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Abstract

Using exceptional field theory we construct supersymmetric warped AdS7 vacua of mas-

sive IIA and AdS6 vacua of IIB, as well as their consistent truncations including vector

multiplets. We show there are no consistent truncations of massive IIA supergravity around

its supersymmetric AdS7 vacua with vector multiplets when the Roman’s mass is non-

vanishing. For AdS6 vacua of IIB supergravity, we find that in addition to the consistent

truncation to pure F(4) gauged SUGRA, the only other half-maximal truncations that are

consistent result in F(4) gauged SUGRA coupled to one or two Abelian vector multiplets,

to three non-Abelian vector multiplets, leading to an ISO(3) gauged SUGRA, or to three

non-Abelian plus one Abelian vector multiplet, leading to an ISO(3)×U(1) gauged SUGRA.

These consistent truncations with vector multiplets exist when the two holomorphic func-

tions that define the AdS6 vacua satisfy certain differential conditions which we derive. We

use these to deduce that no globally regular AdS6 solutions admit a consistent truncation

to F(4) gauged SUGRA with two vector multiplets, and show that the Abelian T-dual of

the Brandhuber-Oz vacuum allows a consistent truncation to F(4) gauged SUGRA with a

single vector multiplet.
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1 Introduction

Supersymmetric AdS vacua of 10-/11-dimensional SUGRA play an important role in our modern

understanding of theoretical physics. For example, they have led to many important insights

into superconformal field theories via the AdS/CFT correspondence. For many holographic

applications, it is useful to have a consistent truncation of 10-/11-dimensional SUGRA around a

supersymmetric AdS vacuum. Such a consistent truncation allows us to uplift solutions of a lower-

dimensional (usually gauged) SUGRA to solutions of 10-/11-dimensional SUGRA. This makes

them a powerful tool in studying deformations of the AdS vacua, for example those breaking

supersymmetry. Moreover, since the AdS radius of supersymmetric AdS vacua is typically of

the same scale as the compactification radius, lower-dimensional SUGRA theories do not arise

by integrating out the Kaluza-Klein tower of the compactification. Thus, consistent truncations

are the only way to study AdS vacua via lower-dimensional supergravities.

However, constructing consistent truncations is a notoriously difficult task which has until

recently largely eluded a systematic approach. For some purposes, it may even be enough to

know that a consistent truncation of 10-/11-dimensional SUGRA exists, even without having the

explicit truncation Ansätze. Yet, to date there is no classification of what consistent truncations

exist around a given supersymmetric AdS vacuum, although it is conjectured that for every

warped supersymmetric AdSD vacuum of 10-/11-dimensional SUGRA, there exists a “minimal”

consistent truncation to D-dimensional gauged SUGRA keeping only the gravitational super-

multiplet [1], which has been proven in some cases.

Powerful tools in constructing consistent truncations have recently come from exceptional

field theory (ExFT) [2–5] and exceptional generalised geometry (EGG) [6–8], which reformulate

10-/11-dimensional SUGRA in a way which unifies the metric and flux degrees of freedom. In this

framework, consistent truncations preserving all supersymmetries arise as “generalised Scherk-

Schwarz” truncations [9–12], generalising consistent truncations on group manifolds [13] to the

more general setting of “generalised (Leibniz) parallelisable spaces” [14], which includes certain

homogeneous spaces. This has led to a proof of the consistency of the maximally supersymmet-

ric S5 truncation of IIB supergravity [14–16], and to new consistent truncations giving rise to

compact and dyonic gaugings [17–23]. Moreover, all currently known maximally supersymmetric

consistent truncations, including the truncations of 11-dimensional SUGRA on S4 and S7 [14,15],

first found in [24–26], and the truncation of massive IIA on S6 [19,20], first constructed in [27,28],

are nicely captured by the framework of generalised Scherk-Schwarz truncations.

Recently, [29,30] has shown how use this framework to define consistent truncations breaking

half of the supersymmetry. Such half-maximal truncations of type II/11-dimensional SUGRA

then lead to a half-maximal gauged SUGRA in lower dimensions. Furthermore, [30] proved the

half-maximal case of the conjecture of [1], i.e. that every half-maximally supersymmetric warped

AdSD vacuum of 10-/11-dimensional SUGRA admits a consistent truncation to half-maximal D-

dimensional gauged SUGRA keeping only the gravitational supermultiplet.

Moreover, ExFT and EGG lead to a new geometric description of supersymmetric AdS vacua
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of 10-/11-dimensional SUGRA where the compactification manifold is characterised by “gener-

alised holonomy”, or a (weakly) integrable generalised G-structure, [30–35] in analogy to super-

symmetric Minkowski vacua without fluxes arising from special holonomy compactifications [36].

Moreover, as showed in [30], once the generalised G-structure underyling the supersymmetric

AdS vacuum is constructed, the “minimal” consistent truncation can be obtained immediately.

Therefore, this framework is ideally suited to studying supersymmetric AdS vacua and their

consistent truncations, which we will undertake in this paper.

In this work, we will focus on supersymmetric AdS7 solutions of massive IIA SUGRA and

supersymmetric AdS6 solutions of IIB. Building on previous work [37–39], families of infinitely

many such vacua have recently been constructed in the literature [40–44], where the AdS7 so-

lutions are characterised by a cubic function on an interval [45] and the AdS6 solutions by two

holomorphic functions on a Riemann surface4. These AdS vacua admit a “universal” consistent

truncation to pure 7-dimensional SU(2) gauged SUGRA [47] and 6-dimensional F(4) gauged

SUGRA [48], which takes the same form for any of the cubic functions / holomorphic functions

defining the AdS vacua [49–51]. In a recent paper [51], we showed that in ExFT these infinite

families of AdS solutions are described by the same universal generalised half-maximal structure

and used this to explain the universal form of the AdS7 consistent truncations and derive the

consistent truncation around the AdS6 vacua.

It has remained an interesting open problem to find any consistent truncations around the

AdS6,7 vacua keeping more modes than just the gravitional supermultiplet. Supersymmetry im-

plies that any extra modes kept will have to form vector multiplets of the 6- and 7-dimensional

gauged SUGRA obtained after truncation. Here we will use the framework of ExFT, and specifi-

cally the tools developed in [29,30], to address this problem: we will classify all possible consistent

truncations with vector multiplets around the supersymmetric AdS6,7 vacua that are compatible

with the Ansatz proposed in [29, 30]. Assuming the Ansatz of [29, 30] to be the most general

Ansatz for consistent truncations with vector multiplets, our results give a full classification of

the consistent truncations around supersymmetric AdS6,7 vacua. We find that

• there are no consistent truncations with vector multiplets around the supersymmetric AdS7

vacua of massive IIA SUGRA when the Roman’s mass is non-vanishing,

• supersymmetric AdS6 vacua of IIB SUGRA admit consistent truncations with vector mul-

tiplets when the holomorphic functions characterising them admit certain differential con-

ditions which we give explicitly. We construct the non-linear consistent truncation Ansätze

that give rise to less than four vector multiplets.

Our paper is organised as follows. First, we give a summary of our results in 1.1. In section

2, we give a brief introduction to the relevant aspects of ExFT, while in section 3, we review

the techniques developed in [29,30] to describe supersymmetric AdS vacua of 10-/11-dimensional

SUGRA and their minimal consistent truncations, in which only the gravitational supermultiplet

4An alternative characterisation of the AdS6 vacua in terms of a real harmonic function is given in [46].
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is kept. In section 4, we review how to define consistent truncations with matter multiplets as

described in [29, 30]. Next, we show how to compute the generalised metric from the half-

maximal structure underlying the AdS vacua in section 5. In sections 6 and 7, we show how one

can easily construct the supersymmetric AdS7 vacua of massive IIA SUGRA and AdS6 vacua of

IIB SUGRA, respectively, using half-maximal structures of ExFT, before deriving their minimal

consistent truncations in 8. Finally, in section 9 we show that there are no consistent truncation

with vector multiplets around the supersymmetric AdS7 vacua of massive IIA and in section 10

we classify all possible consistent truncations with vector multiplets around the supersymmetric

AdS6 vacua of IIB SUGRA. These consistent truncations require the holomorphic functions

characterising the AdS6 vacua to satisfy certain differential constraints which we derive. We also

explicitly construct the non-linear consistent truncation Ansätze yielding less than four vector

multiplets. We conclude with a discussion and outlook in section 11.

1.1 Summary of results

We summarise here our results. In sections 6 and 7 we construct and classify all supersymmetric

AdS7 vacua in mIIA theory and AdS6 vacua in IIB, respectively. As we review in section 3.1,

for each of them one can construct a consistent truncation to a minimal half-supersymmetric

gauged supergravity with a gravitational supermultiplet, which we explicitly construct in section

8. Finally, in sections 9 and 10 we analyse the possibility of having consistent truncations

with matter multiplets around these vacua, using the methods of [29, 30]. From the latter, it

follows that we can have at most three (four) vector multiplets in consistent truncations around

supersymmetric AdS7 (AdS6) vacua and, for the truncation to be consistent, the compactification

space has to satisfy certain conditions. These extra conditions imply that there are no consistent

truncations with vector multiplets around AdS7 vacua for non-vanishing Roman’s mass. For

the AdS6 case, we find that only a small subset of 6-dimensional half-maximal gauged SUGRAs

admitting supersymmetric AdS6 vacua [52] can arise as a consistent truncation of IIB SUGRA,

and we derive explicit differential constraints on the compactification space for the consistent

truncations to exist. More concretely, our findings for each of the cases are the following:

AdS7 in mIIA

In section 6 we construct and classify all geometries in mIIA theory consisting of the warped

product

AdS7 × I × S2 , (1.1)

with I an interval, that preserve supersymmetry, the minimal amount being 16 supercharges in

seven dimensions. We encounter that they can be classified in terms of a function t(z) on the

interval I satisfying
...
t = −m

2
, and t(z) ≥ 0 , (1.2)
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where equality in the last condition holds on the endpoints of I and ensures that the total

internal space has no boundaries. The parameter m is the Roman’s mass of mIIA. We study

all possibilities of having consistent truncations with vector multiplets around these vacua and

find that the only possibility is to keep a single vector multiplet in the truncation and only if

m = 0. This consistent truncation is just a consistent subsector of the maximally supersymmetric

consistent truncation around the AdS7×S4 solution of 11-dimensional supergravity dimensionally

reduced to IIA supergravity.

AdS6 in IIB

Similarly, in section 7 we construct and classify all geometries in IIB theory consisting of the

warped product

AdS6 × Σ× S2 , (1.3)

where Σ is a Riemann surface (with boundaries), that preserve 16 supercharges. We find that

they can be classified in terms of two holomorphic functions fα, α = 1, 2, on the Riemann surface.

These functions have to satisfy the condition

i ∂fα∂̄f̄α ≥ 0 , r ≥ 0 (1.4)

where equality holds on the boundary of Σ, ensuring that the total internal space has no bound-

aries. The function r is a real function of the Riemann surface defined up to an integration

constant through the differential equation

dr = −pα dkα , (1.5)

where pα and kα are the real/imaginary parts fα = −pα + i kα. We also study which consistent

truncations with vector multiplets around these vacua exist, and our results are summarised in

table 1. We explicitly construct the consistent truncations containing one, two and three vector

multiplets.

2 Review of exceptional field theories

In this section, we review the structure of the relevant exceptional field theories. Exceptional

field theories (ExFTs) are the manifestly duality covariant formulations of maximal higher-

dimensional supergravity theories [5, 53, 54]. For our purposes, we will need the ExFTs built

on the groups E5(5) ≡ SO(5, 5) [55], and E4(4) ≡ SL(5) [56], respectively.

The reformulation of the higher-dimensional supergravities is based on the split of their co-

ordinates into D external coordinates xµ and the remaining internal coordinates yi , with the

latter embedded into a set of generalised internal coordinates YM transforming in a represen-

tation R1 of the duality group Ed(d), with d = 11 − D . Internal diffeomorphisms and tensor

6



N SU(2)R rep Consistent truncations with vect. mult. Gauging

1 1 Only if ∃ g ∈ U(1) s.t. ∂(g ∂fα) ∈ real functions on Σ SU(2)×U(1)

2 1⊕ 1 NO (due to global issues) SU(2)×U(1)2

3 1⊕ 1⊕ 1 NO N/A

3 3 Only if r dπα = pαπβ ∧ πβ ISO(3)

4 1⊕ 1⊕ 1⊕ 1 NO N/A

4 3⊕ 1 Only if ∃3 and ∃1 with g = ±1

2

(

pα∂̄f̄
α

pβ∂fβ

)

ISO(3)×U(1)

Table 1: Possible consistent truncations withN vector multiplets around supersymmetric AdS6×
S2 vacua in IIB and the resulting gauging of the gauged SUGRA. Consistency requires that
N ≤ 4 and that the vector multiplets form representations of SU(2)R, the R-symmetry of the
AdS6 vacua. The one-forms πα are explicitly defined in terms of the background functions fα,
see equations (10.63) and (10.64).

gauge transformations of the higher-dimensional supergravity combine into a single symmetry

structure of generalised diffeomorphisms in the coordinates YM [4, 7]. Parametrised by a gauge

parameter ξM in R1, the generalised Lie derivative of a generalised vector field VM in R1 reads

LξVM = ξN∂NV
M − ∂Nξ

M V N + YMN
KL ∂Nξ

K V L . (2.1)

The constant Ed(d)-invariant tensor YMN
KL encodes the deviation from standard diffeomor-

phisms. Its presence implies that the transformations (2.1) close into an algebra only after

imposing the section constraints

YMN
KL ∂M ⊗ ∂N = 0 , (2.2)

where the internal derivatives act on any pair of fields or gauge parameters. Solutions of the

section constraints restrict the internal coordinate dependence of all fields to linear subspaces

of R1 upon which one recovers the standard supergravity theories. The action (2.1) can be

rewritten as

LξVM =

(

ξN∂N +
1

9− d
∂Nξ

N − ad (t
α)KL ∂Kξ

L tα·
)

VM , (2.3)

with constant ad, and tα labelling the generators of Ed(d) . From this formula one also reads

off the action of generalised Lie derivatives on different representations. Modulo the section

constraints (2.2), the transformations (2.1) close into an algebra defining the E-bracket

[ξ1, ξ2]
M ≡ 2 ξN[1 ∂Nξ

M
2] − YMN

KL ξ
K
[1 ∂Nξ

L
2] . (2.4)
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The presence of the tensor YMN
KL implies the existence of trivial gauge parameters and non-

associativity of the algebra. Generalised diffeomorphisms are realised as local symmetries of

ExFT (i.e. with parameters ξM depending on internal and external coordinates) by introduc-

ing covariant external derivatives Dµ ≡ ∂µ − LAµ
with the ExFT vector fields Aµ in the R1

representation. Non-associativity of the algebra (2.4) implies that the standard Yang-Mills field

strength based on (2.4) is not a tensor w.r.t. the generalised Lie derivative (2.1). Rather it has

to be completed by a coupling to the two-forms Bµν of the theory following the structure of the

tensor hierarchy [57]

Fµν = 2 ∂[µAν] − [Aµ, Aν ] + dBµν , (2.5)

Here, the bracket [Aµ, Aν ] refers to (2.4) while the d operator in the last term denotes a covariant

differential operator from the R2 representation of two-forms into R1. Explicitly, it takes the

form

(dBµν)M = YMN
KL ∂NBµνKL , (2.6)

with the two-forms BµνKL living in (a sub-representation of) the symmetric tensor product

R2 ⊂ (R1 ⊗ R1)sym . Continuing the tensor hierarchy gives rise to the couplings of three-forms

Cµνρ ⊂ R3, four-forms Dµνρσ ⊂ R4, etc., with the lowest non-abelian field strengths given by

Hµνρ = 3D[µBνρ] − 3∂[µAν ∧ Aρ] +A[µ ∧
[

Aν , Aρ]

]

+ dCµνρ ,

Jµνρσ = 4D[µCνρσ] + 2F[µν ∧ Bρσ] − dB[µν ∧ Bρσ] −
4

3
A[µ ∧

(

Aν ∧ ∂ρAσ]

)

+
1

3
A[µ ∧

(

Aν ∧ [Aρ,Aσ]]
)

+ dDµνρσ .

(2.7)

Again, the d operator denotes the covariant internal differential operators mapping Rp −→ Rp−1,

while the wedge ∧ represents algebraic maps

(R1 ⊗R1)sym −→ R2 , R1 ⊗R2 −→ R3 , (2.8)

etc.. Just as p-form field strengths are tensor with respect to the Lie derivative, the field strengths

(2.5), (2.7), are tensors with respect to the generalised Lie derivative.

Let us now make these structures explicit for the theories we will be using in the following.

For d = 4, the E4(4) = SL(5) ExFT is based on coordinates Y ab = Y [ab], in the R1 = 10

representation of SL(5), with a, b = 1, . . . , 5 labelling the fundamental representation. The Y -

tensor in (2.1) is given by Y ef,ghab,cd = 6 δefghabcd , and induces a tensor hierarchy of p-forms living

in representations Rp as

Aµ
ab : 10 , Bµν a : 5 , Cµνρa : 5 , Dµνρσ ab : 10 . (2.9)
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The relevant ∧ products (2.8) and the d operators in (2.5), (2.7) are explicitly given by

(A1 ∧ A2)a =
1

4
ǫabcdeA1

bcA2
de , (A ∧ B)a = AabBb , (2.10)

(dB)ab = 1

2
ǫabcde ∂cdBe , (dC)a = ∂baCb , (dD)a =

1

2
ǫabcde∂bcDde . (2.11)

For what follows, it will be similarly useful to define ∧ : R1 ⊗R3 −→ R4 and ∧ : R2 ⊗R3 −→ 1

as

(A ∧ C)ab =
1

4
ǫabcdeAcdCe , B ∧ C = BaCa . (2.12)

Moreover, the theory features 14 scalar fields, parameterising the coset space SL(5)/SO(5), which

are most conveniently described by a group-valued generalised metric Mab . The ExFT dynamics

comes from an action [56], giving rise to standard second order field equations. In particular,

the 4-form field strength is dual to the 3-form field strength via the first order equation

Jµνρσa =
1

3!

√

|G|ǫµνρσκλτ MabHκλτ
b , (2.13)

with the scalar matrix Mab , and where |G| is the determinant of the external metric, Gµν , of the
ExFT, which is used to raise/lower the external indices on the field strengths.

For d = 5, the E5(5) = SO(5, 5) ExFT is based on coordinates YM , in the R1 = 16 spinor

representation of SO(5, 5), with M = 1, . . . , 16. The Y -tensor in (2.1) is given by Y PQMN =
1
2 (γ

I)MN (γI)
PQ in terms of the SO(5, 5) gamma matrices, with the index I = 1, . . . 10, labelling

the vector representation, raised and lowered by the constant SO(5, 5) invariant metric ηIJ . It

induces a tensor hierarchy of p-forms living in representations Rp as

Aµ
M : 16 , BµνI : 10 , CµνρM : 16 , Dµνρσ [IJ] : 45 . (2.14)

Strictly speaking, the theory also carries additional covariantly constrained 4-forms DµνρσM , but

for our purposes we will only consider equations in which all four-forms drop out. The relevant

∧ products (2.8) and the d operators in (2.5), (2.7) are explicitly given by

(A ∧A)I =
1

2
(γI)MN AMAN , (A ∧ B)M =

1

2
(γI)MN ANBI , (2.15)

(dB)M = (γI)
MN ∂NBI , (dC)I =

1

2
(γI)

MN∂MCN . (2.16)

Once again, it will be useful to also define ∧ : R2 ⊗R2 −→ 1 as

B1 ∧ B2 = ηIJ B1
IB2

J . (2.17)

Moreover, the theory features 25 scalar fields, parameterising the coset space SO(5, 5)/(SO(5)×

9



SO(5)), which are most conveniently described by a group-valued generalised metricMMN in the

spinor representation, or by a group-valued generalised metric MIJ in the vector representation.

The ExFT dynamics comes from a pseudo-action [55], which has to be supplemented by first

order duality and self-duality equations among the p-form field strengths

Jµνρσ M =
1

2

√

|G|ǫµνρσκλMMN FκλN ,

Hµνρ I = − 1

3!

√

|G|ǫµνρσκληIJMJK Hσκλ
K ,

(2.18)

where Gµν is the external metric which is used to raise/lower the external indices on the field

strengths and |G| is its determinant.

For details about the ExFT actions and field equations, we refer to [55,56]. In appendices A

and B, we collect/derive the details of the dictionaries between the ExFT fields and the original

IIA/IIB supergravity fields.

