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Introduction. Over the years various schemes have been devised to solve the electroweak hierarchy problem and
thereby to explain the stability of the electroweak scale with regard to the Planck scale. Among these, the most
prominent proposal is based on low energy (N = 1) supersymmetry. However, in the light of recent LHC results
showing no evidence whatsoever of low energy supersymmetry after a decade of taking data, there is clearly a need
for alternative ideas. Among these, ansätze relying on (some variant of) conformal symmetry have recently received
a lot of attention, see [1–10] and references therein. In one way or another, all these proposals aim for a ‘minimalistic’
solution of the problem, taking seriously the possibility that the Standard Model (SM) may well survive modulo some
minor modifications all the way to the Planck scale, for which there is now accumulating evidence.
Here we follow up on a recent proposal [11] invoking softly broken conformal symmetry (SBCS) which is equivalent

to demanding the cancellation of quadratic divergences in terms of bare parameters at a distinguished and very large
scale Λ. This scale serves as an effective cutoff: it is a basic assumption that at this scale, a proper theory of quantum
gravity ‘takes over’ so that the cutoff Λ gets identified with a physical scale and is never taken to infinity. For this
reason we usually assume that Λ ∼ MPL. With the assumption that the pure matter theory is renormalizable, the
bare couplings are identified with the running couplings evaluated at this distinguished scale:

λi ≡ λbare
i = λi(µ)

∣

∣

∣

µ=Λ
(1)

The key requirement then reads

f
quad
i ({λj}) = 0 (2)

where fquad
i are the coefficient functions of the quadratic divergences accompanying the mass renormalizations of the

scalar fields, with one such function for each independent physical scalar field,

δm2
i =

(

Λ2

16π2

)

f
quad
i ({λj}) + O

(

log(Λ)
)

(3)

and where {λi} is the collection of all couplings of the model under consideration. We note that for the unmodified SM
the possible vanishing of the quadratic mass divergence as a function of the running scalar self-coupling was already
investigated in [12], with the result that Λ ∼ 1024 GeV, several orders of magnitude above the Planck scale. More
recently, the above criterion was applied in [11, 13] to a slightly extended version of the SM with right-chiral neutrinos
and one extra complex scalar field, requiring Λ ∼ MPL, and in such a way that neither Landau poles nor instabilities
of the effective potential appear up to that scale, thus ensuring the survival of the SM essentially as is up to that scale.
The term ‘SBCS’ derives its justification from the fact that, as a consequence of requiring the absence of quadratically
divergent contributions in (3) the physical masses can be kept consistently small in a perturbative treatment as their
quantum corrections depend at worst logarithmically on the cutoff Λ (we will comment below on the reformulation
of this statement in terms of running masses). Thus, when viewed from the cutoff scale Λ, (the matter part of) the
theory looks effectively conformally invariant because m2

i ≪ Λ2. Indeed, our criterion is somewhat similar to softly
broken supersymmetry, where one also allows for explicit symmetry breaking terms, on condition that these terms do
not spoil the cancellation of quadratic divergences. Our procedure also shows how matter coupled Einstein gravity can
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give rise to a conformally invariant low energy flat space limit (with the gravitational coupling κ → 0) even though
Einstein gravity itself is not conformally invariant (see also [14]).
In this note we wish to show that the above criterion can be maintained in a self-consistent manner also if pertur-

bative quantum gravitational corrections are taken into account, provided we assume that at the Planck scale the SM
(or rather, some mildly amended version thereof) merges into a UV complete extension (see [15–19] and references
therein for previous work concerning perturbative quantum gravity corrections to SM processes). The main point is

that with the assumption of hierarchically small masses the gravitational corrections to the coefficient functions fquad
i

are of order (κm)2, that is

f
quad
i ({λj}, κ) = f

quad
i ({λj}) + O

(

(κm)2
)

, (4)

hence hierarchically smaller than the contribution of the matter couplings (here assumed to be < O(1), as is the
case for all extended SM couplings up to O(MPL)) over the whole range of energies up to the Planck scale, and thus
completely negligible. The assumed existence of a UV completion is necessary, because otherwise the theory will be
overwhelmed by power law divergences involving arbitrarily high powers of κΛ which, if present, would effectively
render moot the whole issue of quadratic divergences, as one would expect to be the case for a non-renormalizable
theory. We refer readers to [20] for a detailed discussion of the adverse effects of such divergences.
Let us also emphasize that, in contrast to Veltman’s original proposal [21], our condition of canceling the quadratic

divergences with fixed and finite Λ is an RG invariant statement in the effective field theory; consequently, in terms
of running couplings, the condition (2) itself becomes scale dependent (and can be easily obtained by expressing the
bare couplings in terms of running couplings [11]). The whole scheme becomes well defined by the assumed finiteness
of the Planck scale theory. As far as sub-Planckian physics is concerned, our scheme also bears some similarity with
ideas proposed in the framework of the asymptotic safety program (see e.g. [4, 5, 22–24] and references therein) where
the UV completeness would follow from the assumed existence of a non-trivial UV fixed point.

