j=0

(
k

j

)

(−λ)k−jAj

which facilitates an easy induction scheme. From I, A, (A − λI)2 closed we arrive at A2

closed and so on.

1 See StackExchange Mathematics: https://math.stackexchange.com/questions/1811205 for an oper-

ator that even has dense graph, so the closure of the graph is X × X and really looks nothing like the

graph of an operator.
2 In these matters a discussion on StackExchange Mathematics has been proven very instructive:

http://math.stackexchange.com/questions/815377/resolvent-definition
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GRAPH-NORM SPACES FROM GENERATORS

This unnumbered section is just an insert for the case of A being the generator of a
contraction semigroup. Since this implies that A is closed and has a non-empty resolvent
set, the results are in fact less general, but since we are often concerned with such operators
they still bear some relevance. We refer to note V.3 for some comments on semigroups
and their generators. Here we will first give an alternative proof for lemma II.8, then show
in lemma II.10 that the graph norm of D(Ak) from (II.2) and its alternative definition
‖x‖ + ‖Akx‖ are equivalent. The result also holds for operators with zero in the resolvent
set and it can be derived in a Hilbert space setting for A self-adjoint as well. The main
tool in the proof of lemma II.10 will be the weighted inequality of arithmetic and geometric
means. The famous Stone theorem (theorem VI.2) explains that there is actually an intimate
relation between contraction semigroups and self-adjoint operators. Conceptually between
Hilbert and Banach spaces lie reflexive Banach spaces that are treated in the next section.

II.9 Lemma. If A is the generator of a contraction semigroup then all its iterations Ak,
k ∈ N, are closed.

Proof. That the generator of a strongly continuous semigroup, which is even more general
than assuming a contraction semigroup, is closed (and densely defined) is a classical result,
see Renardy–Rogers (2004, Th. 12.12), and will not be repeated here.
In a preparatory step we use the Kallman–Rota (1970) inequality (a generalised form of the
Landau–Kolmogorov inequality, see also Hille (1972))

‖Ax‖2 ≤ 4 ‖x‖ ‖A2x‖ (II.5)

that holds for any x ∈ D(A2) if A is the generator of a contraction semigroup. From this
we want to prove the following relation for all k ∈ N and x ∈ D(Ak+1).

‖Akx‖(k+1)/k ≤ 2k+1‖x‖1/k ‖Ak+1x‖ (II.6)

The case k = 1 is just (II.5) and we proceed by induction. We take (II.5) but replace x by
Akx to get

‖Ak+1x‖2 ≤ 4 ‖Akx‖ ‖Ak+2x‖ (II.7)

and in the next step use (II.6) that is assumed to hold to arrive at

‖Ak+1x‖2 ≤ 2k+2‖x‖1/(k+1) ‖Ak+1x‖k/(k+1)‖Ak+2x‖. (II.8)

Collecting the Ak+1 terms on one side we get

‖Ak+1x‖(k+2)/(k+1) ≤ 2k+2‖x‖1/(k+1)‖Ak+2x‖. (II.9)

which is just the desired result for the case k + 1.
We use induction again to infer from A,Ak closed that Ak+1 closed. Following definition II.1
we take a sequence {xn}n in D(Ak+1) with xn → x and Ak+1xn → y. Now since both
sequences converge they are also Cauchy sequences. If we take Ak(xn − xm) then by the
estimate (II.6) above

‖Ak(xn − xm)‖ ≤ 2k‖xn − xm‖1/(k+1) ‖Ak+1(xn − xm)‖k/(k+1) −→ 0 (II.10)
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thus {Akxn}n is also Cauchy and converges to some x′ ∈ X . But now we are able to invoke
closedness of A and state that since Akxn → x′ and Ak+1xn = A(Akxn) → y it must hold
that x′ ∈ D(A) and Ax′ = y. Because Ak is closed as well we know from xn → x and
Akxn → x′ that x ∈ D(Ak) and Akx = x′. A combination of these results yields just
x ∈ D(Ak+1) and Ak+1x = y and shows that Ak+1 is closed.

II.10 Lemma. If A is the generator of a contraction semigroup then the following equiva-
lence of norms on D(Ak) holds.

‖x‖(k) ∼ ‖Akx‖+ ‖x‖ (II.11)

Proof. The proof uses the Kallman–Rota inequality again and is very similar to the proof
of the previous lemma. That for x ∈ D(Ak)

‖x‖(k) ≥ ‖Akx‖+ ‖x‖ (II.12)

is clear from the definition, so we only have to show

‖x‖(k) ≤ C
(
‖Akx‖+ ‖x‖

)
(II.13)

for some constant C > 0. We already showed

‖Ak−1x‖k/(k−1) = ‖Ak−1x‖1/(k−1)+1 ≤ 2k‖x‖1/(k−1) ‖Akx‖ (II.14)

in (II.6) where k was just lowered by 1, which by the weighted inequality of arithmetic and
geometric means (Hardy–Littlewood–Pólya, 1934, (2.5.1)) yields

‖Ak−1x‖ ≤ 2k−1‖x‖+ (k − 1)‖Akx‖
k

. (II.15)

A similar estimate can be derived analogously for all ‖Ajx‖, 1 ≤ j < k − 1, with only
multiples of ‖x‖ and ‖Akx‖ on the right hand side. This then already establishes the
desired estimate (II.13).

III. REFLEXIVITY

In this section reflexivity of Banach spaces is used to great advantage to get the properties
of the limits of weakly converging sequences in lemma III.2 and lemma III.3 (which is actually
a weaker version of lemma 5 in Kato (1953) used there on p. 222). To be even able to work
with those results later, we first need to establish reflexivity of graph-norm spaces.

III.1 Lemma. For A : X → X closed, D(A) equipped with the graph norm is a reflexive
Banach space if X is so.3

Proof. Take the isometry

i : D(A) −→ X ×X, x 7−→ (x,Ax) (III.1)

where for x ∈ D(A) we have the usual graph norm ‖x‖ + ‖Ax‖ and for (x1, x2) ∈ X × X
the sum norm ‖(x1, x2)‖ = ‖x1‖+ ‖x2‖. Now i(D(A)) is closed in X ×X as the image of a
closed set under an isometry4 and X ×X is known to be reflexive if X is. But any closed
subspace of a reflexive space if reflexive itself, so D(A) is.