3 Half-maximal AdS vacua from ExFT

Generic supersymmetric AdS vacua of 10-/11-dimensional SUGRA have non-trivial fluxes. Since

ExFT unifies fluxes and geometry into generalised tensor fields, it leads to a natural description

of supersymmetric AdS vacua that is largely analogous to special holonomy spaces in Riemannian

geometry, as shown in [30] for the case of 16 supercharges, and in [33] for 8 supercharges. Thus,

having a supersymmetric AdSD×M vacuum is equivalent to the existence of a nowhere vanishing

set of generalised tensor fields on M subject to certain algebraic compatibility conditions and

differential conditions. These conditions ensure that M admits appropriate Killing spinors for

the AdSD vacuum. As shown in [30], for supersymmetric AdS6 and AdS7 vacua the relevant

generalised tensors are d − 1 generalised vector fields Ju ∈ Γ (R1), with u = 1, . . . , d − 1, and a

generalised tensor field K̂ ∈ Γ (RD−4), where d = 11 −D and D denotes the dimension of the

AdS vacuum. Here we denote by Rp the generalised vector bundle whose fibres are Rp, as listed

in (2.9) and (2.14). These generalised tensors must satisfy the algebraic conditions

Ju ∧ Jv −
1

d− 1
δuvJwJ

w = 0 ,

Ju ∧ Ju ∧ K̂ > 0 ,

K̂ ⊗ K̂|Rc
= 0 ,

(3.1)

with the ExFT ∧ product defined in (2.10), (2.12) and (2.15), (2.17), the u, v = 1, . . . , d − 1

indices raised and lowered by δuv and Rc = ∅ for D = 7 and Rc = 1 for D = 6. This set

of generalised tensors Ju and K̂ defines a Ghalf = SO(d − 1) structure, because it is stabilised

by SO(d − 1) ⊂ Ed(d). This ensures the existence of well-defined spinors on Mint carrying 16
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supercharges5, and we will therefore also call the set Ju, K̂ satisfying (3.1) a “half-maximal

structure”. The commutant of Ghalf within the maximal compact subgroup of Ed(d) is itself

given by SO(d − 1)R which acts as a R-symmetry group, rotating the well-defined spinors into

each other, and similarly the generalised vector fields Ju. As we will show in section 5, one can

express the generalised metric, i.e. the scalar fields on M , in terms of a SO(d − 1)R-invariant

combination of the half-maximal structure, Ju and K̂.

To ensure that the well-defined spinors are Killing spinors of the supersymmetric AdS6,7

vacua, the half-maximal structure Ju, K̂ must satisfy the following differential constraints [30]

LJu
Jv = −ΛuvwJ

w ,

LJu
K̂ = 0 ,

dK̂ =

{

1
3!3

√
2
ǫuvwΛuvwJx ∧ Jx , when D = 7 ,

1
9ǫuvwxΛ

uvwJx , when D = 6 ,

(3.2)

where the generalised Lie derivatives, LJu
Jv, LJu

K̂, and the dK̂ operator are as defined in

equations (2.1), (2.3), (2.11) and (2.16). For D = 7, i.e. in the SL(5) ExFT, the explicit

expressions for the generalised Lie derivatives appearing in the first two equations of (3.2) are

LJu
Jv
ab =

1

2
Ju

cd∂cdJv
ab − 2Jv

c[b∂cdJu
a]d +

1

2
Jv
ab∂cdJu

cd ,

LJu
K̂a =

1

2
Ju

bc∂bcK̂
a − K̂b∂bcJu

ac +
1

2
K̂a∂bcJu

bc ,

(3.3)

while for D = 6, i.e. in the SO(5, 5) ExFT, they are

LJu
Jv
M = Ju

N∂NJv
M − Jv

N∂NJu
M +

1

2
(γI)

MN (γI
)

PQ
Jv
P ∂NJu

Q ,

LJu
K̂I = Ju

M∂M K̂
I +

1

2
K̂J (γJ)MN

(

γI
)NP

∂PJu
M .

(3.4)

The objects Λuvw appearing in (3.2) are totally antisymmetric constants which imply that

the Ju’s generate a SU(2)R algebra with respect to the generalised Lie derivative and that the

K̂ is invariant under this SU(2)R symmetry [30]. The cosmological constant, Λ, of the AdS6,7

vacuum is encoded in Λuvw as

ΛuvwΛ
uvw ∼ −Λ , (3.5)

up to numerical factors which we will fix in sections 6 and 7 by comparing with known super-

symmetric AdS6,7 vacua. From (3.2), we see that Λuvw breaks the SO(d− 1)R symmetry of the

half-maximal structure to SU(2)R, the R-symmetry of the supersymmetric AdS6,7 vacua.

Moreover, (3.2) implies that the vector fields, Ju, generate, via the generalised Lie derivative,

5In 6 dimensions, the above description is equivalent to having 16 non-chiral supercharges. It is also possible
to have a chiral set of 16 supercharges in 6 dimensions, which requires having a different set of generalised
tensors [30]. However, there are no chirally supersymmetric AdS6 vacua, and so we will not comment further on
this possibility.
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a SU(2)R ⊂ SO(d− 1)R rotation on the Ju’s themselves and leave K̂ invariant. As we will make

explicit in the next section, the generalised metric M is constructed from SO(d− 1)R-invariant

combinations of Ju and K̂ and thus

LJu
M = 0 . (3.6)

Thefore, the Ju are generalised Killing vector fields of the background. As made explicit in

appendices A and B generalised vector fields consist of formal sums of spacetime vector fields

and differential forms. Equation (3.6) implies that either the spacetime vector fields in Ju are

Killing vector fields of the spacetime metric and leave the SUGRA field strengths invariant [30],

or that some of the Ju contain a vanishing spacetime vector field component and consist of only

exact differential forms. We call a generalised Killing vector of the latter type a trivial Killing

vector field. As discussed in more detail in [30], for AdS7 vacua we see that the SU(2)R symmetry

must be generated by the three spacetime vector fields of Ju, u = 1, . . . , 3. On the other hand,

for AdS6 vacua three of the Ju’s contain spacetime Killing vector fields that generate the SU(2)R

symmetry, while the fourth generalised vector field

JT ≡ 1

3!
ǫuvwxΛuvwJx , (3.7)

is given by

JT =
3

2
dK̂ , (3.8)

which implies that it is a trivial generalised Killing vector field. In fact, it satisfies

LJT
= 0 , (3.9)

when acting on any generalised tensor. We will make use of these general properties of Ju and

K̂ when constructing supersymmetric AdS6,7 vacua in section 6 and 7.

Finally, one can define the following generalised tensor fields from the half-maximal structure

Ju and K̂ which will be useful to us

Ju ∧ Jv = δuvK , K ∧ K̂ = κD−2 , Ĵu = Ju ∧ K̂ , (3.10)

where K ∈ Γ (R2) and κ is a scalar density of weight 1
D−2 .

3.1 Minimal consistent truncation

One benefit of constructing or describing half-maximal AdSD vacua by the structures Ju and K̂

is that we immediately obtain a “minimal” consistent truncation around the vacuum to a half-

maximal D-dimensional gauged SUGRA containing only the gravitational supermultiplet [30].

This is therefore a proof and an explicit realisation of the (half-maximal subcase of the) conjecture

that such a consistent truncation exists for any supersymmetric warped AdS vacuum of 10-/11-

dimensional SUGRA [1]. Moreover, the usually highy non-linear truncation Ansatz is given by

12



a simple linear factorisation Ansatz on the ExFT structures. If we denote by YM the internal

coordinates and by xµ the D-dimensional external coordinates, then the truncation Ansatz (of

the purely internal fields from the D-dimensional perspective) is given by [29, 30]

Ju(x, Y ) = X−1(x)Ju(Y ) ,

K̂(x, Y ) = X2(x) K̂(Y ) .
(3.11)

Here X(x) is the scalar field of the D-dimensional half-maximal SUGRA. For each value of the

scalar field X(x) > 0, Ju(x, Y ) and K̂(x, Y ) satisfy the algebraic conditions (3.1) and thus a half-

maximal structure. This guarantees that the theory obtained after truncation is half-maximally

supersymmetric. However, for X 6= 1, the differential conditions (3.2) defining the AdS vacuum

are no longer satisfied. Therefore, at X 6= 1, the theory will not have a supersymmetric AdS

vacuum. Finally, as shown in [30], the differential conditions (3.2) ensure that the truncation

Ansatz (3.11) is consistent.

We will show in section 5 how to construct the generalised metric from the half-maximal

structure. By constructing the generalised metric of Ju and K̂ and using the dictionary between

ExFT and SUGRA, given in appendices A.2 and B.2, we thus obtain the non-linear truncation

Ansatz for the internal supergravity fields.

For the fields of the ExFT tensor hierarchy, the truncation Ansatz is as follows [30]. For the

ExFT vector fields, we have

Aµ(x, Y ) = Aµ
u(x)Ju(Y ) . (3.12)

In D = 7, the truncation Ansatz for the remaining fields is

Bµν(x, Y ) = −Bµν(x)K(Y ) ,

Cµνρ(x, Y ) = Cµνρ(x) K̂(Y ) ,

Dµνρσ(x, Y ) = Dµνρσ
u(x) Ĵu(Y ) ,

(3.13)

where Aµ
u(x), Bµν(x), Cµνρ(x) and Dµνρσ

u(x) are the fields of the 7-dimensional half-maximal

gravitational supermultiplet. In particular, Aµ
u are the 3 vector fields, Bµν are the 2-forms, Cµνρ

are the 3-forms dual to Bµν , and Dµνρσ
u are the 4-forms dual to the vector fields. The duality

relations between these half-maximal gauged SUGRA fields comes from the duality relations

(2.13) between the ExFT field strengths (2.5), (2.7). Finally, the truncation Ansatz for the

external 7-D ExFT metric is

Gµν(x, Y ) = Gµν(x)κ
2(Y ) , (3.14)

with Gµν(x) the metric of the half-maximal gauged SUGRA.

Similarly, in D = 6, the truncation Ansatz for the tensor hierarchy field is

Bµν(x, Y ) = Bµν(x) K̂(Y )− B̃µν(x)K(Y ) ,

Cµνρ(x, Y ) = Cµνρ
u(x) Ĵu(Y ) .

(3.15)
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Now, Aµ
u are the 4 vector fields of the gravitational supermultiplet, while Bµν is its 2-form.

B̃µν is the dual 2-form and Cµνρ
u are the 3-forms dual to the vector fields. Once again, the

relationship between these objects arises from the duality relation (2.18) between the ExFT field

strengths (2.5), (2.7). Using the truncation Ansatz (3.15) and differential conditions (3.2), we

find that the field strengths factorise as

Fµν(x, Y ) = F̃µν
u(x)Ju(Y ) ,

Hµνρ(x, Y ) = F̃µνρ(x) K̂(Y )− G̃µνρ(x)K(Y ) ,
(3.16)

where

F̃µν
u = 2∂[µAν]

u + ΛuvwAµ v Aν w − 1

9
ǫuvwxΛvwxBµν ,

F̃µνρ = 3∂[µBνρ] ,

G̃µνρ = 3∂[µB̃νρ] + 3A[µ
u∂νAρ] u + Λuvw Aµ

uAν
vAρ

w − 1

9
ǫuvwxΛ

uvw Cµνρ
x ,

(3.17)

and similarly for the higher field strengths of the ExFT. We will use this to derive the duality

relations between Bµν and B̃µν explicitly in section 5.2. Similar to D = 7, the truncation Ansatz

for the external ExFT metric is

Gµν(x, Y ) =
√
2Gµν(x)κ

2(Y ) , (3.18)

with Gµν(x) the 6-dimensional gauged SUGRA metric.

4 Consistent truncations with matter multiplets

As shown in [30], half-maximal consistent truncations with N vector multiplets require a further

reduction of the structure group to SO(d − 1 − N) ⊂ SO(d − 1) ⊂ Ed(d), as well as differential

conditions on the tensors defining the SO(d−1−N) structure. In order to have a SO(d−1−N)

structure, we require d−1+N generalised vector fields, Ja, where a = 1, . . . , d−1+N , satisfying

Ja ∧ Jb = ηabK , (4.1)

in addition to the K̂ as in (3.1). Here ηAB is a constant SO(d− 1, N) invariant metric and K is

defined as in (3.10),

K =
1

d− 1
Ju ∧ Ju . (4.2)

Therefore, given the d−1 generalised vector fields defining the half-maximal structure of the AdS

vacuum (3.1), we must have a further N generalised vector fields, one for each vector multiplet.

Labelling these extra generalised vector fields by ū = 1, . . . , N , the algebraic conditions (4.1)
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become

Jū ∧ Ju = 0 ,

Jū ∧ Jv̄ = −δūv̄K .
(4.3)

Since these algebraic conditions must hold point-wise, it is easy to show that we can only have

N ≤ d− 1 vector multiplets in a consistent truncation.

Moreover, for the truncation around the supersymmetric AdS vacuum to be consistent, the

SO(d− 1−N) structure must satisfy the differential conditions

LJa
Jb = −fabc Jc ,

LJa
K̂ = 0 ,

(4.4)

where fabc = fab
dηdc are totally antisymmetric structure constants with fuvw = Λuvw and

fuvw̄ = 0. Here we are considering a special case of the more general conditions given in [30]

because we want to ensure that the truncation contains a supersymmetric AdS vacuum. The

differential conditions (4.4) can be thought of as the higher-dimensional analogue of the conditions

imposed on the embedding tensor of 6-/7-dimensional half-maximal gauged SUGRA in [52, 58].

For what follows, it’s useful to note that the first condition of (4.4) implies that the extra

generalised vector fields form a representation under the R-symmetry group

LJu
Jv̄ = −fuv̄w̄Jw̄ . (4.5)

Together with the fact that there can be only N ≤ d− 1 vector multiplets, this will allow us to

fully classify the possible consistent truncations with vector multiplets in sections 9 and 10.

4.1 Truncation Ansatz

As shown in [30], given the d−1+N vector fields satisfying (4.1) and (4.4), we obtain a consistent

truncation by expanding the fields of the ExFT as follows.

For the scalar sector, we expand the background SO(d− 1) structure in terms of the SO(d−
1−N) structure as

Ju(x, Y ) = X−1(x) bu
a(x)Ja(Y ) ,

K̂(x, Y ) = X2(x) K̂(Y ) .
(4.6)

The fields bu
a must satisfy

bu
abv

bηab = δuv , (4.7)

and are identified up to SO(d− 1) rotations acting on the u, v indices. Therefore, they parame-
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terise the coset space

bu
a ∈ SO(d− 1, N)

SO(d− 1)× SO(N)
, (4.8)

and together with X ∈ R
+ they form the scalar manifold of half-maximal gauged SUGRA

coupled to N vector multiplets

Mscalar =
SO(d− 1, N)

SO(d− 1)× SO(N)
× R+ . (4.9)

Using the formulae of section 5, in which we show how to construct the generalised metric

from the half-maximal structure, we can then translate the above truncation Ansätze into the

non-linear truncation Ansätze of the internal SUGRA fields.

For D = 7, the remaining fields of the ExFT are expanded as

Aµ(x, Y ) = Aµ
a(x)Ja(Y ) ,

Bµν(x, Y ) = −Bµν(x)K(Y ) ,

Gµν(x, Y ) = Gµν(x)κ
2(Y ) ,

(4.10)

where Aµ
a are the 3 + N vector fields, Bµν are the two-form fields and Gµν the metric of the

seven-dimensional half-maximal gauged SUGRA.

For D = 6, the other fields of the ExFT are expanded as

Aµ(x, Y ) = Aµ
a(x)Ja(Y ) ,

Bµν(x, Y ) = Bµν(x) K̂(Y )− B̃µν(x)K(Y ) ,

Cµνρ(x, Y ) = Cµνρ
a(x) Ĵa(Y ) ,

Gµν(x, Y ) =
√
2Gµν(x)κ

2(Y ) ,

(4.11)

Here Gµν is the metric, Aµ
a are the 4 + N vector fields, Bµν are the two-form fields and their

duals B̃µν of the six-dimensional half-maximal gauged SUGRA. Cµνρ
a are the 3-form fields dual

to the Aµ
a, which appear via Stückelberg coupling in the field strength of B̃µν . To see this,

one can compute the ExFT field strengths (2.7). Using the truncation Ansatz (4.11) and the

differential conditions (3.2) we find

Fµν(x, Y ) = F̃µν
a(x)Ja(Y ) ,

Hµνρ(x, Y ) = F̃µνρ(x) K̂(Y )− G̃µνρ(x)K(Y ) ,
(4.12)
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where

F̃µν
a = 2∂[µAν]

a + fabcAµ
bAν

c +
2

3
ΛaBµν ,

F̃µνρ = 3∂[µBνρ] ,

G̃µνρ = 3∂[µB̃νρ] + 3A[µ
a∂νAρ]

bηab + Λuvw Aµ
uAν

vAρ
w +

2

3
Λa Cµνρ

a ,

(4.13)

where we defined

Λa =
(

Λu, Λū
)

=

(

− 1

3!
ǫuvwxΛvwx, 0

)

. (4.14)

Clearly Fµν
a are the field strengths of the 6-dimensional half-maximal gauged SUGRA whose

gauge group is determined by the structure constants fabc and Fµνρ is the field strength of the

two-form Bµν of the gauged SUGRA. Using the ExFT/SUGRA dictionary of appendix B.3.1, we

can use the above formulae to read off the consistent truncation Ansätze for the SUGRA fields.

5 Generalised metric from the half-maximal structure

To obtain expressions for the AdS vacua and their consistent truncations in terms of SUGRA

fields, we need to know how the SUGRA fields are encoded in the ExFT objects used in the

truncation Ansätze of sections 3.1 and 4.1. The SUGRA fields with at least one external leg are

encoded in the ExFT tensor hierarchy fields Aµ, Bµν , etc. and can be determined in the usual

fashion via the SUGRA / ExFT dictionary, which we give for the SO(5, 5) case in appendix B.3.1.

However, the purely internal SUGRA fields are encoded in the generalised metric of ExFT, via

the dictionary we give in appendices A.2 and B.2, and therefore we must know how to obtain a

generalised metric from the half-maximal structure.

Firstly, it is clear that one can construct a generalised metric from Ju and K̂. Just like on a

d-dimensional manifold, a Riemannian metric defines a SO(d) ⊂ GL(d) structure, a generalised

metric defines a (generalised) Hd ⊂ Ed(d) structure, where Hd is the maximal compact subgroup

of Ed(d). On the other hand, Ju and K̂ define a Ghalf = SO(d− 1) ⊂ Hd structure and, thus, Ju

and K̂ provide more information than the generalised metric. In ExFT, the generalised metric

parameterises the coset space

MMN ∈ Ed(d)

Hd
. (5.1)

Since Ju and K̂ are by construction invariant under Ghalf = SO(d− 1) ⊂ Hd, we must construct

MMN using an SO(d−1)R-invariant combination of Ju and K̂. Therefore, the generalised metric

must be given by

MMN = Aκ6−2DĴuM Ĵ
u
N +B κ4−DK̂MN + C ǫu1...ud−1

(

Ju1 . . . Jud−1

)

MN
. (5.2)

The factors of κ are chosen so that MMN has no weight under generalised diffeomorphisms and
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A, B and C are coefficients which are fixed by requiring MMN to be an element of Ed(d). The

final term schematically denotes an appropriate product of (R1)
d−1 −→ R1⊗R1. In the following

subsections we will give the explicit expressions for the case of SL(5) ExFT and SO(5, 5) ExFT.

5.1 Generalised metric in SL(5) ExFT

In SL(5) ExFT, the generalised metric is often used either in the R1 = 10 representation or its

dual representation, or in the fundamental representation, R2 = 5, of SL(5). The two are related

by [3]

Mab,cd = 2Ma[cMd]b , (5.3)

where a, b = 1, . . . , 5 denote fundamental SL(5) indices. It will be useful to have explicit expres-

sions for both representations.

