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Abstract

Using exceptional field theory we construct supersymmetric warped AdS7 vacua of mas-
sive ITA and AdSe¢ vacua of IIB, as well as their consistent truncations including vector
multiplets. We show there are no consistent truncations of massive ITA supergravity around
its supersymmetric AdS; vacua with vector multiplets when the Roman’s mass is non-
vanishing. For AdSe vacua of IIB supergravity, we find that in addition to the consistent
truncation to pure F(4) gauged SUGRA, the only other half-maximal truncations that are
consistent result in F(4) gauged SUGRA coupled to one or two Abelian vector multiplets,
to three non-Abelian vector multiplets, leading to an ISO(3) gauged SUGRA, or to three
non-Abelian plus one Abelian vector multiplet, leading to an ISO(3) x U(1) gauged SUGRA.
These consistent truncations with vector multiplets exist when the two holomorphic func-
tions that define the AdSg vacua satisfy certain differential conditions which we derive. We
use these to deduce that no globally regular AdSe solutions admit a consistent truncation
to F(4) gauged SUGRA with two vector multiplets, and show that the Abelian T-dual of
the Brandhuber-Oz vacuum allows a consistent truncation to F(4) gauged SUGRA with a

single vector multiplet.
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1 Introduction

Supersymmetric AdS vacua of 10-/11-dimensional SUGRA play an important role in our modern
understanding of theoretical physics. For example, they have led to many important insights
into superconformal field theories via the AdS/CFT correspondence. For many holographic
applications, it is useful to have a consistent truncation of 10-/11-dimensional SUGRA around a
supersymmetric AdS vacuum. Such a consistent truncation allows us to uplift solutions of a lower-
dimensional (usually gauged) SUGRA to solutions of 10-/11-dimensional SUGRA. This makes
them a powerful tool in studying deformations of the AdS vacua, for example those breaking
supersymmetry. Moreover, since the AdS radius of supersymmetric AdS vacua is typically of
the same scale as the compactification radius, lower-dimensional SUGRA theories do not arise
by integrating out the Kaluza-Klein tower of the compactification. Thus, consistent truncations
are the only way to study AdS vacua via lower-dimensional supergravities.

However, constructing consistent truncations is a notoriously difficult task which has until
recently largely eluded a systematic approach. For some purposes, it may even be enough to
know that a consistent truncation of 10-/11-dimensional SUGRA exists, even without having the
explicit truncation Ansétze. Yet, to date there is no classification of what consistent truncations
exist around a given supersymmetric AdS vacuum, although it is conjectured that for every
warped supersymmetric AdSp vacuum of 10-/11-dimensional SUGRA, there exists a “minimal”
consistent truncation to D-dimensional gauged SUGRA keeping only the gravitational super-
multiplet [I], which has been proven in some cases.

Powerful tools in constructing consistent truncations have recently come from exceptional
field theory (ExFT) [2H5] and exceptional generalised geometry (EGG) [6H8], which reformulate
10-/11-dimensional SUGRA in a way which unifies the metric and flux degrees of freedom. In this
framework, consistent truncations preserving all supersymmetries arise as “generalised Scherk-
Schwarz” truncations [9HI2], generalising consistent truncations on group manifolds [13] to the
more general setting of “generalised (Leibniz) parallelisable spaces” [14], which includes certain
homogeneous spaces. This has led to a proof of the consistency of the maximally supersymmet-
ric S truncation of IIB supergravity [14H16], and to new consistent truncations giving rise to
compact and dyonic gaugings [I7H23]. Moreover, all currently known maximally supersymmetric
consistent truncations, including the truncations of 11-dimensional SUGRA on $* and S7 [14l[15],
first found in [24H26], and the truncation of massive IIA on S° [T9)20], first constructed in [27,28],
are nicely captured by the framework of generalised Scherk-Schwarz truncations.

Recently, [29]30] has shown how use this framework to define consistent truncations breaking
half of the supersymmetry. Such half-maximal truncations of type II/11-dimensional SUGRA
then lead to a half-maximal gauged SUGRA in lower dimensions. Furthermore, [30] proved the
half-maximal case of the conjecture of [I], i.e. that every half-maximally supersymmetric warped
AdSp vacuum of 10-/11-dimensional SUGRA admits a consistent truncation to half-maximal D-
dimensional gauged SUGRA keeping only the gravitational supermultiplet.