3 This was inspired by a short answer on StackExchange Mathematics:

http://math.stackexchange.com/questions/107721.
4 See StackExchange Mathematics: https://math.stackexchange.com/questions/1519704.
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III.2 Lemma. Every weakly convergent sequence in X is bounded.

Proof. If {xn}n ⊂ X is weakly convergent to x ∈ X then it holds that for all f ∈ X∗ we
have f(xn) → f(x) so the sequence {f(xn)}n is clearly bounded in R or C. This means
we can find a respective Mf > 0 such that sup{|f(xn)|}n ≤ Mf . But for every xn ∈ X we
have a corresponding zn ∈ X∗∗ ⊇ X such that f(xn) = zn(f). Thus sup{|zn(f)|}n ≤ Mf

for all f ∈ X∗ and finally because of the uniform boundedness principle (Banach–Steinhaus
theorem) ‖zn‖ = ‖xn‖ <∞ for all n ∈ N.

III.3 Lemma. Let X be reflexive and A : X → X a closed operator with non-empty resolvent
set. If a sequence xn ∈ D(A) has w-limn→∞ xn = x ∈ X (weak limit) and {‖Axn‖}n bounded
then it holds x ∈ D(A) and ‖Ax‖ ≤ lim supn→∞ ‖Axn‖.
Proof. Choose λ ∈ ρ(A) and Ã = A − λI then we have Ã−1 bounded and the adjoint
(Ã−1)∗ also exists as a bounded operator X∗ → X∗. The triangle inequality yields ‖Ãxn‖ ≤
‖Axn‖ + |λ|‖xn‖ so since {‖Axn‖}n bounded and using lemma III.2 we have {‖Ãxn‖}n
bounded (i.e., inside some closed ball that is compact in the weak topology iffX reflexive, see
Conway (1990, V.4.2)). This means there must be a weakly convergent subsequence {x̃n}n
with y = w-limn→∞ Ãx̃n ∈ X (Eberlein–Šmulian theorem, a generalization of Bolzano–
Weierstraß, see Yosida (1980, p. 141)). We thus have with the dual pairing written as (·, ·)
for any f ∈ X∗

(

(Ã−1)∗f, Ãx̃n

)

−→
(

(Ã−1)∗f, y
)

=
(

f, Ã−1y
)

. (III.2)

On the other hand starting with the same expression we get
(

(Ã−1)∗f, Ãx̃n

)

=
(

f, Ã−1Ãx̃n

)

= (f, x̃n) −→ (f, x) . (III.3)

Now (Ã−1)∗X∗ is dense in X∗ because otherwise we can find a 0 6= z ∈ X ≃ X∗∗ (reflexive
Banach space) such that for all f ∈ X∗

0 =
(

(Ã−1)∗f, z
)

=
(

f, Ã−1z
)

(III.4)

which implies Ã−1z = 0, thus z = 0 which leads to a contradiction. With (Ã−1)∗X∗ dense in
X∗ and the two expression (III.2) and (III.3) holding true for all f ∈ X∗ we identify x = Ã−1y
which clearly means x ∈ D(Ã) = D(A) and w-limn→∞ Ãx̃n = Ãx. Since w-limn→∞ xn = x
by assumption we also have w-limn→∞Ax̃n = Ax.
The dual space always contains an element g ∈ X∗ that yields (g, Ax) = ‖Ax‖ and has dual
norm 1 (Hahn–Banach theorem), so |(g, Ax̃n)| ≤ ‖Ax̃n‖. We know (g, Ax̃n) −→ (g, Ax) =
‖Ax‖ and so finally ‖Ax‖ ≤ lim supn→∞ ‖Ax̃n‖ ≤ lim supn→∞ ‖Axn‖.

IV. RELATIVE BOUNDEDNESS AND A PREPARATORY LEMMA

A final preparatory lemma will help us to establish the desired regularity result in sec-
tion V and gives the main condition on the non-autonomous perturbation B(t) in the form of
higher-order relative boundedness with respect to A and a Lipschitz property. The assump-
tion that all Ak are closed is imperative to have Banach spaces D(Ak) from lemma II.3. In
our main theorem V.4 we will then not have this condition explicitly, but rely on lemma II.8
to get closedness. We now define the new notion of A-boundedness of order m, a general-
ization of the usual A-boundedness (Reed–Simon II (1975, X.2), Kato (1995, IV.1.1)) that
corresponds to order k = 1.
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IV.1 Definition. Let A,B be densely defined operators and A closed, then B is called
A-bounded of order m if

(i) D(A) ⊆ D(B) and

(ii) there are a, b ≥ 0 such that for all 1 ≤ k ≤ m and x ∈ D(Ak) it holds that ‖Bx‖(k−1) ≤
a‖Akx‖+ b‖x‖(k−1).

The infimum of possible values for a is called the relative bound (of order m) of B with
respect to A. This relative bound can be as low as 0, the operator is then called infinitesi-

mally small.

IV.2 Note. From this definition it directly follows that if B is A-bounded of order m, then
for all 0 ≤ k ≤ m we have B : D(Ak) → D(Ak−1) bounded with respect to the ‖ · ‖(k,k−1)

operator norm. Thus this property does not need to be separately demanded in the following
lemma. Note further that the usual A-boundedness of B with relative bound strictly smaller
than 1 also means that A+B is closed if and only if A is. Kato (1995, Th. IV.1.1) Another
very similar application of relative boundedness is the famous Kato–Rellich theorem that
enters theorem VII.2 here. A further consequence expressed in the following lemma is that
the spaces D(Ak) and D(Gk), where G = A +B, become equivalent.

IV.3 Lemma. Assume A closed with non-empty resolvent set and B to be A-bounded of
order m with relative bound < 1. Then for G = A + B it holds D(Gk) = D(Ak) and the
respective graph norms are equivalent for all 1 ≤ k ≤ m.