The generalised metric in the 10 representation of SL(5) is given as in (5.2) which now

explicitly becomes

Mab,cd = Aκ−8Ĵu abĴ
u
cd +B κ−3ǫabcdeK̂

e + C κ−3ǫuvwǫabefgǫcdhijJu
efJv

hiJw
gj , (5.4)

where Ĵu ab is defined as in (3.10), explicitly

Ĵu ab =
1

4
ǫabcdeJu

cdK̂e . (5.5)

Requiring this to be an SL(5) element fixes A = 8σ2, B = −σ2 and C = − σ3

6
√
2
, up to a

coefficient σ. Note that the minimal consistent truncation (3.11) corresponds precisely to a

rescaling σ −→ σ X . σ is determined by the differential conditions (3.2) and can therefore be

fixed by comparison of AdS vacua obtained from the half-maximal structures to known AdS7

vacua, for example the maximally supersymmetric AdS7 × S4 vacua of 11-d SUGRA. This way

we find σ = 1. Thus, the generalised metric and its inverse in the 10 and 10 representations are

given by

Mab,cd = 8 κ−8Ĵu abĴ
u
cd − κ−3ǫabcdeK̂

e − 1

6
√
2
κ−3ǫuvwǫabefgǫcdhijJu

efJv
hiJw

gj ,

Mab,cd = 2 κ−2Ju
abJu,cd − κ−2ǫabcdeKe −

2
√
2

3
κ−12ǫuvwǫabefgǫcdhijĴu ef Ĵv hiĴw gj .

(5.6)

Similarly, one can show that the generalised metric and its inverse in the 5 and 5 represen-

tations of SL(5) are given by

Mab = κ−4

(

KaKb +
4
√
2

3
κ−5 ǫuvwĴu,acĴv,bdJw

cd

)

,

Mab = κ−6

(

K̂aK̂b +
2
√
2

3
ǫuvwJu

acJv
bdĴw,cd

)

.

(5.7)
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5.2 Generalised metric in SO(5, 5) ExFT

In SO(5, 5) ExFT, the generalised metric is often used either in the spinor or vector representation

of SO(5, 5). In the fundamental representation, the generalised metric MIJ must satisfy

MIKMJLη
KL = ηIJ , (5.8)

where I = 1, . . . , 10 labels the 10 representation of SO(5, 5) and ηIJ is the constant SO(5, 5)-

invariant metric with which the I, J indices are raised/lowered. The generalised metric in the

16 is related to that in the 10 by

MMPMNQ (γI)
MN MIJ =

(

γJ
)

PQ
, (5.9)

where M = 1, . . . , 16 label the 16 representation and (γI)
MN

and (γI)MN are the SO(5, 5)

γ-matrices satisfying

(γI)
MP (γJ)NP + (γJ )

MP (γI)NP = 2 ηIJδ
M
P . (5.10)

We thus find the generalised metric and its inverse in the 16 are given by

MMN =
1√
2

(

4 κ−6 ĴuM ĴuN − κ−2
(

γI
)

MN
K̂I

− 1

4!
κ−6ǫuvwx (γI)MP (γJ)NQ

(

γIJ
)S

RJu
PJv

QJw
RĴx,S

)

,

MMN =
1√
2

(

2 κ−2Ju
MJuN − κ−2 (γI)

MN
KI

− 2

4!
κ−10ǫuvwx (γI)

MP
(γJ)

NQ (
γIJ
)S

RĴ
u
P Ĵ

v
QJw

RĴx,S

)

,

(5.11)

where ĴuM is defined in (3.10), and is given explicitly by

ĴuM =
1

2

(

γI
)

MN
K̂IJ

uN . (5.12)

Similarly, the generalised metric in the 10 is given by

MIJ =

(

1

4!
ǫuvwx (γIK)M

N
(

γJ
K
)

P
QJu

M Ĵv,NJw
P Ĵx,Q + κ−4KIKJ + κ−4K̂IK̂J

)

. (5.13)

Just as in SL(5), there is a scaling degree of freedom which is generated by the minimal consistent

truncation (3.11). Thus, the coefficients above can only be defined once those in the differential

conditions (3.2) are fixed, or vice versa. Once one set of coefficients is fixed, the other can

be obtained either by comparison with known AdS vacua, by a careful analysis of the ExFT

BPS equations or by reducing the ExFT action to that of gauged SUGRA upon applying the
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consistent truncation.

We can now explicitly compute the relationship between Fµνρ and F̃µνρ in (4.13). Using the

expression for the generalised metric (5.13) and the scalar truncation Ansatz (4.6), we find

〈MIJ〉K̂J = X−4(x)KI(Y ) ,

〈MIJ〉KJ = X4(x) K̂I(Y ) ,
(5.14)

where 〈MIJ〉 denotes the generalised metric with the truncation Ansatz plugged in, i.e. that

computed from Ju, K and K̂ of (4.6). Therefore, the twisted self-duality equation (2.18) becomes

G̃(3) = X−4 ⋆6 F̃(3) . (5.15)

6 AdS7 vacua from massive IIA supergravity

As shown in [30] and reviewed in section 3, supersymmetric AdS7 vacua are characterised by three

nowhere-vanishing generalised vector fields Ju ∈ Γ (R1), transforming as a triplet of SO(3)R,

and a nowhere-vanishing generalised tensor K̂ ∈ Γ (R3), transforming as a singlet of SO(3)R.

The differential conditions involve a constant totally antisymmetric 3-index tensor Λuvw which

therefore takes the form

Λuvw =
√
−c ǫuvw , (6.1)

where the constant c is related to minus the seven-dimensional cosmological constant. The

precise relation between c and the cosmological constant, or, equivalently, the AdS7 radius, can

be found from the ExFT BPS equations and using the formula for the generalised metric (5.6),

or by comparison to known AdS7 vacua of 10-/11-dimensional SUGRA. By comparing to the

AdS7 × S4 vacuum of 11-dimensional SUGRA, we find Λuvw = 2
√
2R−1ǫuvw, where R is the

AdS7 radius. Plugging this into the differential conditions (3.2), they become

LJu
Jv = −2

√
2

R
ǫuvwJ

w ,

LJu
K̂ = 0 ,

dK̂ =
2

R
K ,

(6.2)

where K is defined via

Ju ∧ Jv = δuvK . (6.3)

6.1 Half-maximal structure

Here we are interested in studying AdS7 vacua of massive IIA supergravity. As we discussed in

section 3, the SO(d− 1)R = SO(3)R symmetry must be generated by spacetime Killing vectors.

This suggests that the vacua are of the form AdS7 × S2 × I, with the Killing vectors on S2
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generating the SU(2)R symmetry. As we explain in appendix A.1, the generalised vector fields

Ju and tensor K̂ are formal sums of internal spacetime vector fields and differential forms as

follows

Ju = Vu + λu + σu + φu ,

K̂ = ω(0) + ω(2) + ω(3) ,
(6.4)

where Vu, λu, σu and φu are the vector, 1-form, 2-form and scalar parts of Ju, while ω(p) are the

p-forms appearing in K̂. Similarly, K = 1
3Ju ∧ Ju ∈ Γ (R2) is a formal sum of differential forms

K = ω̄(0) + ω̄(1) + ω̄(3) , (6.5)

where ω̄(p) are p-forms.

In terms of the above, the wedge products (2.10), (2.12) appearing in the algebraic conditions

(3.1) become

Ju ∧ Jv = 2ıV(u
λv) − 2

(

λ(uφv) + ıV(u
σv)
)

− 2λ(u ∧ σv) ,
K̂ ∧K = ω(0)ω̄(3) + ω(1) ∧ ω̄(2) + ω(3)ω̄(0) ,

(6.6)

while the quadratic algebraic constraint on K̂ is automatically fulfilled for SL(5).

The differential operators appearing in the differential conditions (6.2) are modified as de-

scribed in [19,20] to capture the Roman’s mass, m, of massive IIA SUGRA. We explain in detail

how to do this in appendix A.3. Including the Roman’s mass, and thus using equations (A.8),

(A.10), (A.11), the differential operators appearing in the conditions (6.2) become

LJu
Jv = LVu

Vv + LVu
λv + LVu

σv + LVu
φv

+ ıVv
(mλu − dφu)− ıVv

(dλu)− ıVv
(dσu) + φv (dλu) + λv ∧ (mλu − dφu) ,

LJu
K̂ = LVu

ω(0) + LVu
ω(2) + LVu

ω(3)

− ω(0) (dλu)− ω(0) (dσu)− ω(2) ∧ (mλu − dφu) ,

dK̂ = −dω(0) + dω(2) .

(6.7)

To describe supersymmetric AdS7 vacua, we must therefore find the vector fields and differ-

ential forms satisfying the above algebraic and differential conditions. In doing so, we will use

the differential equations

LJu
Jv = −2

√
2

R
ǫuvwJ

w , LJu
K̂ = 0 , (6.8)

as a guiding principle. These imply that the Ju’s must transform as a triplet under SU(2)R and

K̂ as a singlet under SU(2)R, which as we discussed before is generated by the Killing vector

fields on S2. Therefore, we will construct Ju out of spacetime tensors on S2 × I that are triplets
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of SU(2)R as generated by the Killing vectors on S2, and similarly K̂ out of differential forms

that are singlets of SU(2)R.

In fact, the above decomposition (6.4), (6.5) of the generalised tensors in terms of vector fields

and differential forms on the internal space is only true locally, because the generalised tangent

bundles are twisted by the internal gauge potentials of the IIA supergravity, in this case the

three-form potential C, two-form potential, B, and one-form potential, A. The gauge potentials

mix the different components of the generalised tensors, for example, if A = B = 0 but C 6= 0,

then

σu = σ̂u + ıVu
C , ω(3) = ω(3) + ω(0) C , ω̄(3) = ˆ̄ω(3) − ω̄(0)C , (6.9)

where σ̂u, ω(3), ˆ̄ω(3) are the globally well-defined 2-forms and 3-forms, respectively, while σu,

ω(3) and ω̄(3) are only local 2-forms and 3-forms. Therefore, to construct the Ju and K̂ we must

understand what the possible form of the gauge potentials is. Since their field strengths must be

invariant under the SU(2)R symmetry, the gauge potentials must take the form

dB = R3 f(z) volS2 ∧ dz , dA = R2 l(z) volS2 , (6.10)

for some functions f(z) and l(z), where z labels the coordinate on the interval I and volS2 is the

volume form on S2, see also appendix C for our S2 conventions. C is always pure gauge since

the internal space is three-dimensional. Moreover, we can choose a gauge such that

B = R3 F (z) volS2 , (6.11)

with dF (z)
dz = f(z), so that B is constructed from well-defined differential forms on S2 and I.

On the other hand, A cannot be written in terms of well-defined differential forms on S2 since it

necessarily breaks the R-symmetry. This implies that we can automatically cater for the twisting

by the two-form potential by writing the most general Ju and K̂ built of out spacetime tensors

on S2 and I. On the other hand, the twist by A will break the SU(2)R symmetry and, therefore,

we will keep track of it explicitly.

In particular, we will write φu = φ̂u+ ıVu
A and σu = σ̂u +λu ∧A and ω(3) = ω̂(3) +ω(2) ∧A,

where φ̂u, σ̂u and ω(3) are spacetime tensors on S2 × I that respect the SU(2)R symmetry. In

terms of the hatted objects, the differential operators appearing in the differential conditions
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become

LJu
Jv = LvuVv + LVu

λv + LVu
σv + LVu

φ̂v

+ ıVv

(

mλu + ıVu
dA− dφ̂u

)

− ıVv
(dλu)− ıVv

(dσ̂u − λu ∧ dA) + φv (dλu)

+ λv ∧ (mλu + ıVu
dA− dφu) + (LVu

λv − ıVv
dλu) ∧ A+ ı[Vu,Vv ]A ,

LJu
K̂ = LVu

ω(0) + LVu
ω(2) + LVu

ω̂(3) + LVu
ω(2) ∧ A− ω(0)dλu ∧ A

− ω(0) (dλu)− ω(0) (dσ̂u − λu ∧ dA)− ω(2) ∧
(

mλu + ıVu
dA− dφ̂u

)

,

dK̂ = −dω(0) + dω(2) .

(6.12)

The most general Ju we can construct that is compatible with the SU(2)R symmetry is

Ju =
2
√
2

R
vu +

R

4
(k(z) yu dz + g(z) dyu + r(z) θu)−

R

2
p(z) yu

+
R3

16
√
2
(n(z) yu volS2 + h(z) θu ∧ dz + v(z) dyu ∧ dz)

+
2
√
2

R
ıvuA+

R

4
(k(z) yu dz + g(z) dyu + r(z) θu) ∧A ,

(6.13)

where k(z), g(z), p(z), n(z), h(z), v(z) and r(z) are at this stage arbitrary functions of z, the

coordinate on I, yu are a triplet of functions on S2, vu are the Killing vector fields on S2 and

θu are 1-forms on S2. The objects on S2 are defined in appendix C. The algebraic conditions

impose

Ju =
2
√
2

R
vu +

R

4

(

−h(z)
p(z)

yu dz + g(z) dyu

)

− R

2
p(z) yu

+
R3

16
√
2
(p(z) g(z) yu volS2 + h(z) θu ∧ dz + v(z) dyu ∧ dz)

+
2
√
2

R
ıvuA+

R

4

(

−h(z)
p(z)

yu dz + g(z) dyu

)

∧A ,

(6.14)

such that K defined via

Ju ∧ Jv = δuvK , (6.15)

is given by

K = −R
2

4
h(z) dz +

R4 g(z)h(z)

32
√
2

volS2 ∧ dz . (6.16)

Furthermore, the most general K̂ constructed from R-symmetry singlets is given by

K̂ =
R

2
s(z) +

R3

16
√
2
(g(z) s(z)− t(z)) volS2 +R5 u(z)volS2 ∧ dz

+
R3

16
√
2
(g(z) s(z)− t(z)) volS2 ∧ A .

(6.17)
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The algebraic condition Ju ∧ Ju ∧ K̂ > 0 then becomes

R5

64
√
2
h(z) t(z) volS2 ∧ dz > 0 . (6.18)

While this suggests that we must have h(z) t(z) > 0, this is not true at the endpoints of the

interval parameterised by z. There we can in fact have h(z) t(z) = 0. Thus, we must impose

h(z) t(z) ≥ 0 , (6.19)

with possible equality at the boundary. This ensures that the metric is non-singular everywhere.

For holographic applications, we also want to impose that the internal space is compact by

requiring that the S2 shrinks at the endpoints of I, which will further refine (6.19). However, to

determine the precise conditions, we must first construct the SUGRA fields of the AdS7 solution.

With (6.14) and (6.17), the differential conditions (6.12) reduce to

mλu + ıVu
dA− dφ̂u = 0 ,

dλu = 0 ,

dσ̂u − λu ∧ dA = 0 ,

dω(0) +
2

R
ω̄(1) = 0 ,

dω(2) −
2

R
ω̄(3) = 0 ,

(6.20)

where, as we discussed above, R-symmetry implies that

dA = R2l(z) volS2 . (6.21)

Explicitly, the differential conditions imply the following set of ODEs

ġ = −h
p
, 2 p ṗ = mh , ṡ = h , ṫ = −h s

p
, l = − p

4
√
2
− mg

8
√
2
. (6.22)

Note that the functions u(z) and v(z) do not appear in the differential conditions. This is

due to the fact that they can be removed by gauge transformations of the gauge potentials A

and C, as can be seen from (6.9) and (6.13). Thus, we can, and will, set u = v = 0 without loss

of generality.

Using the ODEs (6.22) and having set u = v = 0 by gauge transformations, the half-maximal
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structures simplify to

Ju =
2
√
2

R
vu +

R

4
d (g yu)−

R

2
p dyu +

R3

16
√
2
p (d (g θu)− g yu volS2)

+
2
√
2

R
ıvuA+

R

4
d (g yu) ∧ A ,

K̂ =
R

2
s+

R3

16
√
2
(g s− t) volS2 +

R3

16
√
2
(g s− t) volS2 ∧ A ,

(6.23)

with

dA = − R2

4
√
2

(

p+
m

2
g
)

volS2 . (6.24)

Moreover, we can redefine the z coordinate to set h(z) to anything we like. There are two

convenient choices that help us solve the ODEs (6.22).

Choice 1 The first is to take h(z) = p(z) so that we can integrate the equation ġ = −h
p to set

g = −z, where we absorb the integration constant by shifting z. Then, the remaining ODEs are

solved by

s = −ṫ , p = −ẗ , l =
ẗ

4
√
2
− mg

8
√
2
. (6.25)

where t(z) must satisfy
...
t = −m

2
. (6.26)

Finally, with this gauge, the regularity condition (6.19) becomes

t(z) ẗ(z) ≤ 0 . (6.27)

Choice 2 The second choice is to simply take h(z) = 1 and integrate the equation ṡ = 1 to set

s = z without loss of generality. The remaining ODEs now become

ġ = −1

p
, 2 p ṗ = m, ṫ = −z

p
, l = − p

4
√
2
− mg

8
√
2
. (6.28)

The functions g and t are therefore determined in terms of p, its integral and its derivatives, and

where p satisfies
∂p2

∂z
= m. (6.29)

The regularity condition (6.19) becomes

t(z) ≥ 0 , (6.30)

with equality only possible at ∂I.

To compare to the literature, especially the form of AdS7 solutions given in [59], it is worth-
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while to introduce

q =
p√
2
, ȳ =

9

4
z ,

√

β =
81

4
√
2
t , (6.31)

which now satisfy
∂q2

∂ȳ
=

9

2
m, q = −4 ȳ

√
β

β′ , (6.32)

where ′ is our shorthand notation for ∂
∂ȳ . Moreover, we note the following identities

t

p
= − 1

81

β′

ȳ
, p t = −32

81

β ȳ

β′ , z2 + 2 p t =
16

81
ȳ

(

ȳ − 4β

β′

)

, (6.33)

which will allow us to recover precisely the description of AdS7 vacua given in [59].

6.2 The supersymmetric AdS7 vacua

It is now straightforward to compute the SUGRA fields of the supersymmetric AdS7 vacua. We

first plug Ju and K̂, given in (6.23), into the generalised metric. We then use the ExFT / IIA

dictionary worked out in [17] and summarised in appendix A.2 to read off the supergravity fields.

In string frame, the warp factor of the AdS7 part of the metric is given by [29, 30]

f7 = |gint|−1/5κ2 e4ψ/5 , (6.34)

where |gint| is the determinant of the internal metric, ψ is the dilaton and κ5 = 1
3Ju ∧ Ju ∧ K̂.

Without fixing h(z) we therefore find the following SUGRA fields in string frame

ds210 =

√

t

p
ds2AdS7

+
R2

8

√

t

p

(

p t

s2 + 2 p t
ds2S2 +

h2

p t
dz2
)

,

eψ =
2

R

(

t

p

)3/4
1

√

s2 + 2 p t
,

B =
R2

8
√
2

(

−g + s t

s2 + 2 p t

)

volS2 ,

(6.35)

with 2-form field strength F2 = dA−mB2 and 3-form field strength H = dB given by

F2 = − R2

8
√
2

(

2 p+
ms t

s2 + 2 p t

)

volS2 ,

H3 =
R2

8
√
2

h t

p

(

3 p

s2 + 2 p t
− ms t

(s2 + 2 p t)2

)

volS2 ∧ dz

=
2

R

(

3

(

t

p

)−1/4

− ms

s2 + 2 p t

(

t

p

)3/4
)

volM3 ,

(6.36)

where volM3 denotes the volume form on the internal manifold with the metric (6.35). Note that
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we have the opposite sign convention for our B field to [40] so that the Bianchi identity of F2 is

dF2 = −mH3 . (6.37)

Choice 1 With the choice h(z) = p(z), the expressions for the AdS7 vacua (6.35) reduce to

ds210 =

√

− t
ẗ
ds2AdS7

+
R2

8

√

− ẗ
t

(

t2

ṫ2 − 2 ẗ t
ds2S2 + dz2

)

,

eψ =
2

R

(

− t
ẗ

)3/4
1

√

ṫ2 − 2 ẗ t
,

B =
R2

8
√
2

(

z − ṫ t

ṫ2 − 2 ẗ t

)

volS2 ,

(6.38)

with field strengths

F2 =
R2

8
√
2

(

2 ẗ+
m ṫ t

ṫ2 − 2 ẗ t

)

volS2 ,

H3 =
R2

8
√
2

(

mt2 ṫ
(

ṫ2 − 2 t ẗ
)2 − t ẗ

ṫ2 − 2 t ẗ

)

volS2 ∧ dz

=
2

R

[

3

(

− t
ẗ

)−1/4

+
m ṫ

ṫ2 − 2 t ẗ

(

− t
ẗ

)3/4
]

volM3 ,

(6.39)

where the function t satisfies

...
t = −m

2
, t ≥ 0 , (6.40)

with t = 0 at ∂I so that the internal space has no boundaries. For every such function t there

is a supersymmetric AdS7 vacuum of massive IIA supergravity. This matches the infinite family

of supersymmetric AdS7 vacua of [40] when we set the AdS radius to R = 2, and where our

variables are related to those of [45] by a rescaling

t =
4
√
2

81
α , z = 2

√
2 π z̄ , (6.41)

where we denote the “z” coordinate of [45] by z̄ to distinguish it from our z coordinate.