Moreover, ExFT and EGG lead to a new geometric description of supersymmetric AdS vacua



of 10-/11-dimensional SUGRA where the compactification manifold is characterised by “gener-
alised holonomy”, or a (weakly) integrable generalised G-structure, [30H35] in analogy to super-
symmetric Minkowski vacua without fluxes arising from special holonomy compactifications [36].
Moreover, as showed in [30], once the generalised G-structure underyling the supersymmetric
AdS vacuum is constructed, the “minimal” consistent truncation can be obtained immediately.
Therefore, this framework is ideally suited to studying supersymmetric AdS vacua and their
consistent truncations, which we will undertake in this paper.

In this work, we will focus on supersymmetric AdS; solutions of massive ITA SUGRA and
supersymmetric AdSg solutions of IIB. Building on previous work [37H39], families of infinitely
many such vacua have recently been constructed in the literature [40H44], where the AdS; so-
lutions are characterised by a cubic function on an interval [45] and the AdSg solutions by two
holomorphic functions on a Riemann surfaceH. These AdS vacua admit a “universal” consistent
truncation to pure 7-dimensional SU(2) gauged SUGRA [47] and 6-dimensional F(4) gauged
SUGRA [48], which takes the same form for any of the cubic functions / holomorphic functions
defining the AdS vacua [49-51]. In a recent paper [5I], we showed that in ExFT these infinite
families of AdS solutions are described by the same universal generalised half-maximal structure
and used this to explain the universal form of the AdS7 consistent truncations and derive the
consistent truncation around the AdSg vacua.

It has remained an interesting open problem to find any consistent truncations around the
AdSg,7 vacua keeping more modes than just the gravitional supermultiplet. Supersymmetry im-
plies that any extra modes kept will have to form vector multiplets of the 6- and 7-dimensional
gauged SUGRA obtained after truncation. Here we will use the framework of ExFT, and specifi-
cally the tools developed in [2930], to address this problem: we will classify all possible consistent
truncations with vector multiplets around the supersymmetric AdSg 7 vacua that are compatible
with the Ansatz proposed in [29,[30]. Assuming the Ansatz of [29,80] to be the most general
Ansatz for consistent truncations with vector multiplets, our results give a full classification of

the consistent truncations around supersymmetric AdSg 7 vacua. We find that

e there are no consistent truncations with vector multiplets around the supersymmetric AdS7

vacua of massive IIA SUGRA when the Roman’s mass is non-vanishing,

e supersymmetric AdSg vacua of IIB SUGRA admit consistent truncations with vector mul-
tiplets when the holomorphic functions characterising them admit certain differential con-
ditions which we give explicitly. We construct the non-linear consistent truncation Ansétze

that give rise to less than four vector multiplets.

Our paper is organised as follows. First, we give a summary of our results in [Tl In section
Bl we give a brief introduction to the relevant aspects of ExFT, while in section Bl we review
the techniques developed in [29]30] to describe supersymmetric AdS vacua of 10-/11-dimensional

SUGRA and their minimal consistent truncations, in which only the gravitational supermultiplet

4An alternative characterisation of the AdSg vacua in terms of a real harmonic function is given in [46].



is kept. In section Ml we review how to define consistent truncations with matter multiplets as
described in [29,[30]. Next, we show how to compute the generalised metric from the half-
maximal structure underlying the AdS vacua in section Bl In sections[6l and [7] we show how one
can easily construct the supersymmetric AdS7 vacua of massive IIA SUGRA and AdSg vacua of
IIB SUGRA, respectively, using half-maximal structures of ExF'T, before deriving their minimal
consistent truncations in[8 Finally, in section [@1we show that there are no consistent truncation
with vector multiplets around the supersymmetric AdS; vacua of massive ITA and in section
we classify all possible consistent truncations with vector multiplets around the supersymmetric
AdSg vacua of IIB SUGRA. These consistent truncations require the holomorphic functions
characterising the AdSg vacua to satisfy certain differential constraints which we derive. We also
explicitly construct the non-linear consistent truncation Anséitze yielding less than four vector