The model: gravity coupled to a set of scalar fields. We consider the Lagrangian

L =
2

κ2

√−gR +
√−g

(

1

2
gµν∂µS

A∂νS
A − V (S)

)

(5)

where SA are real scalar fields (A,B, ... = 1, ..., n) with potential V (S). We can ignore fermions at this stage, because

at the one-loop order considered here their contribution to f
quad
i , opposite in sign to the contribution of the bosonic

matter fields, remains the same as in the absence of gravitational couplings. By contrast, for scalar fields there appear
terms mixing them with h, and these are ones we have to worry about, see below. For the perturbative expansion we
split the fields into their background values and fluctuations

gµν(x) = ηµν + κhµν(x) , hµν = Hµν +
1

4
ηµνh (ηµνHµν = 0 , h ≡ hµ

µ)

SA(x) = ϕA
cl(x) + sA(x) (6)

with the Minkowski metric ηµν and background scalar fields ϕA
cl(x); κ = M−1

PL is the gravitational coupling. For
establishing the mass renormalization it is in fact sufficient to take a static ϕcl(x). The full Lagrangian also includes
a gauge fixing term

Lgf =
1

ξ

(

∂νhµν − 1

2
∂µh

)2

(7)

We will set ξ = 1 for simplicity (but note that the coefficient functions will depend on the gauge choice). We neglect
gravitational ghost fields as they do not couple to scalar fields at the one-loop order, and thus make no contribution
to the coefficient of quadratic divergences. The full action is thus

S =

∫

d4x(L + Lgf ) (8)

Our aim then is to perform a perturbative quantization in order to extract the coefficient of quadratic divergences
from both matter and gravitational perturbations. The effective action is given by

exp
(

iΓ(ϕcl)
)

=

∫

dhds exp

(

iS(ϕcl + s, η + h) − i
∂Γ(g, ϕcl)

∂ϕcl
A

∣

∣

∣

∣

g=η

sA − i
∂Γ(g, ϕcl)

∂hµν

∣

∣

∣

∣

g=η

hµν

)

(9)
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The subtraction removing the linear terms in the fluctuation fields effectively eliminates tadpoles (see e.g. [25]).
Furthermore, at the relevant order we can exploit the well known fact that Γ(ϕcl) = S(ϕcl) + O(~) to replace the
derivatives of Γ by derivatives of S. Note that it is not necessary to impose the equations of motion on the background
fields ϕcl.
At quadratic order the fluctuations are

L′′ = −1

2
hµνP

µν;ρσ

(

−�+
κ2

2

[

1

2
(∂µϕcl)

2 − V0

])

hρσ −

− 1

2
κh (−∂µϕcl ∂

µ + V0,A) s
A − 1

2
sA
[

δAB�+ V0,AB

]

sB (10)

where

V0(ϕcl) ≡ V
∣

∣

S=ϕcl

, V0,A(ϕcl) ≡
∂V

∂SA

∣

∣

∣

∣

S=ϕcl

, V0,AB(ϕcl) ≡
∂2V

∂SA∂SB

∣

∣

∣

∣

S=ϕcl

(11)

and

Pµν;ρσ ≡ 1

2

(

ηµνηρσ − ηµρηνσ − ηµσηνρ
)

. (12)

We also note the simplification

−1

2
hµνP

µν;ρσ

(

−�+
κ2

2
L0

)

hρσ = −1

8
h

(

−�+
κ2

2
L0

)

h+
1

2
Hµν

(

−�+
κ2

2
L0

)

Hµν (13)

where L0 ≡ 1
2
(∂µϕcl)

2 − V0. Path integration in quadratic fluctuations leads to the functional determinant

M = det

(

−�+
κ2

2
L0

)−
9

2

· det
(

−�+ κ2

2
L0

κ
2
(−∂µϕ

B
cl ∂

µ + V0,B)

κ
2
(−∂µϕ

A
cl ∂

µ + V0,A) δAB�+ V0,AB

)−
1

2

(14)

where the components are split into 9 traceless modes Hµν (giving the first factor), the trace h and the n scalar fields
sA (the contribution of ghosts at this stage would only supply trivial extra factors of det(−�)). Specializing to static
backgrounds ϕA

cl = const and Fourier transforming (� = −p2) the last determinant is a degree n+1 polynomial in p2

(−)n det

(

p2 − κ2

2
V0

κ
2
V0,B

κ
2
V0,A −δABp

2 + V0,AB

)

= (p2)n+1 − (p2)n

(

κ2

2
V0 +

n
∑

A=1

V0,AA

)

+O((p2)n−1) =:

n+1
∏

i=1

(p2 −M2
i )