27



Choice 2 With the choice h(z) = 1 and using (6.33), the AdS7 vacua (6.35) are given by

ds210 =
1

9

√

−β
′

ȳ
ds2AdS7

+
1

9

√

−β
′

ȳ
R2

(

β/4

4 β − β′ ȳ
ds2S2 − 1

16

β′dȳ2

β ȳ

)

,

eψ = R−1 (−β′/ȳ)5/4

6
√
4 β − β′ȳ

,

H3 =
18

R

(

− ȳ

β′

)1/4
(

1− m

108 ȳ

(β′)2

4 β − β′ȳ

)

volM3 ,

F2 =
R2 ȳ

4

√
β

β′

(

4 +
m

18 ȳ

(β′)2

4 β − β′ȳ

)

volS2 ,

(6.42)

Here volM3 is the internal volume form with respect to the full internal metric in (6.42), and β

satisfies the ODE
∂q2

∂ȳ
=

9

2
m, with q = −4 ȳ

√
β

β′ . (6.43)

This matches the AdS vacua in the coordinates of [59] when the AdS radius is set to R = 2.

7 AdS6 vacua from IIB supergravity

As we reviewed in section 3 and was shown in [30], supersymmetric AdS6 vacua are described

in ExFT by four nowhere-vanishing generalied vector fields Ju ∈ Γ (R1), transforming as a 4 of

SO(4), and a nowhere-vanishing generalised tensor K̂ ∈ Γ (R3) which is invariant under SO(4).

Upon defining Λu = − 1
3!ǫ

uvwxΛvxw, the differential conditions (3.2) become

LJu
Jv = −ǫuvwxJwΛx ,

LJu
K̂ = 0 ,

dK̂ =
2

3
ΛuJu ,

(7.1)

We can use a SO(4)R rotation to write, without loss of generality,

Λu =

(

0, 0, 0,
3√
2R

)

, (7.2)

with R the AdS6 radius. The numerical coefficient in front of R have been fixed by comparing

the solutions with known supersymmetric AdS6 vacua of IIB [41].

Λuvw breaks the SO(4) symmetry to the SO(3)R R-symmetry of AdS6 vacua. Let us therefore

write u = (A, 4) with A = 1, 2, 3 labelling the vector representation of SO(3)R. With respect to
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(A, 4) the differential conditions become

LJA
JB = − 3√

2R
ǫABCJ

C ,

LJA
J4 = 0 ,

LJA
K̂ = 0 ,

dK̂ =

√
2

R
J4 .

(7.3)

Note that the conditions LJ4Ju = 0 and LJ4K̂ = 0 are automatically satisfied by J4 ∝ dK̂ [30].

7.1 Half-maximal structure

We will now construct the half-maximal structures on the internal space that yields an AdS6

vacuum. To do this, we will guide ourselves by the differential equations (7.3) determining

the AdS vacuum. Recall from section 3 that these imply that the Ju’s are generalised Killing

vector fields and therefore either consist of a Killing vector field plus a compensating gauge

transformation, or consist of a trivial gauge transformation. The latter can be written as dB

for some B ∈ Γ (R2) and will always generate a vanishing generalised Lie derivative on any

vector field. We see from (7.3) that J4 generates such a trivial gauge transformation, while JA

must generate the SU(2)R symmetry of the AdS vacuum and therefore have non-vanishing vector

components which generate this symmetry. The generalised tenors K̂ and J4 must be invariant

under this R-symmetry.

To generate the SU(2)R symmetry we take the internal space to contain an S2 and on the

remaining two-dimensional space, the Riemann surface Σ, we introduce coordinates xα, α =

1, . . . , 2. We will raise/lower α in a Northwest/Southeast convention by the SL(2)-invariants

ǫαβ = ±1 and ǫαβ = ±1 with

ǫαγǫβγ = δαβ . (7.4)

Thus we write

xα = ǫαβxβ , xα = xβǫβα . (7.5)

In IIB SUGRA with the conventions in appendix B.1, the Ju’s and K̂ become formal sums

of spacetime vector fields and differential forms as follows

Ju = Vu + λαu + σu ,

K̂ = ωα(0) + ω(2) + ωα(4) ,
(7.6)

where Vu, λu
α and σu denote the vector, 1-form and 3-form parts of Ju, while ω(p) are p-forms

appearing in K̂. With our conventions B.1, the wedge products and tensor products appearing
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in the algebraic conditions (3.1) become

Ju ∧ Jv =
√
2

(

ıV(u
λαv) + λα(u ∧ σv) +

(

−ıV(u
σv) −

1

2
λu β ∧ λβv

))

,

K̂ ⊗ K̂|Rc
= ω(2) ∧ ω(2) + 2ω(0)α ω

α
(4) ,

K̂ ∧K = ω(2) ∧ ω̄(2) + ω(0)α ω̄
α
(4) + ω̄(0)α ω

α
(4) ,

(7.7)

where we defined K = 1
4Ju ∧ Ju = ω̄α(0) + ω̄(2) + ω̄α(4). Moreover, the differential operators

appearing in the differential conditions (7.1) become

LJu
Jv = LVu

Vv + LVu
σv + LVu

λαv

− ıVv
dλαu − ıVv

dσu − λv β ∧ dλβu ,
LJu

K̂ = LVu
ωα(0) + LVu

ω(2) + LVu
ωα(4)

+ ω(0)β dλ
β
u − ωα(0) dσu − ω(2) ∧ dλαu ,

dK̂ = −
√
2 dω(2) +

√
2 dωα(0) .

(7.8)

As discussed above, the JA’s will need to be formed out of vector fields and differential forms

forming SU(2)R triplets, while J4 and K̂ will need to be constructed from SU(2)R-invariant vector

fields and differential forms. We will now construct the most general JA and K̂, up to gauge

transformations, which transform as an SU(2)-triplet and singlet, and satisfy their algebraic

conditions. We then calculate J4 from dK̂ and impose its algebraic condition J4∧J4 = 1
3JA∧JA

and J4 ∧ JA = 0 and finally solve the remaining differential conditions

LJA
JB = − 3√

2R
ǫABCJ

C ,

LJA
J4 = 0 ,

LJA
K̂ = 0 .

(7.9)

Just like for AdS7 vacua, we must first ascertain whether the gauge fields of the supergravity

can be chosen in a way that respects the SU(2)R symmetry and will thus naturally appear in

the most general structures we write down, or whether the gauge fields necessarily break the

SU(2)R symmetry and need to be included by hand as a “twist” term. Since we are considering

IIB SUGRA with an internal four-manifold, we will only have 3-form field strengths dCα which

must necessarily be SU(2)R singlets. Therefore, they must be given by

dCα = bα ∧ volS2 , (7.10)

for some 1-forms bα on Σ. Therefore, we can choose a gauge such that locally

Cα = cαvolS2 , (7.11)
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for functions cα on Σ which are SU(2)R singlets. Hence, the gauge potentials can be chosen to

be SU(2)R invariant and will naturally appear in the most general structures we write down.

This is in contrast with the mIIA AdS7 vacua we studied in section 6, where the R-R 1-form

potential had to be included via a “twist” term.

The most general JA we can construct as an SU(2)R-triplet is

JA =
1√
2

(

3

R
vA + 4 c6Rk

αdyA + 4 c6RyAm
α + nαθA +

16 c26R
3

3
yAh ∧ volS2

+
16 c26R

3

3
l θA ∧ volΣ + fdyA ∧ volΣ

)

,

(7.12)

where vA are the Killing vectors, θA are 1-forms and volS2 is the volume form on S2 as defined

in appendix C and

volΣ =
1

2
ǫαβdx

α ∧ dxβ . (7.13)

l, kα and nα are at this stage arbitrary functions on Σ, while h = hαdx
α and mα = mα

β dx
β are

1-forms on Σ. c6 is a constant. It and the other numerical coefficients in front of R have

been introduced for later convenience. We can further simplify (7.12) by using generalised

diffeomorphisms, i.e. a combination of diffeomorphisms and gauge transformations: we can

use the generalised vector field

V = χ ∧ volS2 , (7.14)

where χ is a one-form on Σ satisfying

dχ = −R
3
fvolΣ , (7.15)

to remove the term in JA that depends on the function f by acting with LV JA. In fact by

working out the explicit twisting of the generalised tangent bundle by gauge potentials, e.g.

using appendix E of [60], one sees that this generalised diffeomorphism corresponds to a gauge

transformation of the R-R 4-form.

We now impose the algebraic conditions (3.1) such that the functions appearing in JA are

now no longer all independent. As a result, we find

JA =
1√
2

(

3

R
vA + 4 c6R (yAm

α + kαdyA) +
16 c26R

3

3

(

|m| θA ∧ volΣ − yAk
βmβ ∧ volS2

)

)

,

(7.16)

where |m| = 1
2mαβm

αβ .

Next, we construct K̂ such that is an SU(2)R-invariant and satisfies K̂ ∧ K̂ = 0 and JA ∧
JA ∧ K̂ > 0. We find the unique combination

K̂ =
1√
2

(

4 c6 pα +
2 c6R

2

3
qαvolS2 ∧ volΣ − 16 c26R

2

3

(

r + pβk
β
)

vol2 +
pβq

β

r + pγkγ
volΣ

)

, (7.17)
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in terms of r, pα and qα which are so far arbitrary functions of xα. However, just as for JA we

can use gauge transformations to further simplify this expression. A particular class of gauge

transformations corresponds to shifts of K̂ by d-exact terms,

K̂ ∼ K̂ + dQ , (7.18)

where Q ∈ Γ (R3). Taking

Q = QαβvolS2 ∧ dxβ , (7.19)

with ∂βQ
αβ ∼ qα (with appropriate coefficients) we see that we can remove the functions qα in

(7.17). Thus, we are left with the general K̂ up to gauge transformations given by

K̂ =
1√
2

(

4 c6 pα − 16 c26R
2

3

(

r + pβk
β
)

vol2

)

, (7.20)

The algebraic condition Ju ∧ Ju ∧ K̂ > 0 is equivalent to JA ∧ JA ∧ K̂ > 0 once we impose the

remaining algebraic conditions. Therefore, we require

JA ∧ JA ∧ K̂ = 128 c46R
4r |m| volS2 ∧ volΣ > 0 , (7.21)

which implies that r |m| ≥ 0 with equality at the points on Σ where the S2 degenerates. From

K̂ we find

J4 =
R√
2
dK̂ =

1√
2

(

4 c6Rdp
α − 16 c26R

3

3
d
(

r + pβk
β
)

∧ volS2

)

. (7.22)

The algebraic conditions

J4 ∧ J4 =
1

3
JA ∧ JA , J4 ∧ JA = 0 , (7.23)

now impose

mα ∧ dpα = 0 ,

mα ∧mβ = dpα ∧ dpβ ,
dr + pαdk

α = 0 .

(7.24)

Note that the final condition can be used to simplify the expression of J4

J4 =
1√
2

(

4 c6Rdp
α − 16 c26R

3

3
kβ dp

β ∧ volS2

)

. (7.25)

Finally, we are left to solve the differential conditions (7.9). Using the explicit expression of

the generalised Lie derivative (7.8) and the fact that JA, J4 and K̂ are SU(2) triplets, singlet
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and singlets, respectively, these equations reduce to

ıVA
dλαB = 0 ,

ıVA
dσB + λAα ∧ dλαB = 0 ,

λ4α ∧ dλαA = 0 ,

ω(0)αdλ
α
A = 0 ,

ωα(0)dσA + ω(2) ∧ dλαA = 0 .

(7.26)

For our JA’s and K̂ these further simplify to

dλαA = dσA = 0 , (7.27)

which implies mα = −dkα.
Thus, we find that

JA =
1√
2

(

3

R
vA + 4 c6Rd (k

α yA) +
8 c26R

3

3
d (kαθA ∧ dkα)

)

,

J4 =
1√
2

(

4 c6Rdp
α − 16 c26R

3

3
kβ dp

β ∧ volS2

)

,

K̂ =
1√
2

(

4 c6 pα − 16 c26R
2

3

(

r + pβk
β
)

volS2

)

,

(7.28)

where kα and pα are any SL(2)-doublets of functions on Σ subject to the differential conditions

dkα ∧ dkβ = dpα ∧ dpβ , dkα ∧ dpα = 0 , (7.29)

and r is defined up to an integration constant by

dr = −pα dkα . (7.30)

The condition (7.21) implies

r|dk|volΣ ∧ volS2 > 0 , (7.31)

where |dk| = 1
2∂αkβ∂

αkβ. This seems to suggest that r|dk| > 0 but care needs to be taken at

the boundaries of Σ. Instead, we must have

r|dk| ≥ 0 , (7.32)

with equality only possible at the boundaries of Σ. In fact, as discussed in [41, 43], and as will

become appart from the explicit SUGRA solution given in section 7.2 in order for the internal
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four-manifold not to have a boundary, we must have

r = 0 , |dk| = 0 , (7.33)

on ∂Σ.

At this stage, one might wonder how the quadratic differential conditions (7.29) can underlie

supersymmetric AdS vacua, which ought to be described by a first-order BPS equation. The

answer is that we still have residual diffeomorphism symmetry on the Riemann surface Σ that

can be used to turn (7.29) into first-order differential equations. We will show how to do this

after calculating the supergravity fields from the structures.

We conclude this section by giving the explicit expressions for the objects K = 1
4Ju ∧Ju and

κ4 = K ∧ K̂, which appear in the truncation Ansatz (4.11). They are given by

K = −8
√
2 c26R

2 |dk|
(

volΣ +
4 c6R

2

3
volS2 ∧ volΣ

)

,

κ4 =
128

3
c46R

4 r |dk| volS2 ∧ volΣ .
(7.34)

7.2 The AdS6 vacua

We will now compute the supergravity background corresponding to the half-maximal structures

(7.28). The supergravity fields are encoded in the generalised metric (5.11), (5.13) as detailed in

appendix B.2. Moreover, the AdS6 part of the metric is warped by the factor [30]

f6 = |gint|−1/4κ2 . (7.35)

Thus, we find the following background

ds2 =
4 r5/4 ∆1/4 c6R

2

33/4|dk|1/2
[

3

r
ds2AdS6

+
|dk|2
∆

ds2S2 +
1

4 r2
dkα ⊗ dpα

]

,

C(2)
α = −4 c6R

2

3
volS2

(

kα +
r pγ ∂βk

γ ∂βpα

∆
|dk|

)

,

Hαβ =
1√
3∆

( |dk|√
r
pαpβ + 3

√
r ∂γkα∂

γpβ

)

,

(7.36)

where

∆ = 3 r|dk|2 + |dk|pγpδ∂σkγ∂σpδ , |dk| = 1

2
∂αkβ∂

αkβ . (7.37)

The solutions are completely determined by the two pairs of functions pα and kα on Σ satisfying

dkα ∧ dkβ = dpα ∧ dpβ , dkα ∧ dpα = 0 . (7.38)
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r is defined in terms of these functions as

dr = −pαdkα . (7.39)

In order to have a compact internal space, we must require that the S2 shrinks on the boundary

of Σ while the warp factor and the metric on Σ remain non-singular. From the explicit metric

(7.36), one can easily see that this requires

r = |dk| = 0 , (7.40)

on ∂Σ.

We will now show that the differential equations for kα and pα can be turned into first-order

PDEs by coordinate choices. In particular, we can always use diffeomorphisms to make the

metric on Σ conformally flat. From (7.36) we see that this requires

∂1k
α∂1pα = ∂2k

α∂2pα , ∂1k
α∂2pα = 0 . (7.41)

Together with (7.29), and imposing the condition (7.32), the differential conditions become the

Cauchy-Riemann equations

dkα = I · dpα , (7.42)

where Iβα = δαγǫ
γβ is a complex structure on Σ. Therefore, pα and kα are the real and imaginary

parts of two holomorphic functions on Σ

fα = −pα + i kα . (7.43)

We now recover the description of supersymmetric AdS6 vacua of [41] by identifying our

holomorphic functions with the A± of [41] via

A± = i f1 ± f2 . (7.44)

We present a dictionary between our objects and those of [41], as well as [50], in appendix D.

As discussed in [42–44] these local solutions can be extended to globally regular solutions by

including a boundary of the Riemann surface on which the holomorphic functions fα have poles,

and by introducing SL(2) monodromies.

8 Minimal consistent truncations

As shown in [30] and reviewed in section 3.1, given the half-supersymmetric structures describing

an AdS vacua, one can automatically construct a consistent truncation around it containing

a gravity multiplet and a scalar. This method was applied in [51] to construct the minimal
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consistent truncations around the supersymmetric AdS7 and AdS6 vacua, for the case where

only the scalar fields of the lower-dimensional gauged SUGRA are turned on and are constant,

agreeing with the consistent truncations found in [49] and [50] for the AdS7 and AdS6 vacua,

respectively. Furthermore, as described in section 3.1, using the exceptional field theory tensor

hierarchy and the dictionaries in appendix B.3.1, one can construct the uplift of all the fields

of the minimal half-maximal gauged supergravity, including the p-forms. In the following, we

summarise the results for the the minimal consistent truncations around AdS7 and AdS6. For the

latter, we show explicitly how to construct the full ten-dimensional uplift, including all the fields

of the 6-dimensional gauged SUGRA. This result will be generalised in section 10 to construct

uplifts of half-maximal gauged supergravities around AdS6 including matter multiplets.

8.1 AdS7

We can now use (3.11), (4.10) to construct the consistent truncation Ansatz of IIA SUGRA

around the supersymmetric AdS7 vacua of section 6 to the pure 7-dimensional half-maximal

SU(2) gauged SUGRA [47]. Here we will consider the truncation Ansatz where only the scalar

fields of the 7-dimensional gauged SUGRA have been turned on and are constant. Thus, we

compute the generalised metric of Ju(x, Y ) and K̂(x, Y ) given in (3.11) and use the ExFT/IIA

dictionary of appendix A.2 to find the supergravity expressions. This way, we obtain the trun-

cation Ansatz in string frame

ds210 = X1/2

√

t

p
ds27 +

R2

8

√

t

p

[

X5/2 p t

X5 s2 + 2 p t
ds2S2 +X−5/2h

2

p t
dz2
]

,

eψ =
2

R
X5/4

(

t

p

)3/4
1

√

X5 s2 + 2 p t
,

B =
R2

8
√
2

(

−g + X5 s t

X5 s2 + 2 p t

)

volS2 ,

(8.1)

and field strengths

F2 = − R2

8
√
2

(

2 p+
X5ms t

X5 s2 + 2 p t

)

volS2 ,

H3 =
2

R

(

t

p

)−1/4

X−5/4

(

3− t

p

m s

X5 s2 + 2 p t

)

volM̃3

+
2

R

(

t

p

)−1/4

X−5/4
(

1−X5
)

(

1− 4 p t

X5 s2 + 2 p t
+
t

p

m s

X5 s2 + 2 p t

)

volM̃3
,

(8.2)

where volM̃3
denotes the volume form of the internal 3-manifold with the metric (8.1).

Let us now evaluate the truncation Ansatz for our two gauge choices.
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Choice 1 With h(z) = p(z), the truncation Ansatz becomes

ds210 = X1/2

√

− t
ẗ
ds27 +

R2

8

√

− ẗ
t

[

X5/2 t2

X5 ṫ2 − 2 tẗ
ds2S2 +X−5/2dz2

]

,

eψ =
2

R
X5/4

(

− t
ẗ

)3/4
1

√

X5 ṫ2 − 2 t ẗ
,

B =
R2

8
√
2

(

z − X5 t ṫ

X5 ṫ2 − 2 t ṫ

)

volS2 ,

(8.3)

and field strengths

F2 =
R2

8
√
2

(

2 ẗ+
X5mt ṫ

X5 ṫ2 − 2 t ẗ

)

volS2 ,

H3 =
2

R

(

− ẗ
t

)1/4

X−5/4

(

3− t

ẗ

m ṫ

X5 ṫ2 − 2 t ẗ

)

volM̃3

+
2

R

(

− ẗ
t

)1/4

X−5/4
(

1−X5
)

(

1 +
4 t ẗ

X5 ṫ2 − 2 t ẗ
+
t

ẗ

m ṫ

X5 ṫ2 − 2 t ẗ

)

volM̃3
.