Proof. We start with k = 1 and assume x ∈ D(A), then A-boundedness yields

‖Gx‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ (1 + a)‖Ax‖ + b‖x‖ (IV.1)

and thus x ∈ D(G). On the other hand assume x ∈ D(G), then one has from A = G−B

‖Ax‖ ≤ ‖Gx‖+ ‖Bx‖ ≤ ‖Gx‖+ a‖Ax‖+ b‖x‖ (IV.2)

and because of a < 1 by assumption

‖Ax‖ ≤ 1

1− a
‖Gx‖+ b

1− a
‖x‖ (IV.3)

and thus x ∈ D(A). This establishes D(G) = D(A) and further by the inequalities (IV.1)
and (IV.3) equivalence of the norms.
Next we proceed by induction and assume the argument holds for k − 1. Let x ∈ D(Ak)
then

‖Gx‖(k−1) ≤ ‖Ax‖(k−1) + ‖Bx‖(k−1) ≤ ‖Ax‖(k−1) + a‖Akx‖ + b‖x‖(k−1)

≤ (1 + a + b)‖x‖(k).
(IV.4)

Since we already established D(Gk−1) = D(Ak−1) with equivalent norms the expression
‖Gx‖(k−1) + ‖x‖ corresponds to the graph norm of D(Gk) (up to a multiplicative constant).
On the other hand let x ∈ D(Gk) then

‖Akx‖ + ‖x‖(k−1) − ‖x‖ = ‖Ax‖(k−1) ≤ ‖Gx‖(k−1) + ‖Bx‖(k−1)

≤ ‖Gx‖(k−1) + a‖Akx‖+ b‖x‖(k−1)

(IV.5)
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and after a simple manipulation

(1− a)‖x‖(k) ≤ (1− a)‖Akx‖+ ‖x‖(k−1) ≤ ‖Gx‖(k−1) + ‖x‖+ b‖x‖(k−1). (IV.6)

The right hand side corresponds again to the graph norm of D(Gk) and thus by inequalities
(IV.4) and (IV.6) we get D(Gk) = D(Ak) and equivalence of the respective norms.

IV.4 Lemma. Let G(t) = A + B(t) be closed with 0 ∈ ρ(G(t)) at all times under consid-
eration. Further assume Ak to be closed for all 1 ≤ k ≤ m, B(t) to always be A-bounded
of order m with a maximal relative bound strictly smaller than 1, and demand the Lipschitz
condition

Lm := sup
t′ 6=t

m∑

k=1

‖B(t′)− B(t)‖(k,k−1)

|t′ − t| <∞. (IV.7)

Then G(t′)mG(t)−m = Km(t
′, t) + I with the operator Km(t

′, t) : X → X bounded by
CmLm|t′ − t| if t′ 6= t. (See (IV.15) for a definition of the G-dependent constants Cm.)

Proof. In the whole proof we mostly write G = G(t), G′ = G(t′) and similarly for B for
brevity. For all 1 ≤ k ≤ m clearly A : D(Ak) → D(Ak−1) bounded by definition and
B bounded equally by assumption (note IV.2). This makes the combined operator G :
D(Ak) → D(Ak−1) bounded as well. Because of zero in the resolvent set we have a well-
defined and bounded G−1 : X → X . We continue with the restriction of G−1 on D(Ak−1)
that will still be denoted G−1. Because B is A-bounded of order m we get for all x ∈
D(Ak−1) = D(Gk−1), G−1x ∈ D(Gk) = D(Ak) (lemma IV.3)

‖AkG−1x‖ = ‖Ak−1(G−B)G−1x‖
≤ ‖BG−1x‖(k−1) + ‖x‖(k−1)

≤ a‖AkG−1x‖+ b‖G−1x‖(k−1) + ‖x‖(k−1)

(IV.8)

and since a < 1 it holds

‖AkG−1x‖ ≤ b

1− a
‖G−1x‖(k−1) +

1

1− a
‖x‖(k−1). (IV.9)

This result establishes an estimate

‖G−1x‖(k) = ‖G−1x‖(k−1) + ‖AkG−1x‖

≤
(

b

1− a
+ 1

)

‖G−1x‖(k−1) +
1

1− a
‖x‖(k−1)

(IV.10)

and after k − 1 further iterations yields G−1 : D(Ak−1) → D(Ak) bounded. The iterated
operators Gk : D(Ak) → X , G−k : X → D(Ak) are thus bounded as well, just like Kk(t

′, t) :
X → X defined by Kk(t

′, t) := G(t′)kG(t)−k − I. We still have to show the special bound
for Km. We start with k = 1.

K1 = G′G−1 − I = (G′ −G)G−1 = (B′ − B)G−1 (IV.11)

The operator K1 has the bound

‖K1‖(0,0) = ‖(B′ −B)G−1‖(0,0) ≤ ‖B′ −B‖(1,0)‖G−1‖(0,1). (IV.12)
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Now from k = 1 on we proceed by iteration.

Kk = G′kG−k − I = G′k−1(G′ −G)G−k +Kk−1 = G′k−1(B′ − B)G−k +Kk−1 (IV.13)

The estimate is now

‖Kk‖(0,0) ≤ ‖G′k−1(B′ −B)G−k‖(0,0) + ‖Kk−1‖(0,0)
≤ ‖G′k−1‖(k−1,0)‖B′ − B‖(k,k−1)‖G−k‖(0,k) + ‖Kk−1‖(0,0)

(IV.14)

which sums up to

‖Km‖(0,0) ≤
m∑

k=1

‖G′k−1‖(k−1,0)‖B′ − B‖(k,k−1)‖G−k‖(0,k)

≤ max
1≤k≤m

{
‖G′k−1‖(k−1,0)‖G−k‖(0,k)

}
×

m∑

k=1

‖B′ − B‖(k,k−1)

|t′ − t| × |t′ − t|

≤ sup
t′ 6=t

max
1≤k≤m

{
‖G′k−1‖(k−1,0)‖G−k‖(0,k)

}

︸ ︷︷ ︸
Cm

× sup
t′ 6=t

m∑

k=1

‖B′ − B‖(k,k−1)

|t′ − t|
︸ ︷︷ ︸

Lm

×|t′ − t|.

(IV.15)

V. REGULARITY RESULT

First we will stick to a pure Banach space setting even though the strongest motivation
is of course the Schrödinger equation that will be discussed in section VII. The domain of
the time-dependent generator G(t) is usually assumed to remain constant in time and we
write D(G(t)) = D(G). This is true anyway by assumption following lemma IV.4 where
D(G(t)) = D(A) always holds.