multiplets. We conclude with a discussion and outlook in section [l

1.1 Summary of results

We summarise here our results. In sections [0l and [7] we construct and classify all supersymmetric
AdS; vacua in mITA theory and AdSg vacua in IIB, respectively. As we review in section [3.1]
for each of them one can construct a consistent truncation to a minimal half-supersymmetric
gauged supergravity with a gravitational supermultiplet, which we explicitly construct in section
Bl Finally, in sections [@ and we analyse the possibility of having consistent truncations
with matter multiplets around these vacua, using the methods of [29,[30]. From the latter, it
follows that we can have at most three (four) vector multiplets in consistent truncations around
supersymmetric AdS; (AdSg) vacua and, for the truncation to be consistent, the compactification
space has to satisfy certain conditions. These extra conditions imply that there are no consistent
truncations with vector multiplets around AdS7 vacua for non-vanishing Roman’s mass. For
the AdSg case, we find that only a small subset of 6-dimensional half-maximal gauged SUGRAs
admitting supersymmetric AdSg vacua [52] can arise as a consistent truncation of IIB SUGRA,
and we derive explicit differential constraints on the compactification space for the consistent

truncations to exist. More concretely, our findings for each of the cases are the following;:

AdS; in mITA

In section [6] we construct and classify all geometries in mIIA theory consisting of the warped
product
AdS7 x I x §2, (1.1)

with I an interval, that preserve supersymmetry, the minimal amount being 16 supercharges in
seven dimensions. We encounter that they can be classified in terms of a function #(z) on the
interval I satisfying

, and t(z) >0, (1.2)



where equality in the last condition holds on the endpoints of I and ensures that the total
internal space has no boundaries. The parameter m is the Roman’s mass of mITA. We study
all possibilities of having consistent truncations with vector multiplets around these vacua and
find that the only possibility is to keep a single vector multiplet in the truncation and only if
m = 0. This consistent truncation is just a consistent subsector of the maximally supersymmetric
consistent truncation around the AdS; x .S* solution of 11-dimensional supergravity dimensionally

reduced to ITA supergravity.

AdS¢ in ITB

Similarly, in section [7l we construct and classify all geometries in IIB theory consisting of the

warped product
AdSg x X x S?, (1.3)

where ¥ is a Riemann surface (with boundaries), that preserve 16 supercharges. We find that
they can be classified in terms of two holomorphic functions f*, a = 1,2, on the Riemann surface.

These functions have to satisfy the condition
i0f*0fa >0, >0 (1.4)

where equality holds on the boundary of 3, ensuring that the total internal space has no bound-
aries. The function r is a real function of the Riemann surface defined up to an integration

constant through the differential equation
dr = —po dk* (1.5)

where p® and k® are the real/imaginary parts f* = —p® 4 i k®. We also study which consistent
truncations with vector multiplets around these vacua exist, and our results are summarised in
table [l We explicitly construct the consistent truncations containing one, two and three vector

multiplets.

2 Review of exceptional field theories

In this section, we review the structure of the relevant exceptional field theories. Exceptional
field theories (ExFTs) are the manifestly duality covariant formulations of maximal higher-
dimensional supergravity theories [5[63L[64]. For our purposes, we will need the ExFTs built
on the groups E;55y = SO(5,5) [55], and E44y = SL(5) [56], respectively.

The reformulation of the higher-dimensional supergravities is based on the split of their co-
ordinates into D external coordinates x* and the remaining internal coordinates y* , with the
latter embedded into a set of generalised internal coordinates Y™ transforming in a represen-

tation Ry of the duality group Ey), with d = 11 — D. Internal diffeomorphisms and tensor



N | SU(2)g rep Consistent truncations with vect. mult. Gauging

1 1 Ouly if 3g € U(1) s.t. 9(gIf“) € real functions on ¥ | SU(2) x U(1)

2 191 NO (due to global issues) SU(2) x U(1)?

3| 1e1e1 NO N/A

3 3 Only if r dn® = p7P A 7g ISO(3)

4 1e1e1a1 NO N/A

4 301 Ouly if 33 and 31 with g = + - (paafa> 1SO(3) x U(1)
2 \pgdf”

Table 1: Possible consistent truncations with NV vector multiplets around supersymmetric AdSg x
S? vacua in IIB and the resulting gauging of the gauged SUGRA. Consistency requires that
N < 4 and that the vector multiplets form representations of SU(2)g, the R-symmetry of the
AdSg vacua. The one-forms 7% are explicitly defined in terms of the background functions f<,

see equations (I0.G3) and (I0.64).

gauge transformations of the higher-dimensional supergravity combine into a single symmetry
structure of generalised diffeomorphisms in the coordinates Y [4l[7]. Parametrised by a gauge
parameter £M in R;, the generalised Lie derivative of a generalised vector field VM in R; reads

ﬁEVM = fNaNVM 78N§M VN JrYMNKL 8N§K VL. (2.1)