(8.4)

Choice 2 We now take h(z) = 1 and find

ds210 =
1

9

√

−β
′

ȳ
X1/2ds27 +

R2

9

√

−β
′

ȳ

[

X5/2 β/4

4 β −X5 ȳ β′ ds
2
S2 − 1

16
X−5/2β

′ dȳ2

β ȳ

]

,

eψ = R−1X5/4 (−β′/ȳ)5/4

6
√

4 β −X5 β′ȳ
,

F2 =
R2 ȳ

4

√
β

β′

(

4 +
X5m

18 ȳ

(β′)2

4 β −X5 β′ȳ

)

volS2 ,

H3 =
2

R

(

−β
′

ȳ

)−1/4

X−5/4

(

9− m

12ȳ

(β′)2

4 β −X5 β′ȳ

)

volM̃3

+
6

R

(

−β
′

ȳ

)−1/4

X−5/4
(

1−X5
)

(

1− 8 β

4 β −X5 β′ ȳ
+

m

36ȳ

(β′)2

4 β −X5 β′ȳ

)

volM̃3
.

(8.5)

The truncation Ansatz is completely determined by the function t(z) satisfying (6.40) for

gauge choice 1 and β(ȳ) satisfying (6.32) for choice 2, and corresponds to the truncation Ansatz

found in [49] in the coordinates of [45] and [59], respectively. Upon truncation, X becomes the

scalar field of the minimal 7-dimensional gauged SUGRA [47] and all of the supersymmetric AdS

vacua correspond to the same vacuum of the 7-dimensional theory.
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8.2 AdS6

We can similarly use (3.11) to find the minimal consistent truncation corresponding to the

supersymmetric AdS6 vacua of IIB SUGRA described in section 7. For example, the internal

fields can be read off from the generalised metric (5.11), while the remaining fields can be

determined using the truncation Ansatz (3.15). Recall that the AdS vacua are characterised in

terms of two holomorphic functions fα, with real/imaginary parts kα, pα, and a real function r

defined through (7.39).

As before, we will denote by X the scalar field and AA, A4 the SU(2)R and U(1) gauge fields

of the 6-dimensional gauged SUGRA, the so-called pure F(4) gauged SUGRA [48], obtained from

the consistent truncation. In terms of these objects, we find that the metric in Einstein frame,

the axio-dilaton and the 2-forms are given by

ds2 =
4 r5/4 ∆̄1/4 c6R

2

33/4|dk|1/2
[

3

R2 r
ds26 +

X2 |dk|2
∆̄

ds2
S̃2 +

1

X2 r2
dkα ⊗ dpα

]

,

Hαβ =
1√
3 ∆̄

(

X4 |dk|√
r

pαpβ + 3
√
r ∂γkα∂

γpβ

)

,

C(2)
α = −4 c6R

2

3

(

kα +
X4 r pγ ∂βk

γ ∂βpα

∆̄
|dk|

)

volS̃2 + 2
√
2 c6RA

A ∧
(

yAdk
α + kαD̃yA

)

+ 2
√
2 c6RA

4 ∧ dpα + 4 c6B p
α − 3 c6k

αǫABCy
AAB ∧AC ,

(8.6)

where

∆̄ = 3 r |dk|2 +X4 |dk| pγpδ∂σkγ∂σpδ . (8.7)

Moreover,

D̃yA = dyA +
3√
2R

ǫABCAByC , (8.8)

is the SU(2)R covariant derivative of yA, in terms of which the SU(2)R covariant S2 metric and

S2 volume form are defined as

dsS̃2 = δABD̃y
A ⊗ D̃yB ,

volS̃2 =
1

2
ǫABCy

AD̃yB ∧ D̃yC .
(8.9)

After applying a gauge transformation, the two-forms can equivalently be written as

C(2)
α = −4 c6R

2

3

(

kα +
X4 r pγ ∂βk

γ ∂βpα

∆̄
|dk|

)

volS̃2 + 2
√
2 c6R

(

kαF̃(2)
AyA + F̃(2)

4pα
)

,

(8.10)

38



where

F̃(2)
A = dAA +

3

2
√
2R

ǫABCAB ∧ AC ,

F̃(2)
4 = dA4 +

√
2

R
B ,

(8.11)

are the 2-forms of the 6-dimensional gauged SUGRA as defined in (3.17) and using equations

(7.1), (7.2).

The five-form field strength can easily be computed from (3.15) and using its self-duality. We

find

F(5) = F(2,3) + F(3,2) + F(4,1) , (8.12)

where F(p,q) are the parts of the 5-form with p external and q internal legs, appropriately SU(2)R-

covariantised. Explicitly, they are given by

F(2,3) =
8
√
2 c26R

3 |dk|
3

(

F̃(2)
A ∧ θ̃A ∧ volΣ +

X4 r |dk|
∆̄

pα

(

yA F̃(2)
A ∧ dpα − F̃(2)

4 ∧ dkα
)

∧ volS̃2

)

,

F(3,2) = 16 c26R
2|dk|

(

r2 |dk|
∆̄

F̃(3) ∧ volS̃2 +X−4 ⋆6 F̃(3) ∧ volΣ
)

,

F(4,1) = 8
√
2 c26RX

2
(

−r ⋆6 F̃(2)
A ∧ D̃yA + pα

(

⋆6F̃(2)
4 ∧ dpα + yA ⋆6 F̃(2)

A ∧ dkα
))

,

(8.13)

where F(2,3) and F(3,2) can be read off directly from (3.17) and F(4,1) can be obtained from F(2,3)

by self-duality of the 5-form field strength. Above ⋆6 refers to the Hodge dual of the metric of

the six-dimensional gauged SUGRA, and F̃(3) is, as defined in (3.17), the field strength of the

2-form potential

F̃(3) = dB(2) . (8.14)

Moreover, we have used (5.15) to replace G̃(3) byX
−4⋆6F̃(3). A non-trivial check of the truncation

Ansatz is that the component F(3,2) is self-dual.

In deriving these relations, we used the fact that the 10-dimensional Hodge dual is related to

the 6-dimensional Hodge dual and the Hodge dual on S2 and Σ as

⋆10F(2) ∧ΘA ∧ volΣ =
f6
fΣ

⋆S2 ΘA ∧ ⋆6F(2) ,

⋆10F(2) ∧ ω ∧ volS2 =
f6
fS2

⋆Σ ω ∧ ⋆6F(2) ,

(8.15)

for any 1-form ω ∈ Ω(1) (Σ) and where

f6 =
3

R2 r
, fΣ =

|dk|
X2 r2

, fS2 =
X2|dk|2

∆̄
, (8.16)
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denote the relative factors of the 6-dimensional, S2 and Riemann surface metric in (8.6). Also

⋆Σ dk
α = −|dk| dpα , ⋆Σdp

α = |dk| dkα . (8.17)

After the consistent truncation, all the 10-dimensional AdS vacua correspond to the same

vacuum of the 6-dimensional gauged SUGRA. Our truncation Ansatz includes the previously-

found consistent truncation of a particular AdS6 vacuum in this family [61] as a particular

example. This arises by using the form of the holomorphic function given in [50].

9 Consistent truncations with vector multiplets for AdS7

Here we will now search for consistent truncation with vector multiplets around the supersym-

metric AdS7 vacua of massive IIA SUGRA. There are in fact many 7-dimensional half-maximal

gauged SUGRAs that contain supersymmetric AdS7 vacua [58] and could, in principle, arise as

a consistent truncation of 10-dimensional SUGRA. We will see that in fact only the pure SU(2)

gauged SUGRA [47] and coupled to one vector multiplet can be uplifted, where in the latter case

the Roman’s mass must vanish.

As we discussed above, we can only have N ≤ 3 vector multiplets in a consistent truncation

and the corresponding generalised vector fields must form representations of the SU(2)R sym-

metry group generated by the Ju of the AdS7 vacua. Therefore, we must consider generalised

vector fields that are singlets or triplets under SU(2)R, and satisfy the algebraic conditions (4.1)

as well as the differential conditions (4.4). Doublets under SU(2)R do not lead to fabc of the

form required in (4.4). Moreover, plugging in the form of the Ju for the AdS7 vacua, we have

LJu
Jv̄ = 2

√
2R−1LvuJv̄ , (9.1)

where on the right-hand side we have the usual three-dimensional Lie derivative generated by vu

acting on the vector, scalar, 1-form and 2-form parts of Jū separately. This implies that the Jū

must form a representation of SU(2)R under the Lie derivative generated by the SU(2)R Killing

vector fields on S2.

In the following, we choose the gauge h(z) = p(z) so that the AdS vacua are described by a

cubic function t(z).

9.1 Singlets under SU(2)R

For the Jū to form singlets under SU(2)R, they must take the general form

Jū = fū(z) ∂z + gū(z) + lū(z)ι∂zA+ hū(z) dz + kū(z) volS2 + rū(z) dz ∧ A . (9.2)

Plugging the above parametrisation into the algebraic conditions (4.3), we find they can be solved

by only one generalised vector field which is unique (up to an overall sign which just amounts to
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a redefinition of the scalar field in the truncation Ansatz)

J1̄ =
R

2
ẗ+

R

4
dz +

R3

16
√
2
ẗ z vol2 +

R

4
dz ∧ A . (9.3)

Therefore, the algebraic conditions already restrict us to having at most 1 vector multiplet

that transforms as a singlet under SU(2)R. However, we must now also check the differential

conditions (4.4) but find that

LJ1̄
K̂ = −m R4 t

32
√
2
vol2 ∧ dz 6= 0 unless m = 0 . (9.4)

Therefore, if the Roman’s mass is non-vanishing, it is impossible to have a consistent truncation

with singlet vector multiplets.

For vanishing Roman’s mass the existence of this consistent truncation is not surprising. In

this case the vacuum lifts to a AdS7 × S4 solution of 11-dimensional SUGRA, where the S4 is

written as a S3 fibred over an interval. It is known that there is a maximally supersymmetric

consistent truncation of 11-dimensional SUGRA around this vacuum with gauge group SO(5).

This truncation of 11-dimensional SUGRA can be further consistently truncated to a consistent

truncation with gauge group SU(2)×U(1) ⊂ SO(5) by keeping only the singlets under a Cartan

U(1) ⊂ SU(2)L ⊂ SU(2)L × SU(2)R ⊂ SO(5). Moreover, the generators of SU(2) × U(1) are

independent of one of the four internal coordinates, which can be identified with the Hopf fibre

of S3 when writing S4 as a S3 fibred over an interval, see for example [14] for an explicit realisation

of the SO(4) generators on S3, albeit in O(3, 3) generalised geometry. Thus we find a consistent

truncation of IIA SUGRA giving rise to SU(2)×U(1) gauge group, which corresponds precisely

to the above setup.

9.2 Triplets under SU(2)R

We repeat the above analysis but consider Jū with ū = 1, . . . , 3 forming a triplet under SU(2)R,

which implies they must take the general form (6.13). The algebraic conditions (4.3) then lead

to (up to an overall sign)

Jū =
2
√
2

R
vũ − ǫ

R

2
ẗ yū +

2
√
2

R
ιvūA− R

4
(z dyū + ǫ yūdz)

+
R3

16
√
2
ẗ (θū ∧ dz − ǫ z yūV olS2)− R

4
(z dyū + ǫ yūdz) ∧ A ,

(9.5)

where ǫ = ±1. Finally, one needs to check the differential conditions (4.4). However, we find

LJū
K̂ =

R2

8
(1 − ǫ) ṫ dyū ∧ dz −

R4
(

mǫ t+ 2 ṫ ẗ
)

32
√
2

yū volS2 ∧ dz

+
R2

8
(1− ǫ) ṫ dyū ∧ dz ∧A .

(9.6)
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Looking at the two form part of (9.6) we observe that it can only vanish when ǫ = 1, since ṫ

cannot vanish for non-zero Roman’s mass. In this case, (9.6) vanishes if the condition

(mt+ 2 ṫ ẗ ) = 0 , (9.7)

is satisfied. However, by taking a z-derivative of this condition we find that it implies

ẗ = 0 , (9.8)

which can never be satisfied for m 6= 0 due to the condition (6.26). We therefore conclude that,

if the Roman’s mass is non-vanishing, consistent truncations with a SU(2)R triplet of vector

multiplets do not exist.

Moreover, even when m = 0, the truncation is only consistent if ǫ = 1 and ṫ ẗ = 0 and hence

requires ẗ = 0, or ǫ = −1 and ṫ = ẗ = 0. However, from (6.27) we see that for the AdS7 solution

to be non-singular requires t ẗ ≤ 0 with equality only allowed at ∂I. Therefore, if ẗ = 0, the AdS7

solutions would be badly singular, as is also apparent by direct inspection of (6.38). Therefore,

there are no consistent truncations around AdS7 vacua of IIA with a triplet of vector multiplets.

10 Consistent truncations with vector multiplets for AdS6

We now turn to consistent truncations with vector multiplets around AdS6 vacua of IIB. In

principle there are a large number of 6-dimensional half-maximal gauged SUGRAs (containing

vector multiplets) that contain supersymmetric AdS6 vacua [52], and which could thus arise from

a consistent truncation of AdS6 vacua of IIB. Here we will now address the question of which of

these 6-dimensional gauged SUGRAs can be uplifted to IIB.

Since we can only keep N ≤ 4 vector multiplets in a consistent truncation and the generalised

vector fields corresponding to the vector multiplets must transform as representations under the

SU(2)R we have the following possibilities:

• up to 4 singlets,

• a triplet,

• a triplet plus singlet.

Once again, doublets under SU(2)R are forbidden by (4.4).

Just as for AdS7 vacua, the form of the generalised Lie derivative simplifies when plugging

in the form of the Ju for the AdS6 vacua. We find

LJA
Jū =

3√
2R

LvAJū ,

LJ4Jū = 0 ,

(10.1)
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where in the first equation on the right-hand side we have the usual four-dimensional Lie deriva-

tive generated by vu acting on the vector, 1-form and 3-form parts of Jū separately. This implies

that the Jū must form a representation of SU(2)R under the Lie derivative generated by the

SU(2)R Killing vector fields on S2.

10.1 One singlet under SU(2)R

We first consider a single vector multiplet whose corresponding generalised vector field satisfies

the differential conditions

LJA
J1̄ = 0 ,

LJ1̄
K̂ = 0 .

(10.2)

Note the algebraic conditions (4.1) together with the above immediately imply that

LJ1̄
Ja = 0 , (10.3)

while J4 ∝ dK̂ implies

LJ4J1̄ = 0 . (10.4)

The corresponding consistent truncation will lead to a half-maximal gauged SUGRA with one

vector multiplet and gauge group SU(2)×U(1).

The most general Ansatz we can write for a generalised vector field that transforms as a

singlet under SU(2)R is

J1̄ =
1√
2

(

w(z) + 4Rc6 n
α(z) +

16R3 c26
3

l(z) ∧ volS2

)

, (10.5)

where w(z) is a vector field on Σ and nα(z) is an SL(2)-doublet of 1-forms on Σ and l(z) is a

1-forms on Σ. The algebraic conditions (4.3) now impose that

w(z) = 0 , l(z) = kα(z)n
α(z) , (10.6)

and further imposes on nα that

nα ∧ dkα = nα ∧ dpα = 0 ,

nα ∧ nα = −dkα ∧ dkα .
(10.7)

Thus, the generalised vector field simplifies to

J1̄ =
1√
2

(

4Rc6 n
α +

16R3 c26
3

kαn
α ∧ volS2

)

. (10.8)

The conditions (10.7) fix nα up to one degree of freedom. The explicit form of nα depends
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on the precise relation between dkα and dpα. For example, if we impose the Cauchy-Riemann

equations (7.42), then nα can be nicely expressed in terms of the holomorphic function fα =

−pα + i kα and complex coordinate z = x1 + i x2 on Σ

nα =
1

2
g ∂fα dz̄ +

1

2
ḡ ∂̄f̄αdz . (10.9)

Here g ∈ U(1) is the single degree of freedom left in nα.

The differential condition

LJ1̄
K̂ = 0 , (10.10)

imposes that we must have

dnα = 0 . (10.11)

If we impose the Cauchy-Riemann equations then together with (10.9) this becomes

∂ (g∂fα)− c.c = 0 , (10.12)

where c.c. stands for complex conjugate. (10.12) is an equivalent conditions to having a consistent

truncation.

10.1.1 Uplift formulae

By computing the generalised metric using (5.11), (5.13) and using the ExFT / IIB SUGRA

dictionary (B.13), (B.16), we can read off the consistent truncation Ansatz for the purely internal

components of the metric, 2-form, 4-form and axio-dilaton. The components with some external

legs can be read off from the ExFT fields of the tensor hierarchy, Aµ and Bµν , and using their

IIB parameterisation given in section B.3.1. Moreover, we can also compute the field strengths

of IIB supergravity from the ExFT field strengths (2.7), which become (4.13) upon plugging in

the truncation Ansatz.

It is now straightforward to read off the uplift formulae for the consistent truncation including

a vector multiplet by using the ExFT/IIB dictionary B.3. The result is best expressed in terms

of the scalar fields

ma = (mA, m4, m5) , (10.13)

which satisfy

maη
abmb = −1 . (10.14)

Therefore, they parameterise the coset space

ma ∈ SO(4, 1)

SO(4)
, (10.15)

and are the scalar fields of the half-maximal gauged SUGRA. They are related to the bu
a of the
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truncation Ansatz (4.6) up to SO(3) transformations. In particular, they satisfy

mamb = δuvbu
abv

b − ηab , (10.16)

so that ma and bu
a parameterise the same coset space SO(4,1)

SO(4) . Moreover, we define

m · y ≡ mA y
A , (10.17)

and the SU(2)-covariant derivative in the 3 representation of SU(2)

D̃yA = dyA +
3√
2R

ǫABCAB yC ,

D̃mA = dmA +
3√
2R

ǫABCABmC ,

(10.18)

Similarly, we define the SU(2)-covariantised 1-forms

θ̃A = ǫABC y
B D̃yC , (10.19)

and the SU(2)-covariantised volume on S2

volS̃2 =
1

2
ǫABCy

A D̃yB ∧ D̃yC . (10.20)

In all our uplift formulae, we will throughout impose the Cauchy-Riemann equations (7.42)

on kα and pα, so that nα is given by (10.9), although one can use the above method to derive

the uplift formulae in a different gauge as well. Then, with the above conventions, the metric is

given by

ds2 =
4 c6R

2 r5/4|dk|3/2
33/4∆̄3/4

[

3 ∆̄

R2 r |dk|2 ds
2
6 +X2

(

δABD̃y
A ⊗ D̃yB + w ⊗ w − 1

r2
pαpβn

α ⊗ nβ
)

+
∆̃

X2 r2 |dk|2 dk
α ⊗ dpα − 3

X2 r
nα ⊗ (m4 dk

α −m · y dpα)
]

,

(10.21)

where

∆̄ = X4|dk| pα pβ
(

m5∂γk
α∂γpβ + nαγ

(

(m · y) ∂γpβ −m4∂γk
β
))

+ 3 r |dk|2
(

m2
5 −m2

4 − (m · y)2
)

,

∆̃ = 3 rm5|dk|2 +X4|dk|pαpβ∂γkα∂γpβ ,

w = mA D̃y
A +

1

3 r2
pα σ

α ,

σα = 3 r (m5 n
α −m4 dp

α −m · y dkα)−X4pα pβ ⋆2n
β .

(10.22)
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Here ⋆2n
α denotes the Hodge dual of nα with respect to the flat metric on the Riemann surface.

The axio-dilaton is given by

Hαβ =
X4 pα pβ |dk|√

3 r ∆̄
+

√

3 r

∆̄

(

m5 ∂γk
α∂γpβ + nαγ

(

m · y ∂γpβ −m4∂γk
β
))

, (10.23)

and the 2-form by

C(2)
α = −4 c6R

2

3
volS̃2 (k

α + Lα)− 4 c6R
2

3

|dk|2
∆̄

σα ∧ θ̃AmA

+ 2
√
2 c6R

(

kα F̃(2)
AyA + pα F̃(2)

4 +A1̄ ∧ nα
)

,

(10.24)

where we have defined the SL(2)-doublet function

Lα =
X4 r |dk|

∆̄
pβ
[

m5∂γk
β∂γpα + nβγ (m · y ∂γpα −m4∂γk

α)
]

. (10.25)

Moreover,

F̃(2)
A = dAA +

3

2
√
2R

ǫABC AB ∧ AC ,

F̃(2)
4 = dA4 +

√
2

R
B ,

F̃(2)
1̄ = dA1̄ ,

(10.26)

are the 6-dimensional two-form field strengths as defined in (4.13), using (7.1) and (7.2). In

constructing C(2)
α from the truncation Ansatz (4.6) and (4.11), we have performed a gauge

transformation to write the 2-form in terms of the field strengths of the 6-dimensional gauged

SUGRA, just like we did in the minimal case in going from (8.6) to (8.10). When nα is exact

(it must always be closed), i.e. nα = dχα, e.g. if H(1) (Σ) = 0, we can perform a further gauge

transformation to write the 2-form as

C(2)
α = −4 c6R

2

3
volS̃2 (k

α + Lα)− 4 c6R
2

3

|dk|2
∆̄

σα ∧ θ̃AmA

+ 2
√
2 c6R

(

kα F̃(2)
AyA + pα F̃(2)

4 + χα F̃(2)
1̄
)

.