V.1 Definition. An evolution system belonging to an evolution equation like (I.1) is a
two-parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T , on X that fulfils
(Pazy, 1983, ch. 5, Def. 5.3)

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t ≤ T ,

(ii) (t, s) 7→ U(t, s) is jointly strongly continuous, i.e., limt→s U(t, s) = I strongly and
equivalently for s→ t,

and on D(G) solves

∂tU(t, s) = G(t)U(t, s)

∂sU(t, s) = −U(t, s)G(s). (V.1)

V.2 Note. In the Hilbert space setting with H(t) = iG(t) self-adjoint (i.e., G(t) is skew-
adjoint) that will be discussed in section VII the unitarity condition U(t, s)∗ = U(t, s)−1 =
U(s, t) is added to the properties of the evolution system.
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V.3 Note. In the case of a time-independent generator G the typical setting is that of a
strongly continuous one-parameter semigroup (Renardy–Rogers, 2004; Engel–Nagel, 2000;
Pazy, 1983). The generator of a strongly continuous semigroup is always densely defined and
closed (Renardy–Rogers (2004, Th. 12.12); this was already noted in the proof of lemma II.9).
A quasicontraction semigroup U(t) is a strongly continuous semigroup with a constant ω > 0
such that for all x ∈ X and t ≥ 0

‖U(t)x‖ ≤ eωt‖x‖. (V.2)

Clearly in the Hilbert space setting with a unitary (semi-)group it always holds ‖U(t)x‖ ≤
‖x‖ which makes U(t) trivially a contraction semigroup with ω = 0. The generator of a
quasicontraction semigroup is known to have all λ ∈ C with Reλ > ω in the resolvent set as
a corollary to the famous Hille–Yosida generation theorem (Engel–Nagel, 2000, Cor. II.3.6).
Thus G as such a generator just needs to be shifted by ω+1 to have 0 ∈ ρ(G) as demanded by
lemma IV.4. What follows is our main result regarding the regularity property of evolution
systems.

V.4 Theorem. On X a reflexive Banach space let G(t) = A + B(t) be the generator of a
quasicontraction semigroup for all t ∈ [0, T ] with common contraction constant ω, let A be
closed with non-empty resolvent set, and let B have the properties of lemma IV.4. Then the
evolution equation (I.1) has a well-defined evolution system given by the limit of the stepwise
static approximation (V.3) that is bounded D(Ak) → D(Ak) for all 0 ≤ k ≤ m and thus
preserves regularity of Banach space vectors in the class D(Am).

Proof. First note that because of A closed with non-empty resolvent set we have by
lemma II.8 all Ak closed and thus can work in Banach spaces D(Ak).
Let Pk be a sequence of equidistant partitions of [0, T ] with k subintervals [ti, ti+1] with
t0 = 0, tk = T , and mesh size T/k going to zero as k → ∞. We write ⌊s⌋k for the largest ti
in the partition Pk smaller or equal than s ∈ [0, T ]. We define the stepwise static approx-

imation to the evolution system by combining the k individual evolution semigroups Uk
(i)

defined by the static generators G(ti), 0 ≤ i ≤ k − 1.

Uk(t, s) = U
(i)
k (t− s) if ti ≤ s ≤ t ≤ ti+1

Uk(t, s) = Uk(t, ti)Uk(ti, s) with s < ti < t else.
(V.3)

We show now that for k → ∞ the Uk(t, s) converges uniformly in t and preserves the desired
degree of regularity. Convergence is tested with the Cauchy property of the sequence Uk.
We use ∂tUk(t, s) = G(⌊t⌋k)Uk(t, s) and ∂sUk(t, s) = −Uk(t, s)G(⌊s⌋k) which follows directly

from the definition of Uk above and the evolution semigroup property of Uk
(i).

Uk(t, s)− Ul(t, s) = Ul(t, r)Uk(r, s)
∣
∣
∣

t

r=s

=

∫ t

s

∂r(Ul(t, r)Uk(r, s)) dr

=

∫ t

s

(
(∂rUl(t, r))Uk(r, s) + Ul(t, r)(∂rUk(r, s))

)
dr

= −
∫ t

s

Ul(t, r)
(
G(⌊r⌋l)−G(⌊r⌋k)

)
Uk(r, s) dr

= −
∫ t

s

Ul(t, r)
(
B(⌊r⌋l)− B(⌊r⌋k)

)
Uk(r, s) dr

(V.4)
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(Note that a problem arises with the time derivative if r = ti because then the right and
left derivatives do not match. But this is just at a finite number of points that can always
be omitted from the integral.) We check the Cauchy property in the ‖ · ‖(m,m−1) norm.

‖Uk(t, s)−Ul(t, s)‖(m,m−1) ≤
∫ t

s

‖Ul(t, r)‖(m−1,m−1)‖B(⌊r⌋l)−B(⌊r⌋k)‖(m,m−1)‖Uk(r, s)‖(m,m) dr

(V.5)
Since B(t) has the Lipschitz-property up to order m which implies continuity in the
B(D(Am), D(Am−1)) norm, the difference would go to zero if k → ∞. But are ‖Ul(t, r)‖(m−1,m−1)

and ‖Uk(r, s)‖(m,m) uniformly bounded? We will test for ‖Uk(r, s)‖(m,m) < ∞, all lower or-
ders at all times 0 ≥ s ≥ r ≥ T apply equally.
The idea is to switch to a shifted, auxiliary generator G̃(t) = G(t) − (ω + 1) such that
0 ∈ ρ(G̃(t)) for all t (also see note V.3) thus achieving accordance with the conditions of
lemma IV.4. Then we introduce the identities G̃−m(ti)G̃

m(ti) in front of all the short-time
evolution operators, exchange them with the evolution operators originating from the same
generator, and give an estimate for the arising terms involving Km by lemma IV.4 applied
to G̃. Let i be such that ⌊s⌋k = ti, i.e., i = ⌊sk/T ⌋ (usual floor function brackets), and j be
such that ⌊r⌋k = tj , i.e., j = ⌊rk/T ⌋.

Uk(r, s) =U
(j)
k (r − tj)U

(j−1)
k (tj − tj−1) . . . U

(i)
k (ti+1 − s)

=G̃−m(tj)U
(j)
k (r − tj)G̃

m(tj)G̃
−m(tj−1)U

(j−1)
k (tj − tj−1)G̃

m(tj−1) . . .

. . . G̃−m(ti+1)U
(i+1)
k (ti+2 − ti+1)G̃

m(ti+1)G̃
−m(ti)U

(i)
k (ti+1 − s)G̃m(ti)

(V.6)

We write the G̃(t′)mG̃(t)−m encounters like in lemma IV.4 as Km(t
′, t) + I.

