Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electrostatics in periodic slab geometries. I

MPG-Autoren
/persons/resource/persons47589

Arnold,  A.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons227738

de Joannis,  J.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48054

Holm,  Christian
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Arnold, A., de Joannis, J., & Holm, C. (2002). Electrostatics in periodic slab geometries. I. The Journal of Chemical Physics, 117(6), 2496-2502. doi:10.1063/1.1491955.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-655C-3
Zusammenfassung
We propose a new method to sum up electrostatic interactions in two-dimensional (2D) slab geometries. It consists of a combination of two recently proposed methods: the 3D Ewald variant of Yeh and Berkowitz [J. Chem. Phys. 111, 3155 (1999)] and the purely 2D method MMM2D by Arnold and Holm [Chem. Phys. Lett. 354, 324 (2002). The basic idea involves two steps: First we use a three-dimensional summation method whose summation order is changed to sum up the interactions in a slab-wise fashion. Second we subtract the unwanted interactions with the replicated layers analytically. The resulting method has full control over the introduced errors. The time to evaluate the layer correction term scales linearly with the number of charges, so that the full method scales like an ordinary 3D Ewald method, with an almost linear scaling in a mesh based implementation. In this paper we will introduce the basic ideas, derive the layer correction term, and numerically verify our analytical results. (C) 2002 American Institute of Physics.