(10.27)

The self-dual 5-form of IIB supergravity is given by

F(5) = F(1,4) + F(2,3) + F(3,2) + F(4,1) + F(5,0) , (10.28)

46



with

F(1,4) =
16 c26R

4

3

|dk|3 r
∆̄

ǫABCyAmB D̃mC ∧ volS̃2 ∧ volΣ ,

F(2,3) =
8
√
2 c26R

3 |dk|
3

[

F̃(2)
A ∧ θ̃A ∧ volΣ

+
|dk|
∆̄

(

6 r |dk|
(

1

2
((m · y) yA +mA) F̃(2)

A +m4 F̃(2)
4 +m5 F̃(2)

1̄

)

+X4 pα pβ

(

nαγ
(

∂γk
βF̃(2)

4 − ∂γp
β yA F̃(2)

A
)

+ ∂γk
α∂γpβ F̃(2)

1̄
))

∧ volΣ ∧ θ̃BmB

+
X4 r |dk|

∆̄
pα

(

F̃(2)
A ∧ (yAλ

α +mA ⋆2n
α)− F̃(2)

4 ∧ ρα + F̃(2)
1̄ ∧ ⋆2σα

)

∧ volS̃2 ,

F(3,2) = 16 c26R
2 r

2|dk|2
∆̄

F̃(3) ∧
((

m2
5 −m2

4 − (m · y)2
)

volS̃2 − ω ∧ θ̃BmB
)

+ 16 c26R
2|dk|X−4

(

⋆6F̃(3)

)

∧ volΣ ,

F(4,1) = ⋆10F(2,3) ,

F(5,0) = 48 c26 r ǫ
ABCyAmB ⋆6 D̃mA ,

(10.29)

where

λα = m5 dp
α −m4 n

α ,

ρα = m5 dk
α − (m · y)nα −m4 ⋆2n

α ,
(10.30)

and

⋆2σ
α = m5 ⋆2n

α + (m · y) dpα −m4 dk
α , (10.31)

is the Hodge dual of σα with respect to the flat metric on Σ. F(p,q) are the SU(2)R covariantised

components of the 5-form field strength with p external and q internal legs. ⋆10 refers to the

Hodge dual operator with respect to the full 10-dimensional metric (10.21), while ⋆6 refers to the

Hodge dual operator of the metric of the six-dimensional gauged SUGRA whose line element is

ds26. F̃(3) is as defined in (3.17) the field strength of the two-form

F̃(3) = dB(2) , (10.32)

In the above, we have used (5.15) to replace G̃(3) by X
−4⋆6 F̃(3). The self-duality of the five-form

relates the components F(p,q) to F(6−p,4−q).In particular, it implies that F(3,2) should be self-dual,

which can easily be checked using (10.21). This provides a non-trivial check of the truncation

Ansatz. Moreover, we have used the self-duality of the 5-form to compute F(5,0) and F(4,1) from

F(1,4) and F(2,3) rather than using the truncation Ansatz of section 4.1.
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10.2 Multiple singlets under SU(2)R

We next consider the situation where we have N ≤ 4 vector multiplets transforming as singlets

under SU(2)R. The corresponding consistent truncation will lead to a half-maximal gauged

SUGRA with gauge group SU(2) × G, where as we will see we can only have G = U(1) or

G = U(1)2. Following the same logic as in the case for one single vector multiplet, the most

general solution to the algebraic conditions (4.1) and differential conditions

LJA
Jū = 0 , LJū

K̂ = 0 , LJū
Jv̄ = −fūv̄w̄Jw̄ , (10.33)

is

Jū =
1√
2

(

4Rc6 nū
α +

16R3 c26
3

kαnū
α ∧ volS2

)

, with ū = 1, . . . , N , (10.34)

where the nū
α have to satisfy

nū α ∧ dkα = nū α ∧ dpα = 0 ,

nū α ∧ nv̄α = −δūv̄ dkα ∧ dkα ,
(10.35)

as well as

dnū α = 0 . (10.36)

As in the one vector multiplet case, we can solve the algebraic conditions (10.35) by

nū
α =

1

2
gū ∂f

α dz̄ +
1

2
ḡū ∂̄f̄

αdz , (10.37)

with gū ∈ U(1). But the second of the conditions (10.35) now imposes that

gūḡv̄ + ḡūgv̄ = 2 δūv̄ . (10.38)

It is easy to check that these conditions can only be solved when N ≤ 2, which implies that

consistent truncations with N = 3, 4 vector multiplets which are singlets under SU(2)R cannot

exist. For the case N = 2, the condition is solved by

g2̄ = ±i g1̄ , g1̄ ∈ U(1) . (10.39)

Without loss of generality, we can take g2̄ = i g1̄, by suitably redefining the scalar fields of the

truncation Ansatz. In this case, the differential conditions (10.36) implies

∂ (g1̄∂f
α) = 0 , (10.40)

which admits non-trivial solutions only in the cases where

∂f2 = λ∂f1 , (10.41)
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with λ a constant. In this case,

g1̄ = ei c
∂̄f̄1

∂f1
= ei c

∂̄f̄2

∂f2
, (10.42)

where c is a real integration constant.

Recall that J4 ∝ dK̂ immediately implies

LJ4Jū = 0 , (10.43)

while one can also easily check that

LJū
Jv̄ = 0 . (10.44)

Therefore, the consistent truncation leads to a SU(2)×U(1)2 gauged SUGRA.

One can then wonder whether AdS6 vacua described by two holomorphic functions satisfying

the relation ∂f2 = λ∂f1 exist. Firstly, we see that this rules out having SL(2) monodromies.

Moreover, we observe that, in this situation,

|dk| = 1

2
i ∂fα ∂̄f̄α =

1

2
i(λ− λ̄) |∂f1|2 . (10.45)

However, as explained in section 7.2 and [42–44], any globally regular vacuum must be described

by functions satisfying the condition r ≥ 0 and |dk| ≥ 0, with equality on the boundary of the

Riemann surface Σ. The latter ensures that the total space has no boundary. For (10.45) this

condition implies that λ 6= λ̄ and that ∂f1 = ∂f2 = 0 on the boundary of Σ. However, since Σ

is compact, we must have ∂f1 = ∂f2 = 0 everywhere. Therefore, although the differential and

algebraic conditions for consistent truncations with two vector multiplets can be locally solved,

there are no half-supersymmetric compactifications to AdS6 vacua with an internal space without

boundaries that allow such a consistent truncation.

10.2.1 Uplift formulae for two singlets under SU(2)R

As we discussed above, a consistent truncation with two vector multiplets and gauge group SU(2)

around an AdS6 vacua of IIB SUGRA necessarily requires the internal space to have a boundary.

Although this is not particularly interesting from a holographic perspective, we can nonetheless

use the formalism described in [30] to derive the consistent truncation. For simplicity, we will

only give the truncation Ansatz which preserves the full SO(5, 2) symmetry of the AdS vacuum

since this is sufficient for a wide variety of applications. Therefore, we will consider the case where

only the scalar fields of the six-dimensional gauged SUGRA are non-zero and depend only on the

internal four coordinates. Moreover, as in the case of only one SU(2)R singlet, we will impose

the Cauchy-Riemann equations (7.42) on kα and pα throughout. However, it is straightforward

to obtain the uplift formulae in a different gauge.

The scalar manifold of the six-dimensional SUGRA obtained from the consistent truncation
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is

Mscalar =
SO(4, 2)

SO(4)× SO(2)
, (10.46)

and can be parameterised bymi
a with a = 1, . . . , 6 labelling the vector representation of SO(4, 2)

and i = 1, 2 the doublet of SO(2). The mi
A must satisfy

mi
amj

bηab = −δij , (10.47)

and are related to the bu
a of (4.6) by

δijmi
amj

b = δuvbu
abv

b − ηab . (10.48)

Moreover, we can decompose SO(4, 2) −→ SO(3)× SO(2) such that

6 −→ (3,1)⊕ (1,1)⊕ (1,2) . (10.49)

We accordingly write

mi
a =

(

mi
A, mi, λi

ū
)

, (10.50)

where λi
ū are constrained by (10.47), i.e.

λi
ūλj

v̄δūv̄ = mi
Amj

BδAB +mimj + δij . (10.51)

The uplift formulae can be conveniently formulated in terms of

ni
α = λi

ū nū
α ,

ωi
α = (mi · y) dkα +mi dp

α ,

wi = mi
A dyA − 1

r
pα ωi

α − 1

r
pα ni

α ,

σ = |λ| − ǫijmi (mj · y) ,
∆̄ = X4 |dk| pαpβ

(

σ ∂γk
α∂γpβ − ǫijni

αγ ωj
β
γ

)

+ 3 r |dk|2
[

|λ|2

+ ǫikǫjl
(

−λkūλlv̄δūv̄ (mimj + (mi · y) (mj · y)) +mimj (mk · y) (ml · y)
)]

(10.52)

where |λ| denotes the determinant of the 2× 2 matrix λi
ū. Just as in the singlet vector multiplet

case, we use the shorthand

mi · y = mi
A yA . (10.53)

The metric is given by

ds2 =
4 c6R

2 r5/4|dk|3/2
33/4∆̄3/4

[

3 ∆̄

R2r |dk|2 ds
2
6 +X2

(

δABdy
A ⊗ dyB + δijwi ⊗ wj

)

+
3

X2 r

((

σ + 2 ǫijmimj
uyu
)

dkα ⊗ dpα + ǫijni α ⊗ ωj
α
)

]

,

(10.54)
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the axio-dilaton by

Hαβ =
X4 pα pβ |dk|√

3 r ∆̄
+

√

3 r

∆̄

(

σ ∂γk
α∂γpβ − ǫijni

αγωj
β
γ

)

. (10.55)

and the 2-form by

C(2)
α = −4 c6R

2

3
volS2

(

kα +
X4 r |dk|

∆̄
pβ
[

σ ∂γk
β∂γpα − ǫijni

βγ ωj
α
γ

]

)

+
4c6R

2|dk|2
3∆̄

(

X4 pα pβǫ
ij + 3 r δαβ δ

ij
) (

ωj
β + nj

β
)

∧ΘAmi
A

− 2c6R
2|dk|2
3∆̄

r
(

ǫABCǫ
klmk

Aml
ByC

)

ǫij (ωi
α + ni

α) ∧ wj .

(10.56)

Since we are considering the subsector of the truncation where only the scalar fields are turned

on and are constant, the IIB five-form field strength vanishes

F(5) = 0 . (10.57)

10.3 Triplet under SU(2)R

We next move to the case where we have N = 3 vector multiplets transforming as a triplet of

SU(2)R, i.e.

LJA
JB̄ = − 3√

2R
ǫAB̄

C̄JC̄ , (10.58)

where Ā = 1, 2, 3. As we will see shortly, this leads to a ISO(3) gauged SUGRA. Equation (10.58)

implies that the most general ansatz for the fields JĀ must be of the form given in (7.12). The

algebraic conditions (4.3) then fix JĀ to be

JĀ =
1√
2

(

3

R
vĀ + 4 c6RyĀ π

α + 4 c6Rk
αdyĀ +

16 c26R
3

3
yĀ kαπ

α ∧ volS2 − 16 c26R
3

3
|π|θĀ ∧ volΣ

)

,

(10.59)

where |π| = 1
2π

α
βπα

β and πα is a SL(2)-doublet of one-forms on Σ satisfying the algebraic

conditions

πα ∧ dkα = πα ∧ dpα = 0 ,

πα ∧ nα = −dkα ∧ dkα .
(10.60)

Furthermore, in order to satisfy the differential condition

LJĀ
K̂ = 0 , (10.61)
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one needs to impose the conditions

pαπ
α = pαdk

α

dπα =
1

r
pα πβ ∧ πβ .

(10.62)

As in the case of the singlet vector multiplet, conditions (10.60) can are solved by

πα =
1

2
gπ ∂f

α dz̄ +
1

2
ḡπ ∂̄f̄

αdz , (10.63)

where again gπ ∈ U(1). In this case, however, the first condition of (10.62) fixes the phase gπ to

gπ = i
pα∂̄f̄

α

pβ∂fβ
, (10.64)

thereby fixing the one-forms πα completely. The second equation in (10.62) then give an extra

differential condition on fα that has to be satisfied for the vacua to allow consistent truncations

with a SU(2)R triplet of vector multiplets.

Using (10.59) and the above differential conditions, we find

LJĀ
JB̄ = −3

√
2

R
ǫĀB̄

C̄JC̄ +
3√
2R

ǫĀB̄
CJC , LJ4JĀ = 0 , (10.65)

where Ā and A are raised/lowered with δĀB̄ and δAB, respectively. Together with the relations

LJA
JB = − 3√

2R
ǫAB

CJC ,

LJA
JB̄ = − 3√

2R
ǫAB̄

C̄JC̄ ,

LJ4Ja = LJa
J4 = 0 ,

(10.66)

this implies that the gauge group of the six-dimensional half-maximal gauged SUGRA is ISO(3).

10.3.1 Uplift formulae

Just as for the case of two vector multiplets forming SU(2) singlets, we will here only give

the consistent truncation Ansatz preserving the SO(5, 2) symmetry of the AdS6 vacuum, i.e.

where the scalar fields are the only non-zero fields of the six-dimensional half-maximal gauged

SUGRA and are constant. The full consistent truncation Ansatz including general values for all

gauge fields of the six-dimensional gauged SUGRA can be obtained as discussed above 4.1 and

demonstrated explicitly for the case of a single vector multiplet in section 10.1.1.

The scalar manifold of the six-dimensional half-maximal gauged SUGRA is

Mscalar =
SO(4, 3)

SO(4)× SO(3)
× R

+ . (10.67)
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We will parameterise the coset space SO(4,3)
SO(4)×SO(3) by

mI
a =

(

mI
A − λI

A, mI , λI
A
)

, (10.68)

where I = 1, 2, 3 and which satisfies

mI
amJ

bηab = −δIJ . (10.69)

The mI
a are related to the bu

a of (4.6) by

mI
amJ

bδIJ = bu
abv

bδuv − ηab . (10.70)

The uplift formulae can be conveniently expressed in terms of

ωI = (mI · y) pα dkα +mI pα dp
α ,

σ±
I = (λI · y) pα dpα ±mI pα dk

α ,

Λ = pα pβ ∂γk
α∂γpβ ,

∆̄ = X4Λ |mI
A||dk| − 3 r |dk|2

(

|mI
A| |mI

A − 2 (λI · y) yA| +
1

4

(

ǫABCǫ
IJKmIy

AmJ
BmK

C
)2
)

,

(10.71)

with

(mI · y) = mI
AyA , (λI · y) = λI

AyA . (10.72)
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The metric, axio-dilaton and 2-form are given by

ds2 =
4 c6R

2r5/4|dk|3/2
33/4∆̄3/4

[

3 ∆̄

R2r |dk|2 ds
2
6

+X2

(

mI
AdyA − 1

r
ωI

)

⊗
(

mI BdyB − 1

r
ωI
)

+
X2

r2
pαpβdp

α ⊗ dpβ

+
3 |dk|
X2Λ r

(

|mI
A|pαpβ

(

dkα ⊗ dkβ − dpα ⊗ dpβ
)

+
1

2
ǫABCǫ

IJKyAmJ
BmK

Cpα
(

σ+
I ⊗ dpα + dpα ⊗ σ+

I

)

)]

,

Hαβ =
1√
∆̄

[(

X4 |dk|√
3 r

− 2
√
3 r

Λ
|mI

A||dk|2
)

pαpβ +
√
3 r |mI

A|∂γkα∂γpβ

+

√
3 r

2Λ
|dk| ǫIJKǫABCyAmI

BmJ
C σ−

K
γ
(

pα∂γp
β + pβ∂γp

α
)

]

,

√

∆̄HαβC(2) β =

√
3 |dk|
2
√
r

[

−ǫIJKmJ
AλK AωI

γ∂γp
α + 2 pα |dk|ǫIJKmImJ

AλK
B (δAB − yAyB)

]

volΣ

+
√
3 r |dk|ǫIJK mI

A dyA ∧
[

2 pα

Λ
pβ |dk|

(

mJ
BλK

C (δBC − yB yC) dk
β

+2 |dk|mJ

(

mK
B − λK

B
)

yB dp
β
)

+mK
B (mJ yB dk

α + λJB dp
α)

]

+

√
3 r

2

(

−2X4|dk| pα
3 r

(

r + kβpβ
)

− |mi
u|kβ∂γpβ∂γkα +

4 pα |dk|2
Λ

pβk
β|mi

u|
)

volS2

−
√
3 r |dk|
2

(

kαmI +
2

Λ
pα σ−

I βkγ∂
βpγ
)

ǫIJK mJ
AmK

B dyA ∧ dyB ,

(10.73)

and the five-form vanishes by our assumption that the scalar fields are the only non-vanishing

fields and they are constant.

10.4 Triplet plus singlet under SU(2)R

We finally consider the possibility of having consistent truncations with four vector multiplets

forming a triplet and a singlet of SU(2)R, i.e.

LJA
JB̄ = − 3√

2R
ǫAB̄

C̄JC̄ , LJA
J4̄ = 0 . (10.74)

Since J4 ∝ dK̂ we automatically have

LJ4Ja = 0 . (10.75)
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For a vacuum to allow such consistent truncations around it, it must allow both a truncation

with a single vector multiplet, characterised by (10.9), and a truncation with a triplet of vector

multiplets, characterised by (10.63). The resulting gauge group will clearly be ISO(3) × U(1).

Futhermore, in order to have both simultaneously, we need to satisfy the condition

J4̄ ∧ JĀ = 0 , (10.76)

where Ā = 1, 2, 3 labels the triplet and 4̄ the extra singlet. Similar to the case of two singlets,

the above condition fixes the phase g that characterises the singlet to be (as before, up to a sign

which can be absorbed by a field redefinition of the scalar fields in the truncation)

g = −i gπ =
pα∂̄f̄

α

pβ∂fβ
. (10.77)

Therefore, a vacuum allows a consistent truncation with four vector multiplets only in the case

where it allows a consistent truncation with a SU(2)R triplet of vector multiplets and a consistent

truncation with a single vector multiplet characterised precisely by the phase (10.77).

11 Conclusions

In this paper, we showed how to use ExFT to easily recover the infinite families of supersymmet-

ric AdS7 and AdS6 solutions of massive IIA and IIB SUGRA, respectively, known in the litera-

ture [40,41,43,44]. The ExFT description of these vacua allowed us to immediately construct the

“minimal” consistent truncation of 10-dimensional SUGRA around these solutions [49–51,61], in

which we keep only the gravitational supermultiplet of the lower-dimensional gauged SUGRA.

We then analysed whether it is possible to construct consistent truncations around the supersym-

metric AdS vacua keeping more modes, which would result in lower-dimensional gauged SUGRAs

coupled to vector multiplets. Assuming the method developed in [29,30] is the most general one

for constructing consistent truncations with vector multiplets, we found that

• there are no consistent truncations with vector multiplets around AdS7 vacua of massive

IIA, unless the Roman’s mass vanishes. For vanishing Roman’s mass, there is a consis-

tent truncation that is itself a truncation (and dimensional reduction) of the maximally

supersymmetric consistent truncation of 11-dimensional SUGRA on S4,

• there are consistent truncations with vector multiplets of IIB SUGRA around its super-

symmetric AdS6 solutions. In this case, the holomorphic functions describing the AdS6

solutions must satisfy further differential constraints.

In particular, we found that the only consistent truncations with vector multiplets of IIB SUGRA

around the supersymmetric AdS6 vacua yield N ≤ 4 vector multiplets with gauge group SU(2)×

55



U(1), SU(2)×U(1)2, ISO(3) and ISO(3)×U(1), when the holomorphic functions fα satisfy the

following differential conditions.

Consistent truncation with one vector multiplet The differential condition (10.12) is

∂ (g ∂fα)− c.c. = 0 , (11.1)

for some function g ∈ U(1), where c.c. denotes the complex conjugate. While we will not attempt

to find general solutions of (11.1) that are holomorphic and satisfy (7.33) and (7.32), it is easy

to show that if one of the holomorphic functions is linear in the complex coordinate z, i.e.

f1 = A0 +A1 z, then the other function must be quadratic, i.e. f2 = B0 +B1 z + B2 z
2, where

A0, A1, B0, B1 and B2 are constant complex numbers. This implies that the Abelian T-dual

to the Brandhuber-Oz solution [62], which is described by a linear and quadratic holomorphic

function [41, 63], admits a consistent truncation with a single vector multiplet, while the non-

Abelian T-dual to the Brandhuber-Oz solution [37], which is described by a linear and cubic

holomorphic function [50, 63], does not. The consistent truncation Ansatz is given in section

10.1.1 and leads to F(4) gauged SUGRA coupled to one vector multiplet.