Uk(r, s) = G̃−m(tj)U
(j)
k (r − tj)

j−1
∏

l=i+1

(

Km(tl+1, tl) + I
)

U
(l)
k (tl+1 − tl)

(

Km(ti+1, ti) + I
)

U
(i)
k (ti+1 − s)G̃m(ti)

(V.7)

(Note that the product is time-ordered.) Next we estimate the ‖ · ‖(m,m) norm of this
expression using the result from lemma IV.4 and regular mesh size ti − ti−1 = T/k. For this

we repeatedly use the quasicontraction property that assures ‖U (l)
k (tl+1−tl)‖(0,0) ≤ eω(tl+1−tl).

‖Uk(r, s)‖(m,m) ≤ eω(r−s)‖G̃−m(tj)‖(0,m)

j−1
∏

l=i

(

‖Km(tl+1, tl)‖(0,0) + 1
)

‖G̃m(ti)‖(m,0)

≤ eω(r−s)‖G̃−m(tj)‖(0,m)‖G̃m(ti)‖(m,0)

(
CmLmT

k
+ 1

)j−i
(V.8)

We rewrite j − i = ⌊rk/T ⌋ − ⌊sk/T ⌋ ≤ 1 + ⌊(r − s)k/T ⌋ = 1 + k⌊(r − s)k/T ⌋/k to be able
to introduce an exponential function in the limit k → ∞ while ⌊(r− s)k/T ⌋/k → (r− s)/T .

(
CmLmT

k
+ 1

)j−i

≤
(
CmLmT

k
+ 1

)((
CmLmT

k
+ 1

)k
)⌊(r−s)k/T ⌋/k

−→ eCmLm(r−s) ≤ eCmLmT

(V.9)
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This means that (V.5) goes to zero and the Cauchy sequence (V.4) must converge to a well-
defined and bounded U(t, s) : D(Am) → D(Am−1). In the lowest order m = 1 the operators
U(t, s) : D(A) → X can then be continuously extended from the dense D(A) to the whole
space X because they are clearly bounded on X (as a combination of quasicontraction
semigroup elements). Lemma III.3 helps us to establish U(t, s) : D(Am) → D(Am) bounded
as the desired regularity result.5 For this we take x = U(t, s)ϕ and xk = Uk(t, s)ϕ for any
ϕ ∈ D(Am) and the Banach space D(Am−1) (denoted X in the lemma) which is a reflexive
Banach space by lemma III.1. The weak limit clearly follows as a result of even strong
convergence6 in D(Am−1) and {‖Axk‖(m−1)}k bounded follows from {‖xk‖(m)}k bounded
which was just shown in (V.8) above. Then the assertion of lemma III.3 says

‖Ax‖(m−1) ≤ lim sup
k→∞

‖Axk‖(m−1). (V.10)

We first deal with the case m = 1 which means for the inequality above

‖AU(t, s)ϕ‖ ≤ lim sup
k→∞

‖AUk(t, s)ϕ‖ (V.11)

and thus by introducing the ‖ · ‖(1) norm

‖U(t, s)ϕ‖(1) = ‖U(t, s)ϕ‖+ ‖AU(t, s)ϕ‖ ≤ ‖U(t, s)ϕ‖+ lim sup
k→∞

‖AUk(t, s)ϕ‖

= lim sup
k→∞

‖Uk(t, s)ϕ‖(1) + ‖U(t, s)ϕ‖ − lim sup
k→∞

‖Uk(t, s)ϕ‖.
(V.12)

In the limit the last two terms cancel because we already showed that Uk(t, s) → U(t, s)
converges on X . So using the estimates from (V.8) and (V.9) we get

‖U(t, s)‖(1,1) ≤ C ′
1 exp(C1L1T ) (V.13)

where the additional constants from (V.8) have been collected in C ′
1. This means Uk(t, s) →

U(t, s) converges also as a bounded operator D(A) → D(A). The next step is already for
arbitrary m and we use (V.10) again.

‖U(t, s)ϕ‖(m) = ‖U(t, s)ϕ‖+ ‖AmU(t, s)ϕ‖ = ‖U(t, s)ϕ‖+ ‖Am−1AU(t, s)ϕ‖
= ‖U(t, s)ϕ‖+ ‖AU(t, s)ϕ‖(m−1) − ‖AU(t, s)ϕ‖
≤ ‖U(t, s)ϕ‖+ lim sup

k→∞
‖AUk(t, s)ϕ‖(m−1) − ‖AU(t, s)ϕ‖

(V.14)

Next the D(Am−1) norm gets rewritten to a D(Am) norm.

‖U(t, s)ϕ‖(m) ≤ lim sup
k→∞

‖Uk(t, s)ϕ‖(m)

+ ‖U(t, s)ϕ‖ − lim sup
k→∞

‖Uk(t, s)ϕ‖

− ‖AU(t, s)ϕ‖+ lim sup
k→∞

‖AUk(t, s)ϕ‖
(V.15)

5 This result is actually missing in the proof in Penz (2016, Th. 3.41, Th. 3.42), where the boundedness was

just directly inferred from the Uk boundedness.
6 So there is room for a more general statement, since at this spot only weak convergence would be sufficient.
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This time the whole two last lines vanish in the limit because in the meantime we also
established convergence on D(A), so with the estimates from (V.8) and (V.9) we finally get
boundedness D(Am) → D(Am).

‖U(t, s)‖(m,m) ≤ C ′
m exp(CmLmT ) (V.16)

The evolution system properties (i) and (ii) from definition V.1 follow directly from the

semigroup properties of the Uk
(i) and uniform convergence of Uk(t, s) in s, t which allows us

to exchange limits. Finally we have to show that the evolution semigroup is a solution to
the Cauchy problem ∂tU(t, s) = G(t)U(t, s) (the ∂s version can be handled equivalently).
Again we use uniform convergence and interchange time differentiation at t 6= ti ∈ Pk and
the limit for the sequence Uk(t, s).

∂tU(t, s) = ∂t lim
k→∞

Uk(t, s) = lim
k→∞

∂tUk(t, s) = lim
k→∞

G(⌊t⌋k)Uk(t, s) (V.17)

On D(A) we have Uk(t, s) → U(t, s) ∈ B(D(A), D(A)) as well as G(⌊t⌋k) → G(t) ∈
B(D(A), X) so we can establish the limits independently and get the desired evolution
system for the Cauchy problem ∂tU(t, s) = G(t)U(t, s). If t = ti ∈ Pk the right and left
derivatives will differ and yield G(ti) and G(ti−1) respectively but in the limit k → ∞ they
are equal again because of the assumed continuity of the generator G in time.