(15)

from which we learn that
∑n+1

i=1 M2
i = κ2

2
V0 +

∑n
A=1 V0,AA. The effective action in cutoff regularization then follows

after Wick rotating as

iΓ(ϕcl) = logM = − i

2

∫ Λ

0

d4pE

(2π)4

(

9 log(p2E − κ2

2
V0) +

n+1
∑

i=1

log(p2E −M2
i )

)

(16)

where the subscript E indicates that the integral is to be performed in Euclidean signature. We first subtract out the
zero point energy using

∫ Λ

0

d4pE

(2π)4
ln p2E =

Λ4

32π2
(log Λ2 − 1

2
) . (17)

In the general case this quartic divergence is multiplied by (nB − nF ), the difference in the number of bosonic and
fermionic degrees of freedom. As we assume that the UV completion will involve supersymmetry in one way or
another, this divergence can be ignored. For the determination of quadratic divergences the central integral reads

∫ Λ

0

d4pE

(2π)4
log

(

1− m2

p2E

)

= − 1

16π2
Λ2m2 − m4

32π2

[

log

(

− Λ2

m2

)

− 1

2

]

+O(Λ−2) . (18)
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Hence the quadratically divergent contributions to the effective action emerging from logM may be extracted to be
[26]

Γdiv(ϕcl) =
Λ2

32π2

(

9

2
κ2V0 +

n+1
∑

i=1

M2
i

)

+O(log Λ) =
Λ2

32π2

(

5κ2V0 +
n
∑

A=1

V0,AA

)

+O(log Λ) . (19)

Here we are only interested in the mass renormalization (3), so we need only keep the terms quadratic in the background
fields ϕcl. We also note that the correction term in the second factor of (19) gives only a logarithmically divergent
contribution, and can therefore be neglected for our purposes of establishing the quadratically divergent contributions.
Concretely for a general potential

V (S) =
1

2
m2

ABS
ASB +

1

4!
λABCDSASBSCSD +O(κ2) (20)

the relevant divergent contributions to the mass matrix read

δm2
AB = −

(

Λ2

16π2

)

(

5

2
κ2m2

AB +
1

2

n
∑

C=1

λCCAB

)

+O(log Λ) (21)

From this matrix we can extract the coefficient functions f
quad
i simply by diagonalization. The main point now

is that, after the inclusion of fermionic contributions and with the assumed absence of quadratic divergences, the
initial condition m2

AB ≪ Λ2 implies κm ≪ O(1), whence the initial condition remains consistent with the quantum

gravitational corrections. We thus conclude that the conditions on f
quad
i are effectively the same as in the flat space

theory, as the gravitational contribution is hierarchically suppressed.
There appears to be no consensus in the literature whether these statements can or cannot be consistently rephrased

in terms of running masses. Let us recall that running coupling parameters are merely an auxiliary, though very
convenient, device to parametrize the scaling behavior of n-point correlation functions in renormalizable quantum
field theory, but it is arguable whether the very notion of a running coupling continues to make sense in the context
of non-renormalizable theories [17]. Indeed, while there appears to be no unambiguous way to obtain for the running
masses m2(µ) a quadratic dependence on the scale parameter µ in the context of renormalized perturbation theory
(because the subtraction of a quadratic divergence leaves ambiguous a finite contribution), such a dependence can
arise in a Wilsonian treatment, where one integrates out modes with momenta µ2 < p2 < Λ2 (this is the point of view
adopted in asymptotic safety scenarios, see [22–24] and references therein). In the latter view our condition (2) would
eliminate the quadratic dependence of the running masses on µ, and thus ensure a logarithmic running of m2(µ),
keeping the so defined running masses consistently small over the whole range of energies µ ≤ Λ, in accord with the
SBCS hypothesis.
Let us also point out that the existence of quadratic (and higher power) divergences in other parts of the effective

action follows directly from the above formulas. For instance, to pick out the quadratic divergences in the wave
function renormalization one only needs to expand the above effective action up to quadratic order in the derivatives
∂µϕcl. Secondly, possible non-renormalizable interactions (with or without derivatives) not written explicitly in the
formulas above, i.e. the O(κ2) terms in (20), will likewise pick up power law divergences. However, these will not
modify our condition (2), but instead affect higher order operators, as already pointed out in [17–19].

Conclusions. We have shown that the novel mechanism proposed in [11] to avoid the hierarchy problem of the effec-
tive quantum field theory below the Planck scale can be maintained self-consistently in the presence of perturbative
quantum gravitational corrections. The main advantage of this proposal is that, unlike low energy supersymmetry,
it can make do without the extra baggage of numerous new, and so far unseen, degrees of freedom and the con-
comitant plethora of new couplings (not to mention the fact that N = 1 matter coupled supergravities are just as
non-renormalizable as pure gravity, and therefore eventually will also run into the problem of power law divergences).
Finally, as already pointed out in [11], and assuming a minimal extension of the SM along the lines proposed here can
be validated and the corresponding couplings are known, the condition (2) can be subjected to experimental tests.
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