Consistent truncation with two vector multiplets The differential condition that the

holomorphic functions must satisfy is now

∂f2 = λ∂f1 , (11.2)

for some constant λ. As we discussed in section 10.2, this necessarily implies that the internal

space of the AdS6 solutions has a boundary. While such solutions are not interesting from a

holographic perspective, we can nonetheless compute the consistent truncation Ansatz, which

we have given in 10.2.1, and which leads to F(4) gauged SUGRA coupled to two Abelian vector

multiplets.

Consistent truncation with three vector multiplets To allow for a consistent truncation

with three vector multiplets, the following differential condition must be satisfied:

dπα =
1

r
pα πβ ∧ πβ , (11.3)

where

πα =
1

2
i
pα∂̄f̄

α

pβ∂fβ
∂fα dz̄ − 1

2
i
pα∂f

α

pβ∂̄f̄β
∂̄f̄αdz , (11.4)

and dr = −kα dpα with pα, kα the real/imaginary parts of the holomorphic functions fα =

−pα + i kα. For any pair of holomorphic functions fα satisfying the above condition, there

is a consistent truncation of IIB SUGRA around that AdS6 solution to 6-dimensional half-

maximal ISO(3) gauged SUGRA. The uplift formulae for the scalar fields is given in section
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10.3.1. It is unclear whether there are globally regular supersymmetric AdS6 solutions satisfying

the differential conditions (11.3).

Consistent truncation four vector multiplets To admit a consistent truncation with four

vector multiplets, the AdS6 vacua must satisfy the differential condition for the triplet, i.e. (11.3)

with πα as in (11.4), as well as

∂

(

pβ∂̄f̄
β

pγ∂fγ
∂fα

)

− c.c. = 0 . (11.5)

For any pair of holomorphic functions fα satisfying the above, the corresponding AdS6 solution

admits a consistent truncation to 6-dimensional half-maximal ISO(3) × U(1) gauged SUGRA.

Once again, it is unclear whether there are such globally regular supersymmetric AdS6 solutions

of IIB SUGRA.

It would be interesting to classify for which Riemann surfaces Σ these consistent truncations

exist, i.e. for which Riemann surfaces one can have holomorphic functions fα which satisfy the

above differential conditions and lead to closed internal manifolds, thus also satisfying (7.32) and

(7.33), or even to find a complete list of such holomorphic functions. For now, we are able to say

that the Abelian T-dual of the Brandhuber-Oz solution admits a consistent truncation with one

vector multiplet, the non-Abelian T-dual does not, and there are no globally regular solutions

that admit a consistent truncation with two vector multiplets. Moreover, the only possible gauge

groups in six dimensions are SU(2)×U(1), SU(2)×U(1)2, ISO(3) and ISO(3)×U(1). This is only

a subset of all possible 6-dimensional half-maximal gauged SUGRAs that admit supersymmetric

AdS vacua [52]. The other six-dimensional gauged SUGRAs do not have uplifts to IIB SUGRA.

Our results can be used to uplift the 6-dimensional solutions found in [64,65] and to complete

their holographic study, while they also suggest that there are no IIB uplifts of the 6-dimensional

solutions [66] which requires the six-dimensional gauge group SU(2)× SU(2) (×U(1)). Similarly,

we found that of all the 7-dimensional half-maximal gauged SUGRAs that admit a supersym-

metric AdS7 vacuum [58], only the pure SU(2) gauged SUGRA [47] and it coupled to an Abelian

vector multiplet can be uplifted to IIA SUGRA, where in the latter case the Roman’s mass is

necessarily zero. This suggests that the other 7-dimensional gauged SUGRAs with supersym-

metric AdS7 vacua are lower-dimensional artifacts without a clear relation to 10-dimensional

SUGRA.
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A SL(5) ExFT conventions and ExFT/IIA dictionary

A.1 Embedding IIA into SL(5) ExFT

To embed IIA SUGRA in SL(5) ExFT we decompose SL(5) −→ GL(4)+ −→ GL(3)+×R
+, where

GL(n)+ = SL(n) × R
+. The GL(4) is the geometric group realised by the internal manifold of

a 11-dimensional compactification, which is broken to GL(3)× R
+ by reducing to IIA SUGRA.

Accordingly, we decompose an object in the fundamental SL(5) representation as

F a =
(

F i, F 4, F 5
)

, (A.1)

where a = 1, . . . , 5 is the SL(5) fundamental index and i = 1, 2, 3 labels the fundamental of

GL(3).

We will need to decompose the generalised tensors of the half-maximal structure, i.e. gener-

alised vector fields and generalised tensors in the 5 and 5 representation. A generalised vector

field, Aab, decomposes as

Ai5 = V i , Aij = −ǫijk ω(1)k , Ai4 =
1

2
ǫijk ω(2)jk , A45 = ω(0) , (A.2)

a generalised tensor field Ba in the 5 as

Bi = 1

2
ǫijk ω(2)jk , B4 =

1

3!
ǫijk ω(3)ijk , B5 = ω(0) , (A.3)

and a generalised tensor field Ca in the 5 as

Ci = ω(1)i , C4 = ω(0) , C5 =
1

3!
ǫijk ω(3)ijk , (A.4)

where V are spacetime vector fields, ω(p) are spacetime p-forms and ǫijk = ±1 denotes the

three-dimensional alternating symbol, i.e. the tensor density.

Just as in the above, we also decompose the SL(5) “extended derivatives” as

∂ab = (∂i5, ∂ij , ∂i4, ∂45) , (A.5)

These derivatives ∂i5 6= 0 are the usual IIA internal spacetime derivatives, and solve the SL(5)

ExFT section conditions

∂[ab∂cd] = 0 . (A.6)
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A.2 IIA parameterisation of the generalised metric

The IIA parameterisation of the SL(5) generalised metric is given in [17]. Here we translate

the parameterisation given there to the string-frame metric which we use in section 6 when

describing the supersymmetric AdS7 vacua. The components of the generalised metric Mab are

parameterised as

Mij = |g|2/5e2ψ/5
(

gij + |g|−1BiBj
)

,

Mi4 = |g|2/5e2ψ/5
(

−Ai + |g|−1Bi C
)

,

Mi5 = −|g|−3/5e2ψ/5Bi ,

M44 = |g|2/5e2ψ/5
(

e−2ψ + gijA
iAj + |g|−1C2

)

,

M45 = −|g|−3/5e2ψ/5C ,

M55 = |g|−3/5e2ψ/5 ,

(A.7)

where gij is the internal 3-dimensional IIA string frame metric, Ai is the 1-form, Bij is the 2-form

and Cijk is the 3-form. The 2- and 3-form appear as Bi = 1
2ǫ
ijkBjk and C = 1

3! ǫ
ijkCijk where

ǫijk = ±1 is the alternating symbol, i.e. a tensor density.

A.3 Including the Roman’s mass

As discussed in [19,20], the Roman’s mass of IIA SUGRA appears like a deformation of the differ-

ential structure of ExFT and EGG, similar to a gauging of lower-dimensional gauged SUGRAs.

In particular, the generalised Lie derivative (2.1) now takes the form

LξV ab = L(0)
ξ V ab +

1

2
Zcd,[aV b]eξfgǫcdefg , (A.8)

where L(0) is the undeformed generalised Lie derivative (2.1) and Zab,c satisfies Z [ab,c] = 0 and

encodes the deformation of the generalised Lie derivative. For the Roman’s mass m, the only

non-vanishing component of Zab,c is

Z45,4 = m. (A.9)

The deformation Zab,c generates an SL(5) transformation and thus can easily be worked out

for the generalised Lie derivative acting in another representation. In particular, to describe

AdS7 vacua, we require the massive generalised Lie derivative acting in the 5 which is

LξBa = L(0)
ξ Ba − 1

4
Zbc,aBdξef ǫbcdef . (A.10)

The differential operators d of (2.11) are also modified. Their deformations by Zab,c can be

determined by requiring them to be covariant under the deformed generalised Lie derivative
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(A.8). In fact, the d operator appearing in the differential conditions remains unmodified

dCa = d(0)Ca , (A.11)

where d(0) is the unmodified d : Γ (R3) −→ Γ (R2) given in (2.11).

B SO(5, 5) ExFT conventions and ExFT/IIB dictionary

B.1 Embedding IIB into SO(5, 5) ExFT

To connect the SO(5, 5) ExFT with IIB SUGRA we decompose SO(5, 5) −→ SL(4) × SL(2)S ×
SL(2)A, where SL(2)S corresponds to S-duality while SL(2)A is an accidental symmetry in the

decomposition relevant to six dimensions and which will be broken by the IIB solution to the

section condition [53, 67]. For our purposes, we will need the decomposition of the 16 and 10

representations of SO(5, 5) which is

16 −→ (4,2,1)⊕
(

4,1,2
)

,

10 −→ (1,2,2)⊕ (1,1,6) .
(B.1)

Thus, a generalised vector field becomes

AM =
(

AU,i, Aα
i

)

, (B.2)

where we use i = 1, . . . , 4 for the SL(4) spatial indices, α = 1, 2 as SL(2)S indices and U, V = +,−
for the SL(2)A indices. We identify these components with spacetime tensors as follows

A+,i = V i , A−,i =
1

3!
ǫijkl ω(3)jkl , Aα

i = ω(1)
α
i , (B.3)

where V is a spacetime tensor, ω(p) are spacetime p-forms, α is as before a fundamental SL(2)S

index and ǫijkl is the 4-dimensional alternating symbol, i.e. tensor density.

Similarly, a tensor in the 10 decomposes as BI =
(

BU,α, Bij
)

which contain the spacetime

tensors

B+,α = ω(0)
α , B−,α =

1

4!
ǫijkl ω(4)ijkl , Bij = 1

2
ǫijkl ω(2)kl , (B.4)

where ω(p) are p-forms and α = 1, 2 is an SL(2)S index.

Furthermore, with these conventions the SO(5, 5) invariant metric is given by

ηIJ =

(

ǫαβǫUV 0

0 ǫijkl

)

, (B.5)
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with inverse

ηIJ =

(

ǫαβǫUV 0

0 ǫijkl

)

. (B.6)

We employ the following summation convention over the 10 indices

B1
IB2

JηIJ = B1
IB2 I = B1

U,αB2U,α +
1

2
B1

ijB2 ij . (B.7)

The identity matrix in the 10 takes the following form due to the summation convention (B.7)

δJI =

(

δβαδ
V
U 0

0 2δklij

)

, (B.8)

where δklij = 1
2

(

δki δ
l
j − δliδ

k
j

)

.

Finally, the (γI)
MN

-matrices are given by

(γαU )
V i β

j =
√
2 δβα δ

V
U δ

i
j ,

(γij)
V k W l = 2

√
2ǫVW δklij ,

(γij)
β
k
γ
l = −

√
2ǫijklǫ

βγ ,

(B.9)

and the (γI)MN -matrices are

(γαU )V i β
j =

√
2ǫαβǫUV δi

j ,

(γij)V k W l =
√
2ǫVW ǫijkl ,

(γij)β
k
γ
l = −2

√
2δklij ǫβγ .

(B.10)

With the above decomposition, the “extended derivatives” are given by

∂M =
(

∂U,i, ∂α
i
)

(B.11)

with only ∂+,i 6= 0. This corresponds to the IIB solution of the section condition (2.2)

(γI)
MN ∂M ⊗ ∂N = 0 , (B.12)

which we use.
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B.2 IIB parameterisation of the generalised metric

Here we give the IIB parameterisation of the SO(5, 5) generalised metric in the 16 and 10

representations. The generalised metric in the 16 is given by

M+i+j = e1/2gij + e−3/2

(

C2
(4) gij +

1

4
Cik α β

kr αCjs γβ
st γ grt

)

− 1

2
e−3/2C(4)

(

gir Cjk αβ
kr α + (i↔ j)

)

+ e1/2 Cik α Cjl γ g
klHαγ

M+i−j = e−3/2

(

C(4) gij −
1

2
Cik αβ

kl αglj

)

,

M−i−j = e−3/2gij ,

M+i α
j = e−3/2

(

C(4) gik β
jk
α − 1

2
Cik γ β

kl γ glm β
jm

α

)

− e1/2Cik γg
kjHγ

α ,

M−i α
j = e−3/2gik β

jk
α ,

Mα
i
β
j = e1/2gijHαβ + e−3/2βikα β

jl
β gkl .

(B.13)

Here gij is the internal 4-d Einstein-frame metric, C(4) = 1
4! ǫ

ijklCijkl is the dual of the fully

internal 4-form, Cij α denotes the SL(2)-dual of R-R 2-forms and βijα = 1
2ǫ
ijklCkl α is its dual.

Throughout we dualise with ǫijkl = ±1, the four-dimensional alternating symbol, i.e. the tensor

density. Hαβ is the SL(2) matrix parameterised by the axio-dilaton τ = eψ + i C0,

Hαβ =
1

Im τ

(

|τ |2 Re τ

Re τ 1

)

. (B.14)

All our SL(2)S indices are raised/lowered by the SL(2) invariant ǫαβ = ǫαβ = ±1 in a North-

west/Southeast convention. The ǫαβ’s are normalised as

ǫαγǫ
βγ = δβα . (B.15)

62



The generalised metric in the 10 is given by

M+α+β =
1

e

(

e2 + C2
(4)

)

Hαβ +
1

4e
⋆
(

C(2)α ∧ C(2)γ

)

⋆
(

C(2)β ∧C(2)δ

)

Hγδ

+
C(4)

2e

(

Hαiγ ⋆
(

C(2)β ∧ C(2)δ

)

ǫγδ + (α ↔ β)
)

+
e

2
C(2)ij αi

C(2)kl β g
ikgjl ,

M+α−β =
C(4)

e
Hαβ +

1

2e
⋆
(

C(2)α ∧ C(2)
γ
)

Hγβ ,

M−α−β =
1

e
Hαβ ,

M+α
ij =

1

e

(

C(4)Hαβ +
1

2
⋆
(

C(2)α ∧ C(2)
γ
)

Hγβ

)

βj1j2 β + e gik gjl C(2)α kl ,

Mα−
ij =

1

e
Hαβ β

ij β ,

Mij kl = e
(

gikgjl − gilgjk
)

+
1

e
βijα β

kl
βH

αβ .

(B.16)

B.3 IIB parameterisation of the ExFT tensor hierarchy

To complete the embedding of type IIB supergravity into exceptional field theory, one needs to

embed the supergravity fields with legs along both the internal and external directions. These are

encoded into the the ExFT tensor hierarchy fields Aµ, Bµν , . . . The map between supergravity and

ExFT fields can be obtained by comparing how both transform under gauge transformations or

by comparing their corresponding field strengths. We summarise the findings in the next section

B.3.1 and give details of the derivations in sections B.3.2 - B.3.4.

B.3.1 Summary of IIB parameterisation

The 10-dimensional IIB metric is given by

ds210 = gijD̃y
iD̃yj + gµνdx

µdxν , (B.17)

where gij is the internal four-dimensional metric as computed from the generalised metric (B.13),

(B.16) and

D̃yi = dyi + (ıAµ
dyi)dxµ , (B.18)

are the Kaluza-Klein covariantised derivatives of the internal coordinates with Aµ
i the Kaluza-

Klein vector field. The “external” metric gµν is related to the ExFT metric Gµν by

Gµν = gµν |gint|−1/4 , (B.19)

where |gint| denotes the determinant of the internal metric gij .

For the remainder of this appendix, we will follow the conventions of [68] and denote the

10-dimensional type IIB supergravity gauge fields by a hat, i.e. Ĉ(2̂)
α and Ĉ(4̂), unlike in the

main part of this paper. We will reserve the unhatted objects for later purposes in this appendix.
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Under the splitting of the 10 dimensions into six external and four internal directions, we write

them as

Ĉ(2̂)
α =

1

2
C̄µν

αdxµ ∧ dxν + C̄µn
αdxµ ∧ D̃yn +

1

2
C̄mn

αD̃ym ∧ D̃yn , (B.20)

and, analogously, for Ĉ(4̂). The fields C̄µν
α, C̄µn

α, . . . are the components of the KK-redefined

form-fields C̄µν (0)
α, C̄µ (1)

α, . . . defined in (B.39). The barred fields that are totally internal,

i.e. C̄(2)
α and C̄(4), are embedded into ExFT through the generalised metric (B.13), (B.16). The

rest can be read off from the ExFT tensor hierarchy fields as (see (B.58))

Aµ = (Aµ)(v) ,

C̄µ (1)
α = (Aµ)(1)

α ,

C̄µν (0)
α =

√
2 (Bµν)(0)α + ι(A[µ)(v)(Aν])(1)

α

C̄µ (3) = (Aµ)(3) +
1

2
ǫαβC̄µ (1)

α ∧ C̄(2)
β ,

C̄µν (2) = −
√
2 (Bµν)(2) + ι(A[µ)(v)(Aν])(3) +

1

2
ǫαβC̄µν (0)

αC̄(2)
β ,

(B.21)

where (Aµ)(v), (Aµ)(1)
α, . . . , (Bµν)(0)α, . . . are components of the tensor hierarchy fields Aµ

and Bµν . The fields C̄µνρ (1) and C̄µνρσ (0) involve further fields of the tensor hierarchy. However,

they can also be determined (up to gauge transformations) from C̄(4), C̄µ (3) and C̄µν (2) through

the self-duality condition of the 10-dimensional four-form.

In addition to the dictionaries between tensor hierarchy and supergravity gauge fields, one

can also embed the supergravity field strengths F̂(3̂)
α and F̂(5̂) into the ExFT field strengths. As

in the case of gauge fields, we write the 10-dimensional field strengths as

F̂(3̂)
α =

1

3!
F̄µνρ

αdxµ ∧ dxν ∧ dxρ + 1

2
F̄µνm

αdxµ ∧ dxν ∧ D̃ym

+
1

2
F̄µmn

αdxµ ∧ D̃ym ∧ D̃yn +
1

3!
F̄mnp

αD̃ym ∧ D̃yn ∧ D̃yp ,
(B.22)

and analogous for F̂(5̂). The barred F fields are the components of the form-fields (B.45). Since

the internal space is four-dimensional, the only 10-dimensional field strength with a totally

internal part is F̂(3̂)
α, given by

F̄(3)
α = dC̄(2)

α , (B.23)

with C̄(2)
α the internal part of the 10-dimensional two-form, which is embedded into the ExFT

through the generalised metric. Since all ExFT field strength have at least two external indices,

the components of the 10-dimensional field strengths with one external leg can only be obtained

directly from the gauge fields. These are (see (B.50) and (B.54))

F̄µ (2)
α = DKK

µ C̄(2)
α − dC̄µ (1)

α ,

F̄µ (4) = DKK
µ C̄(4) − dC̄µ (3) −

1

2
ǫαβC̄(2)

α ∧ F̄µ (2)
β − 1

2
ǫαβC̄µ (1)

α ∧ F̄(3)
β .

(B.24)
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The rest of the components can be read off from the field strengths of the ExFT tensor hierarchy

fields as (see (B.60))

Fµν = (Fµν)(v) ,
F̄µν (1)

α = (Fµν)(1)α + ιFµν
C̄(2)

α ,

F̄µνρ (0)
α =

√
2 (Hµνρ)(0)

α ,

F̄µν (3) = (Fµν)(3) + ǫαβF̄µν (1)
α ∧ C̄(2)

β + ιFµν
C̄(4) +

1

2
ǫαβC̄(2)

α ∧ ιFµν
C̄(2)

β ,

F̄µνρ (2) = −
√
2 (Hµνρ)(2) + ǫαβF̄µνρ (2)

αC̄(2)
β ,

(B.25)

where Fµν is the field strength of the KK gauge field Aµ (see (B.40)) and (Fµν)(v), . . . , (Hµνρ)(0)
α,

. . . are the components of the ExFT field strengths Fµν and Hµνρ defined in (2.5) and (2.7).

As for the gauge fields, the components F̄µνρσ,(1) and F̄µνρσδ,(0) can be obtained from the 10-

dimensional self-duality condition for F̂(5̂).