V.5 Note. In Schmid–Griesemer (2016) it is assumed that G(t) is the generator of a group
instead of a semigroup to get solutions to the equation involving the time derivative ∂t
instead of just the right derivative ∂+t .

V.6 Note. Establishing evolution systems between the different orders of graph-norm spaces
D(Ak) bears strong resemblance to the construction of so-called “Sobolev towers” in Engel–
Nagel (2000, II.5.a), although there the construction is only for time-independent generators.

V.7 Note. A similar proof strategy can be employed to show Fréchet differentiability of
the solution to (I.1) in a Banach space including the time variable with respect to the
perturbations B. See Penz (2016, Th. 4.10) for such a result and Penz–Ruggenthaler (2015)
for a similar result using the completely different proof method of “successive substitutions”.

VI. SKEW-ADJOINTNESS, GENERATION THEOREMS, AND GRAPH

NORM EQUIVALENTS IN SOBOLEV SPACES

The first lemma is standard and introduces the new default category for generators,
i.e., skew-adjoint operators on a Hilbert space H with inner product 〈·, ·〉. This notion has
already been used in note V.2 and means that A is skew-adjoint if iA is self-adjoint or simply
A∗ = −A. The second result is the famous Stone theorem, see for example Engel–Nagel
(2000, Th. II.3.24), which can be seen as a special case of the so-called generation theorems
for the Banach space setting like Hille–Yosida Engel–Nagel (2000, Th. II.3.5). Generation
theorems give conditions on the generators such that certain types of semigroups arise.
This means the first lemma yielding closedness could be also replaced by the comment in
the beginning of the proof of lemma II.9, if the generator links to a strongly continuous
semigroup. Finally we prove equivalence of the graph norm of the iterated Laplacian (or i∆
that is a skew-adjoint operator) and the usual Sobolev norm.
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VI.1 Lemma. A self-adjoint or skew-adjoint operator is always closed.

Proof. For A self-adjoint and z ∈ D(A) it holds with the same notation as in definition II.1
that 〈Axn, z〉 = 〈xn, Az〉 and therefore in the limit n→ ∞ we get 〈y, z〉 = 〈x,Az〉. For this
reason we have x ∈ D(A) and y = Ax. The proof for skew-adjoint operators just introduces
a minus sign that gets absorbed again when identifying y = Ax.

VI.2 Theorem (Stone). Let A be densely defined on H. Then A is the generator of a
unitary (and thus contraction) group if and only if A is skew-adjoint.

VI.3 Theorem. For general domains Ω ⊆ R
n and m ∈ N, considering the Hilbert space

W 2m,2(Ω) ∩Wm,2
0 (Ω) the standard Sobolev norm is equivalent to the graph norm of D(∆m).

‖u‖2m,2 ∼ ‖u‖D(∆m) (VI.1)

Proof. First observe that for arbitrary u, v ∈ L2(Ω) it holds with the Cauchy–Schwarz
inequality and the inequality of arithmetic and geometric means that

|〈u, v〉| ≤ ‖u‖2‖v‖2 ≤ 1
2
(‖u‖22 + ‖v‖22). (VI.2)

The relation
m∑

l=0

‖∆lu‖2 ∼
(

m∑

l=0

‖∆lu‖22

)1/2

≤ ‖u‖2m,2 (VI.3)

is fairly obvious. But can we also establish an estimate

∑

|α|=k

‖Dαu‖22 ≤ C
m∑

l=0

‖∆lu‖22 (VI.4)

in the other direction for all 0 < k ≤ 2m? If k odd we use integration by parts (u ∈ Hm
0 is

enough such that all boundary terms vanish) to get with (VI.2)

‖Dαu‖22 = 〈Dαu,Dαu〉 = |〈Dα1u,Dα2u〉| ≤ 1
2
(‖Dα1u‖22 + ‖Dα2u‖22) (VI.5)

where now |α1|, |α2| even. For even |α| we proceed inductively and start with |α| = 2 and
write out all partial derivatives separately. Integration by parts then yields

∑

|α|=2

‖Dαu‖22 =
∑

|α|=2

〈Dαu,Dαu〉

=

n∑

i=1

〈∂2i u, ∂2i u〉+
∑

i 6=j

〈∂i∂ju, ∂i∂ju〉

=
n∑

i=1

〈∂2i u, ∂2i u〉+
∑

i 6=j

〈∂2i u, ∂2ju〉

=
n∑

i=1

〈∂2i u, ∂2i u+
∑

j 6=i

∂2ju〉

= 〈∆u,∆u〉 = ‖∆u‖22.

(VI.6)
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For |α| > 2 even we have to repeat the argument taking u = ∆v which means that

‖∆2v‖22 =
∑

|α|=2

‖Dα∆v‖22 =
∑

|α|=2

‖∆Dαv‖22 =
∑

|α|,|β|=2

‖Dα+βv‖22. (VI.7)

Now Dα+β with all possible |α| = |β| = 2 includes all derivatives of order 4, some even
multiple times. So we have the estimate

∑

|α|=4

‖Dαv‖22 ≤ C‖∆2v‖22 (VI.8)

that continues likewise to higher even |α| > 4.7

VI.4 Note. The zero boundary condition u ∈ Wm,2
0 might also be replaced by a periodic

domain where boundary terms vanish when integrating by parts. Note that in the theorem
above the particular properties of the domain Ω are not of interest as it is usually the case
considering Wm,p

0 Sobolev spaces because the respective (test) function can just be extended
to all of Rn with zero, see Adams–Fournier (2003, 4.12 III and 3.27). A similar result on
bounded domains including the graph norm of more general elliptic partial differential op-
erators and the associated weak solutions of an inhomogeneous problem is called “boundary
regularity” in Evans (2010, 6.3.2). The even more general setting of elliptic partial differen-
tial operators of any order on compact manifolds is discussed in Lawson–Michelsohn (1989,
ch. III, Th. 5.2 (iii)). In the wider literature similar results are known under the names
“G̊arding inequality” and “fundamental elliptic estimate”.

VII. APPLICATION TO THE SCHRÖDINGER EQUATION

To treat the quantum mechanical case of particles in singular Coulombic potentials and
other unbounded potentials we make use of the following lemma from Fourier analysis. Here
the number of dimensions of the underlying space actually plays a crucial role and we are
limited to dimension n ≤ 3 for the one-particle configuration space in all further results
because of the following lemma.

VII.1 Lemma. (Reed–Simon II, 1975, Th. IX.28)
Let ϕ ∈ W 2,2(Rn), n ≤ 3. Then for all α > 0 there is a β > 0 independent of ϕ such that

‖ϕ‖∞ ≤ α‖∆ϕ‖2 + β‖ϕ‖2. (VII.1)

The next theorem is then a standard application of lemma VII.1 together with the Kato–
Rellich theorem to the case of the Schrödinger Hamiltonian with zero boundary conditions,
see Reed–Simon II (1975, Th. X.12) and Kato (1995, Th. V.4.11). The Kato–Rellich theorem
states that if A self-adjoint and B symmetric then A+B is also self-adjoint whenever B is
A-bounded with relative bound strictly smaller than 1. The critical condition is thus that
the potential turns out to be ∆-bounded. The spatial domain Ω is always assumed to be a
(open and connected) subset of Rn, n ≤ 3.

7 This proof was inspired by answers in the following two StackExchange

Mathematics threads: http://math.stackexchange.com/questions/101021 and

http://math.stackexchange.com/questions/301404.
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VII.2 Theorem. (Reed–Simon II, 1975, Th. X.15)
Given a real potential v ∈ L2(Rn) +L∞(Rn), n ≤ 3, the Hamiltonian −∆+ v is self-adjoint
on W 2,2(Ω) ∩W 1,2

0 (Ω).

VII.3 Definition. The space of Kato perturbations L2(Rn) + L∞(Rn) is equipped with
the norm

‖v‖2+∞ = inf{‖v1‖2 + ‖v2‖∞ | v1 ∈ L2(Rn), v2 ∈ L∞(Rn), v = v1 + v2}. (VII.2)

The following notation for the extension of potentials to multi-particle systems with N
particles is borrowed from Lammert (2018). Note that in the published version of this work
that we cite along the preprint the respective notation has vanished again.

VII.4 Definition. For a one-point function v : Ω → R we define

Γv : ΩN → R, (x1, . . . , xN) 7→
N∑

i=1

v(xi) (VII.3)

and similarly for a two-point function w : Ω× Ω → R

Γw : ΩN → R, (x1, . . . , xN) 7→
1

2

N∑

i,j=1
i 6=j

w(xi, xj). (VII.4)

VII.5 Lemma. Given the potentials v, vint ∈ L2(Rn) +L∞(Rn), n ≤ 3, and the interaction
potential w(x1, x2) = vint(x1−x2) the multiplication operators Γv and Γw are both ∆-bounded
with relative bound 0. There is further a constant β > 0 such that the following estimates
hold for all ϕ ∈ W 2,2(ΩN ).

‖(Γv)ϕ‖2 ≤ Nβ‖v‖2+∞‖ϕ‖2,2 (VII.5)

‖(Γw)ϕ‖2 ≤
N(N − 1)

2
β‖vint‖2+∞‖ϕ‖2,2 (VII.6)

Proof. We adopt the following notation for the norm of the Hilbert space L2(Ω) where we
assume all coordinates xj 6=i fixed and analogously if only one coordinate xi is fixed.

‖ϕ‖(i)2 =

(∫

Ω

|ϕ|2 dxi
)1/2

, ‖ϕ‖(j 6=i)
2 =

(∫

Ω

|ϕ|2 dxj 6=i

)1/2

(VII.7)

Note that it holds ‖ϕ‖2 = ‖‖ϕ‖(i)2 ‖(j 6=i)
2 so that we have

‖(Γv)ϕ‖2 ≤
N∑

i=1

‖v(xi)ϕ‖2 =
N∑

i=1

‖‖v(xi)ϕ‖(i)2 ‖(j 6=i)
2 . (VII.8)

Now the inner norm is estimated with the decomposition v = v1 + v2, v1 ∈ L2, v2 ∈ L∞ as

‖v(xi)ϕ‖(i)2 ≤ ‖v1‖2‖ϕ‖(i)∞ + ‖v2‖∞‖ϕ‖(i)2 where we use the obvious notation of ‖ϕ‖(i)∞ as the
essential supremum of ϕ over all xi ∈ Ω. Note that ‖v1‖2 and ‖v2‖∞ are just numbers with
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no free variables left. It is now time to invoke lemma VII.1 and have for arbitrarily small
αi > 0

‖ϕ‖(i)∞ ≤ αi‖∆iϕ‖(i)2 + βi‖ϕ‖(i)2 . (VII.9)

Combination of these estimates gives

‖(Γv)ϕ‖2 ≤
N∑

i=1

(αi‖v1‖2‖∆iϕ‖2 + (βi‖v1‖2 + ‖v2‖∞)‖ϕ‖2) . (VII.10)

A final trick is needed to have the full Laplacian ∆ instead of ∆i only involving xi. For this
we observe that by moving to the Fourier domain with coordinates ki ∈ Rn

‖∆iϕ‖2 = ‖k2i ϕ̂‖2 ≤
∥
∥
∥

N∑

j=1

k2j ϕ̂
∥
∥
∥
2
= ‖∆ϕ‖2. (VII.11)

Now define α = maxi αi (but still arbitrarily small) and β = max{β1, . . . , βN , α, 1} and we
get

‖(Γv)ϕ‖2 ≤ Nα‖v1‖2‖∆ϕ‖2 +N(β‖v1‖2 + ‖v2‖∞)‖ϕ‖2. (VII.12)

This means Γv is ∆-bounded with relative bound 0. If we further introduce ‖v‖2+∞ and
choose v1 and v2 accordingly then with β defined as above we can take it out as an upper
estimate. Together with the equivalence of the graph norm of D(∆) and the Sobolev norm
‖ · ‖2,2 from theorem VI.3 we arrive at the desired

‖(Γv)ϕ‖2 ≤ Nβ‖v‖2+∞‖ϕ‖2,2. (VII.13)

The proof for the two-point potential that is defined as an interaction potential involving
vint(xi − xj) is analogous but one first has to rotate the whole ΩN ⊆ RnN so that xi − xj
matches the x1 coordinate. This is possible invariantly because the L2-norm is rotational
invariant. The rest of the proof stays the same, we only consider N(N − 1)/2 components
in the sum instead of only N .

VII.6 Note. The lemma VII.5 above allows for an extension of theorem VII.2 to multi-
particle systems with Hamiltonian H = −∆+Γw+Γv if the involved potentials are of type
v, vint ∈ L2(Rn)+L∞(Rn) with w(xi, xj) = vint(xi−xj). The proof structure of lemma VII.5
was inspired by a theorem with this assertion given in Reed–Simon II (1975, Th. X.16).