B.3.2 Tensor hierarchy of SO(5, 5) Exceptional Field Theory

The tensor hierarchy of SO(5, 5) ExFT containts the fields Aµ, Bµν , Cµνρ, . . . as listed in equation

(2.14). As discussed in section B.1, taking the type IIB solution to the section constraint [53,67]

these decompose into

Aµ = Aµ,(v) +Aµ (1)
α +Aµ (3) ,

Bµν = Bµν (0)
α +Bµν (2) +Bµν (4)

α ,

Cµνρ = Cµνρ (1) + C̄µνρ (1) + Cµνρ (3)α .

(B.26)

The gauge variations of Aµ and Bµν are given by

δAµ = DµΛ− dΞµ ,

δBµν = 2D[µΞν] + Λ ∧ Fµν −A[µ ∧ δAν] − dΘµν ,
(B.27)

where Λ ∈ 16, Ξµ ∈ 10 and Θµν ∈ 16 are generalised gauge parameters, the derivative Dµ is

defined as

Dµ = ∂µ − LAµ
, (B.28)

and Fµν is the field strength of Aµ defined in (2.5).
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Gauge variations and field strength of Aµ

In the type IIB solution of the section constraint, the variation δAµ decomposes as

δAµ (v) = DKK
µ Λ(v) ,

δAµ (1)
α = DKK

µ Λ(1)
α + LΛ(v)

Aµ (1)
α − d Ξ̃µ (0)

α ,

δAµ (3) = DKK
µ Λ(3) + LΛ(v)

Aµ (3) − ǫαβdAµ (1)
α ∧ Λ(1)

β + d Ξ̃µ (2) ,

(B.29)

where now L is the usual Lie derivatives, the derivative DKK
µ is defined as

DKK
µ = ∂µ − LAµ (v)

, (B.30)

and the fields Ξ̃µ (0)
α and Ξ̃µ (2) are

Ξ̃µ (0)
α =

√
2Ξµ (0)

α + ιΛ(v)
Aµ (1) ,

Ξ̃µ (2) =
√
2Ξµ (2) − ιΛ(v)

Aµ (3) ,
(B.31)

with Ξµ (0)
α and Ξµ (2) being the zero- and two- form components of the gauge parameter Ξµ.

The field strength Fµν , defined in (2.5), decomposes as

(Fµν)(v) = 2∂[µAν] (v) − [Aµ (v), Aν (v)] ,

(Fµν (1))(1)
α = 2DKK

[µ Aν] (1)
α + dB̃µν (0)

α ,

(Fµν)(3) = 2DKK
[µ Aν] (3) − dB̃µν (2) − ǫαβA[µ (1)

α ∧ dAν] (1)β ,
(B.32)

where, analogously to (B.31), the fields B̃µν (0)
α and B̃µν (2) are defined as

B̃µν (0)
α =

√
2Bµν (0)

α + ιA[µ (v)
Aν] (1)

α ,

B̃µν (2) =
√
2Bµν (2) − ιA[µ (v)

Aν] (3) ,
(B.33)

with Bµν (0)
α and Bµν (2) components of Bµν .
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Gauge variations and field strength of Bµν

The fields B̃µν (0)
α and B̃µν (2) transform under gauge variations as

δB̃µν (0)
α =

√
2 (δBµν)(0)α + ιδA[µ (v)

Aν] (1)
α + ιA[µ (v)

δAν] (1)
α

= 2DKK
[µ Ξ̃ν] (0)

α + LΛ(v)
B̃µν (0)

α + ι(Fµν)(v)Λ(1)
α ,

δB̃µν (2) =
√
2 (δBµν)(0) − ιδA[µ (v)

Aν] (3) − ιA[µ (v)
δAν] (3)

= 2DKK
[µ

(

Ξ̃ν] (2) −
1

2
ǫαβAν] (1)

α ∧ Λβ(1)

)

+ ǫαβdA[µ (1)
αΞ̃ν] (0)

β + LΛ(v)
B̃µν (2)

− 1

2
ǫαβΛ(1)

α ∧ dB̃µν (0)
β − ι(Fµν)(v)Λ(3) −

1

2
ǫαβ(Fµν)(1)α ∧ Λ(1)

β + dΘ̃µν (1) ,

(B.34)

where the field Θ̃µν (1) is a redefinition of the one-form part of Θµν . Finally, the field strengths

of the fields B̃µν (0)
α and B̃µν (2) can be obtained from the field strength Hµνρ (without tilde),

defined in (2.7), as

H̃µνρ (0)
α ≡

√
2 (Hµνρ)(0)

α = 3DKK
[µ B̃νρ] (0)

α − 3 ι(F[µν)(v)Aρ] (1)
α ,

H̃µνρ (2) ≡
√
2 (Hµνρ)(2)

= 3DKK
[µ B̃νρ] (2) + 3 ι(F[µν)(v)Aρ] (3) + 3ǫαβA[µ (1)

α ∧DKK
ν Aρ] (1)

β

+ 3ǫαβ dA[µ (1)
αB̃νρ] (0)

β + dC̃µνρ (1) ,

(B.35)

where C̃µνρ (1) is again some redefinition of the one-form part of C̃µνρ.

B.3.3 KK decompositon of type IIB supergravity

The bosonic field content of type IIB supergravity is given by a metric field ĝ, an axio-dilaton

field H , a SL(2)-doublet of two-form fields Ĉ(2̂)
α and a four-form field Ĉ(4̂). The sub-index (p̂)

indicates that the object is a p-form from the 10-dimensional point of view. The gauge variations

of Ĉ(2̂)
α and a Ĉ(4̂) are

δĈµ̂ν̂
α = dλ̂(1̂)

α ,

δĈµ̂ν̂ρ̂σ̂ = dλ̂(3̂) +
1

2
ǫαβ λ̂(1̂)

α ∧ F̂(3̂)
β ,

(B.36)

and their field strengths

F̂(3̂)
α = dĈ(2̂)

α ,

F̂(5̂) = dĈ(4̂) −
1

2
ǫαβĈ(2̂)

α ∧ dĈ(2̂)
β .

(B.37)

Next we split the 10-dimensional space into a six-dimensional external and a four-dimensional

internal spaces. Throughout the rest of this section, we will use the field redefinitions of [68].
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Our conventions for the coordinates are: xµ̂ are the ten dimensional coordinates, xµ are the

external ones and yn the internal, with µ̂ = 1, ..., 10, µ = 1, ..., 6 and n = 1, ..., 4. The two-forms

fields Ĉ(2̂)
α decomposes under this splitting as

Ĉ(2̂)
α =

1

2
Ĉµ̂ν̂

αdxµ̂ ∧ dxν̂

=
1

2
Ĉµν

αdxµ ∧ dxν + Ĉµn
αdxµ ∧ dyn +

1

2
Ĉmn

αdym ∧ dyn

≡ 1

2
Ĉµν (0)

αdxµ ∧ dxν + dxµ ∧ Ĉµ (1)
α + Ĉ(2)

α ,

(B.38)

where now the subscript (p) indicates that the object is a p-form from the point of view of the

internal space. The four-form Ĉ(4̂) decomposes in an analogous way. Next, in a standard Kaluza-

Klein manner, we redefine these form-fields by projecting the 10-dimensional curved indices into

six-dimensional ones using the projector Pµ
µ̂ = eµ

aea
µ̂, where a are the external flat indices and

eµ̂
â is the 10-dimensional metric vielbein in a frame where it is upper-triangular. We obtain

C̄(2)
α = Ĉ(2)

α ,

C̄µ (1)
α = Ĉµ (1)

α − ιAµ
Ĉ(2)

α ,

C̄µν (0)
α = Ĉµν (0)

α + 2ιA[µ
Ĉν] (1)

α − ιAµ
ιAν

Ĉ(2)
α ,

C̄(4) = Ĉ(4) ,

C̄µ (3) = Ĉµ (3) − ιAµ
Ĉ(4) ,

C̄µν (2) = Ĉµν (2) + 2ιA[µ
Ĉν] (3) − ιAµ

ιAν
Ĉ(4) ,

...

(B.39)

where Aµ is the KK gauge field, with field strength

Fµν = 2∂[µAν] − [Aµ, Aν ] . (B.40)

For computational purposes it is worth noticing that the 10-dimensional two-forms (B.38) can

now be written as

Ĉ(2̂)
α =

1

2
C̄µν

αdxµ ∧ dxν + C̄µn
αdxµ ∧ D̃yn +

1

2
C̄mn

αD̃ym ∧ D̃yn , (B.41)

with

D̃yn = dyn + (ιAµ
dyn) dxµ , (B.42)

and analogously for any other 10-dimensional form. Furthemore, because of the Chern-Simons

term in the five-form field strength, the four-form needs some extra redefinitions (see for instance
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[68, 69]), namely

C(4) = C̄(4) , Cµ (3) = C̄µ (3) −
1

2
ǫαβC̄µ (1)

α ∧ C̄(2)
β ,

Cµν (2) = C̄µν (2) −
1

2
ǫαβC̄µν (0)

αC̄(2)
β ,

(B.43)

For completeness, we also define

C(2)
α = C̄(2)

α , Cµ (1)
α = C̄µ (1)

α , Cµν (0)
α = C̄µν (0)

α . (B.44)

Analogous definitions apply also for the field strengths. In particular, now,

F̄(3)
α = F̂(3)

α ,

F̄µ (2)
α = F̂µ (2)

α − ιAµ
F̂(3)

α ,

...

F̄µ (4) = F̂µ (4) ,

F̄µν (3) = F̂µν (3) + 2ιA[µ
F̂ν] (4) ,

...

(B.45)

where we recall that there is no internal five-form because the internal space is four-dimensional.

Furthermore,

F(3)
α = F̄(3)

α , Fµ (2)
α = F̄µ (2)

α , Fµν (1)
α = F̄µν (1)

α − ιFµν
C(2)

α ,

Fµνρ (0)
α = F̄µνρ (0)

α , Fµ (4) = F̄µ (4) ,

Fµν (3) = F̄µν (3) − ǫαβFµν (1)
α ∧C(2)

β − ιFµν
C(4) +

1

2
ǫαβC(2)

α ∧ ιFµν
C(2)

β ,

Fµνρ (2) = F̄µνρ (2) − ǫαβFµνρ (0)
αC(2)

β ,

(B.46)

where Fµν is the KK field strenght (B.40).

Gauge variations and field strength of Ĉ(2̂)
α

Following the above redefinitions, the fields coming from the decomposition of Ĉ(2̂)
α transform

under the gauge transformations (B.36) as

δC(2)
α = dλ(1)

α ,

δCµ(1)
α = DKK

µ λ(1)
α − dλµ (0)

α ,

δCµν (0)
α = 2DKK

[µ λν](0)
α + ιFµν

λ(1)
α ,

(B.47)
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where Fµν is the KK field strength (B.40) and the derivative DKK
µ is, as above, defined as

DKK
µ = ∂µ − LAµ

. (B.48)

Analogous to the gauge fields, the λ-parameters are defined as

λ(1)
α = λ̄(1)

α = λ̂(1)
α ,

λµ (0)
α = λ̄µ (0)

α = λ̂µ (0)
α − ιAµ

λ̂(1)
α .

(B.49)

After redefinitions, the field strengths coming from F̂(3̂)
α become

F(3)
α = dC(2)

α ,

Fµ (2)
α = DKK

µ C(2)
α − dCµ (1)

α ,

Fµν (1)
α = 2DKK

[µ Cν] (1)
α + dCµν (0)

α ,

Fµνρ (0)
α = 3DKK

[µ Cνρ] (0)
α − 3ιF[µν

Cρ] (1)
α .

(B.50)

Gauge variations and field strength of Ĉ(4̂)

The redefined fields coming from Ĉ(4̂) transform under gauge transformations as

δC(4) = dλ(3) +
1

2
ǫαβλ(1)

α ∧ F(3)
β ,

δCµ (3) = DKK
µ λ(3) − dλµ (2) + ǫαβλ(1)

α ∧ dCµ (1)
β ,

δCµν (2) = 2DKK
[µ

(

λν] (2) +
1

2
ǫαβλ(1)

α ∧ Cν] (1)β
)

+ dλµν (1) + ιFµν
λ(3)

+
1

2
ǫαβ(λ(1)

α ∧ Fµν (1)
β − 2λ[µ (0)

αdCν] (1)
β + dCµν (0)

α ∧ λ(1)β) ,

(B.51)

where the new λ-fields are defined, analogous to the gauge fields, as

λ(3) = λ̄(3) −
1

2
ǫαβ λ̄(1)

α ∧ C(2)
β ,

λµ (2) = λ̄µ (2) −
1

2
ǫαβ

(

λ̄(1)
α ∧Cµ (1)

β + λ̄µ (0)C(2)
β
)

,

λµν (1) = λ̄µν (1) −
1

2
ǫαβ λ̄(1)

αCµν (0)
β ,

(B.52)

together with

λ̄(3) = λ̂(3) ,

λ̄µ (2) = λ̂µ (2) − ιAµ
λ̂(3) ,

λ̄µν (1) = λ̂µν (1) + 2ιA[µ
λ̂ν] (2) − ιAµ

ιAν
λ̂(3) .

(B.53)
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After redefinitions, the field strengths coming from F̂(5̂) become

Fµ (4) = DKK
µ C(4) − dCµ (3) −

1

2
ǫαβC(2)

α ∧ Fµ (2)
β +

1

2
ǫαβC(2)

α ∧ dCµ (1)
β ,

Fµν (3) = 2DKK
[µ Cν] (3) + dCµν (2) − ǫαβC[µ (1)

α ∧ dCν] (1)β ,
Fµνρ (2) = 3DKK

[µ Cνρ] (2) − dCµνρ (1) − 3ιF[µν
Cρ] (3) − 3ǫαβdC[µν (0)

α ∧ Cρ] (1)β

− 3ǫαβC[µ (1)
α ∧DKK

ν Cρ] (1)
β .

(B.54)

Summary of variations

Combining the results above together with diffeomorphism variations along a vector χ in the

internal space one finally obtains

δC(2)
α = dλ(1)

α + LχC(2)
α ,

δCµ(1)
α = DKK

µ λ(1)
α − dλµ (0)

α + LχCµ(1)
α ,

δCµν (0)
α = 2DKK

[µ λν](0)
α + ιFµν

λ(1)
α + LχCµν (0)

α ,

(B.55)

and

δC(4) = dλ(3) +
1

2
ǫαβλ(1)

α ∧ F(3)
β + LχC(4) ,

δCµ (3) = DKK
µ λ(3) − dλµ (2) + ǫαβλ(1)

α ∧ dCµ (1)
β + LχCµ (3) ,

δCµν (2) = 2DKK
[µ

(

λν] (2) +
1

2
ǫαβλ(1)

α ∧ Cν] (1)β
)

+ dλµν (1) + ιFµν
λ(3)

+
1

2
ǫαβ(λ(1)

α ∧ Fµν (1)
β − 2λ[µ (0)

αdCν] (1)
β + dCµν (0)

α ∧ λ(1)β) + LχCµν (2) ,

(B.56)

The KK gauge field Aµ transforms as

δAµ = DKK
µ χ . (B.57)

B.3.4 Dictionaries SO(5, 5) ExFT - IIB supergravity

By comparing (B.29) and (B.34) with (B.55) and (B.56) we can identify

Aµ = (Aµ)(v) , Cµ (1)
α = (Aµ)(1)

α , Cµν (0)
α = B̃µν (0)

α

Cµ (3) = (Aµ)(3) , Cµν (2) = −B̃µν (2) ,
(B.58)

and analogously for the gauge parameters

χ = Λ(v) , λ(1)
α = Λ(1)

α , λµ (0)
α = Ξ̃µ (0)

α

λ(3) = Λ(3) , λµ (2) = −Ξ̃µ (2) .
(B.59)
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We can also establish dictionaries between field strenghts. Comparing (B.32), (B.35),(B.50) and

(B.54) we obtain

Fµν = (Fµν)(v) , Fµν (1)
α = (Fµν)(1)α , Fµνρ (0)

α = H̃µνρ (0)
α

Fµν (3) = (Fµν)(3) , Fµνρ (2) = −H̃µνρ (2) .
(B.60)

C S2 conventions

We describe the S2 by three functions yu, u = 1, . . . , 3 satisfying

yuy
u = 1 , (C.1)

where we raise/lower u, v = 1, . . . , 3 indices with δuv. In terms of these functions, the round

metric on S2 and its volume form are given by

ds2S2 = dyudy
u , volS2 =

1

2
ǫuvwy

u dyv ∧ dyw . (C.2)

The Killing vectors of the round S2 are given by

viu = gijǫuvwy
v∂jy

w , (C.3)

where i, j = 1, 2 denote a local coordinate basis and gij is the inverse metric of the round S2.

Alternatively, the Killing vectors can be defined as in [14].

We also make repeated use of the 1-forms that are Hodge dual to dyu with respect to the

round metric (C.2)

θu = ⋆dyu = ǫuvwy
vdyw . (C.4)

These form a “dual span” of the T ∗(S2) to the Killing vectors, i.e.

ıvuθv = δuv − yu yv . (C.5)

Note that the 1-forms dyu, θu and Killing vectors vu satisfy

yudy
u = yuθ

u = yuv
u = 0 . (C.6)

All the objects we introduced above transform naturally under the SU(2)R symmetry gener-
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ated by the Killing vector fields.

Lvuvv = −ǫuvw vw ,
Lvuyv = −ǫuvw yw ,
Lvudyv = −ǫuvw dyw ,
Lvuθv = −ǫuvwθw .

(C.7)

D Dictionary between AdS6 conventions

Upon imposing the Cauchy-Riemann equations (7.42) and identifying the holomorphic functions

as in (7.44), we find the following match between our objects and those of [41].

r =
1

8
G , |dk| = 1

4
κ2 , ∆ =

3κ4G
128

D̃ , (D.1)

where, as in [50],

D̃ = 1 +
2 |∂G|2
κ2 G . (D.2)

Here, to differentiate our κ from the objects denoted by the same symbols in [41] we denoted

theirs by an underline: κ.

Our SL(2) doublet of 2-forms, C(2)
α, are related to the complex 2-form, C(2), of [41] by

C(2) = −C(2)
1 + i C(2)

2 . (D.3)

Similarly, our axio-dilaton, Hαβ is mapped to the complex scalar B of [41] via

B = −2
1 + (H12)

2 + (H22)
2

1 + (H12 + iH22)2
. (D.4)

We can similarly match our minimal consistent truncation with that found in [50]. To differ-

entiate between our scalar field X , gauge fields AA, A4, two-form fields B(2) and those of [50], we

will denote the objects of [50] by an underline, i.e. X , AA, A4, B. We use the same notation for

the field strengths, i.e. our objects are F̃(2)
A, F̃(2)

4 and F̃(3) and those of [50] are F̃ (2)
A, F̃ (2)

4

and F̃ (3). The map is now given by

X = X−1 , AA =

√
2

3
AA , A4 = A4 , B = B ,

F̃(2)
A =

√
2

3
F̃ (2)

A , F̃(2)
4 = F̃ (2)

4 , F̃(3) = F̃ (3) ,

(D.5)

and our function ∆̄ is related to D of [50] by

∆̄ =
3κ4G
128

X−4D . (D.6)

73



References

[1] J. P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general

supersymmetric AdS solutions, Phys. Rev. D76 (2007) 126007, [arXiv:0707.2315].

[2] D. S. Berman and M. J. Perry, Generalized Geometry and M theory, JHEP 1106 (2011)

074, [arXiv:1008.1763].

[3] D. S. Berman, H. Godazgar, M. Godazgar, and M. J. Perry, The Local symmetries of

M-theory and their formulation in generalised geometry, JHEP 1201 (2012) 012,

[arXiv:1110.3930].

[4] D. S. Berman, M. Cederwall, A. Kleinschmidt, and D. C. Thompson, The gauge structure

of generalised diffeomorphisms, JHEP 1301 (2013) 064, [arXiv:1208.5884].

[5] O. Hohm and H. Samtleben, Exceptional Form of D=11 Supergravity, Phys.Rev.Lett. 111

(2013) 231601, [arXiv:1308.1673].

[6] P. P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and

superpotentials, JHEP 0809 (2008) 123, [arXiv:0804.1362].

[7] A. Coimbra, C. Strickland-Constable, and D. Waldram, Ed(d) × R
+ generalised geometry,

connections and M theory, JHEP 1402 (2014) 054, [arXiv:1112.3989].

[8] A. Coimbra, C. Strickland-Constable, and D. Waldram, Supergravity as Generalised

Geometry II: Ed(d) × R
+ and M theory, JHEP 1403 (2014) 019, [arXiv:1212.1586].

[9] G. Aldazabal, W. Baron, D. Marqués, and C. Núñez, The effective action of Double Field
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