VII.7 Definition. We extend definition VII.3 (Kato perturbations) to Sobolev–Kato per-

turbations, defined as the space of potentials

Wm,2+∞(Rn) = {v | Dαv ∈ L2(Rn) + L∞(Rn), |α| ≤ m} (VII.14)

with norm
‖v‖m,2+∞ =

∑

|α|≤m

‖Dαv‖2+∞. (VII.15)

VII.8 Lemma. Given the potentials v, vint ∈ W 2m,2+∞(Rn), n ≤ 3, and w(x1, x2) =
vint(x1 − x2) the multiplication operators Γv and Γw are both ∆-bounded of order m + 1
with relative bound 0. There is further a constant β > 0 such that the following estimates
hold for all ϕ ∈ W 2(m+1),2(ΩN ).

‖(Γv)ϕ‖2m,2 ≤ Nβ‖v‖2m,2+∞‖ϕ‖2(m+1),2 (VII.16)

‖(Γw)ϕ‖2m,2 ≤
N(N − 1)

2
β‖vint‖2m,2+∞‖ϕ‖2(m+1),2 (VII.17)
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Proof. Lemma VII.5 already shows the case m = 0 and proceeding from that we give the
proof for arbitrary orders m. We start by writing out the involved Sobolev space norm
explicitly, then employ the general Leibniz rule for multivariable calculus.

‖(Γv)ϕ‖2m,2 ∼
∑

|α|≤2m

‖Dα((Γv)ϕ)‖2 =
∑

|α|≤2m

∥
∥
∥

∑

ν≤α

(
α

ν

)

(Dν(Γv))Dα−νϕ
∥
∥
∥
2

≤
(
2m

m

)
∑

|α|≤2m

∑

ν≤α

∥
∥(Dν(Γv))Dα−νϕ

∥
∥
2

(VII.18)

The multi-index binomial coefficient is estimated by its largest possible value. Next we use
the property of Γv that makes the potential the sum of one-coordinate potentials. Thus
instead of the full Dν only Dνi acts on the individual terms of the sum in Γv. Note that
these νi from ν = (ν1, . . . , νN) are still n-tuples. In any case we have

Dν(Γv) =
N∑

i=1

Dνiv(xi) (VII.19)

and thus

∑

|α|≤2m

‖Dα((Γv)ϕ)‖2 ≤
(
2m

m

)
∑

|α|≤2m

∑

ν≤α

N∑

i=1

∥
∥(Dνiv(xi))D

α−νϕ
∥
∥
2

=

(
2m

m

)
∑

|α|≤2m

∑

ν≤α

N∑

i=1

∥
∥
∥

∥
∥(Dνiv(xi))D

α−νϕ
∥
∥(i)

2

∥
∥
∥

(j 6=i)

2

(VII.20)

like in (VII.8). The proof then proceeds exactly like in lemma VII.5 since we have Dνiv(xi) ∈
L2 + L∞ due to the assumption v ∈ Wm,2+∞. In total we get the estimate

∑

|α|≤2m

‖Dα((Γv)ϕ)‖2 ≤ Nβ ′

(
2m

m

)

‖v‖2m,2+∞‖ϕ‖2(m+1),2 (VII.21)

where the sums over the multi-indices get combined and estimated by the higher Sobolev
norms. The order of the Sobolev norm of ϕ has increased by 2 because we had to rely on
lemma VII.1 again. The constant β ′ that is defined similar as in lemma VII.5 before gets
combined together with the binomial coefficient to form a constant β and we arrive at the
desired result. If we keep the arbitrarily small αi that are introduced analogously to (VII.9),
then this also yields the desired ∆-boundedness of order m + 1 with relative bound 0. In
both cases the equivalence of the graph norm of D(∆m) and the Sobolev norm ‖ ·‖2m,m from
theorem VI.3 gets applied.
The way for a two-point potential is the same as before with the only difference that we
have to observe

Dν(Γw) =
1

2

∑

i,j=1
i 6=j

DνiDνjvint(xi − xj) (VII.22)

before rotating xi − xj again so that it matches the x1 coordinate in the individual contri-
butions of the norm.
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VII.9 Theorem. The N-particle Schrödinger equation

i∂tψ(t) = H(t)ψ(t) = (−∆+ Γw + Γv(t))ψ(t) (VII.23)

on the Hilbert space L2(ΩN ), Ω ⊆ Rn open and connected, n ≤ 3, with

v ∈ Lip([0, T ],W 2(m−1),2+∞(Rn)) (VII.24)

and w(xi, xj) = vint(xi − xj), vint ∈ W 2(m−1),2+∞(Rn) has a well-defined unitary evolution
system that is bounded as a mapping

U(t, s) : W 2m,2(ΩN) ∩Wm,2
0 (ΩN ) → W 2m,2(ΩN ) ∩Wm,2

0 (ΩN ), t, s ∈ [0, T ]. (VII.25)

This effectively establishes Sobolev regularity of solutions up to order W 2m,2.

Proof. We rewrite the Schrödinger equation as

∂tψ(t) = −iH(t)ψ(t) = i(∆− Γw − Γv(t))ψ(t) (VII.26)

and take A = i∆, G(t) = −iH(t). Both operators are generators of contraction semigroups
because of theorem VI.2 (Stone) in conjunction with lemma VII.5 and the Kato–Rellich
theorem. Lemma VII.8 tells us that Γv(t) and Γw are bounded operators W 2m,2(ΩN ) →
W 2(m−1),2(ΩN ) as well as ∆-bounded of order m with relative bound 0. Thus all the require-
ments on the non-autonomous perturbation from lemma IV.4 are fulfilled and theorem V.4
becomes applicable which establishes the desired regularity result.

VII.10 Note. A final note shall make the setting even more “physical” and turns attention
towards the standard example for external potentials and interactions, the Coulomb poten-
tial on Ω = R3. If we take v(x) = −|x|−1 (attractive) or vint(x) = |x|−1 (repulsive) those
potentials lie in the class of Kato perturbations L2(R3) + L∞(R3). Even the more singular
choice of |x|−3/2+ε for arbitrarily small ε is permitted. Further the potentials can be time-
dependent under the constraint of the introduced Lipschitz condition. But those potentials
already drop out of the next higher regularity class W 1,2+∞(R3) thus theorem VII.9 only
guarantees Sobolev regularity up to W 2,2 for solutions to the Schrödinger equation with
Coulomb potentials.
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