YMN . encodes the deviation from standard diffeomor-

The constant Egg)-invariant tensor
phisms. Its presence implies that the transformations (2] close into an algebra only after

imposing the section constraints

YMNKL Oy ®0Iny =0, (2.2)

where the internal derivatives act on any pair of fields or gauge parameters. Solutions of the
section constraints restrict the internal coordinate dependence of all fields to linear subspaces
of Ry upon which one recovers the standard supergravity theories. The action (ZI)) can be
rewritten as

LVM = <§N8N + L ONEN —ag (t*) K oxer ta'> VM, (2.3)

9—-d
with constant ag4, and ¢, labelling the generators of Eg) . From this formula one also reads

off the action of generalised Lie derivatives on different representations. Modulo the section
constraints (Z2)), the transformations (ZI]) close into an algebra defining the E-bracket

(61, &M =26l oney — Y MV kel ones (2.4)



The presence of the tensor Y M

xr implies the existence of trivial gauge parameters and non-
associativity of the algebra. Generalised diffeomorphisms are realised as local symmetries of
ExFT (i.e. with parameters ¢ depending on internal and external coordinates) by introduc-
ing covariant external derivatives D,, = d,, — L4, with the ExFT vector fields A, in the Ry
representation. Non-associativity of the algebra (Z4)) implies that the standard Yang-Mills field
strength based on (24 is not a tensor w.r.t. the generalised Lie derivative (2I). Rather it has
to be completed by a coupling to the two-forms By, of the theory following the structure of the
tensor hierarchy [57]

Fuw = 28[MA1,] — [‘AH? A+ B, , (2.5)

Here, the bracket [A,,, A, ] refers to (Z4]) while the d operator in the last term denotes a covariant
differential operator from the R representation of two-forms into R;. Explicitly, it takes the

form
(dB )M = YMN o on B, 5 (2.6)

with the two-forms BWKL living in (a sub-representation of) the symmetric tensor product
Ry C (R1 ® R1)sym .- Continuing the tensor hierarchy gives rise to the couplings of three-forms

Cuvp C Rg, four-forms Dy, 0 C Ry, etc., with the lowest non-abelian field strengths given by

Hywp = 3 DuByp) — 3040 N Ay + Ap A [.A,,, AP]] + dCpuwp
4
Tuwpo = 4 DiuCupo] + 2 Fiuw N Byoy = ABlu A Bpo) = 5 Ap A (Ay A 9, Az) (2.7)

1
+ 3 ARA (Ay A [Ap, Ag]) + dDpnpe -

Again, the d operator denotes the covariant internal differential operators mapping R, — Rp_1,

while the wedge A represents algebraic maps
(R1 & Rl)sym — Ry, R ® Ry — Rs3, (28)

etc.. Just as p-form field strengths are tensor with respect to the Lie derivative, the field strengths
@3), 7)), are tensors with respect to the generalised Lie derivative.

Let us now make these structures explicit for the theories we will be using in the following.
For d = 4, the Eyy) = SL(5) ExFT is based on coordinates yeb — vyl iy the Ry = 10
representation of SL(5), with a,b = 1,...,5 labelling the fundamental representation. The Y-
tensor in (ZI)) is given by Y/ 9", .0 = 6 52{5: , and induces a tensor hierarchy of p-forms living

in representations R, as

Auab :10, Buva 5, Cuwp®:5, Duvpoab: 10. (2.9)



The relevant A products (2.8) and the d operators in (23], [2.7)) are explicitly given by

1
(A1 AA2)a = 7 €abede A A (ANB) = A™By, (2.10)

1 1
(dB)* = Eeabcde DeaBe (dC)a = 0paC?, (dD)* = §eab0deabcpde. (2.11)

For what follows, it will be similarly useful to define A : R{ ® R3 — R4 and A: Ro ® R3 — 1

as
1
(ANC)q, = 7 Catede Aee . BAC=B,C". (2.12)

Moreover, the theory features 14 scalar fields, parameterising the coset space SL(5)/SO(5), which
are most conveniently described by a group-valued generalised metric M, . The ExFT dynamics
comes from an action [56], giving rise to standard second order field equations. In particular,

the 4-form field strength is dual to the 3-form field strength via the first order equation
a 1 a KAT
j;,u/po' = ? V |g|€pl/paf€k7' M b H A b (213)

with the scalar matrix M? | and where |G| is the determinant of the external metric, G,,,, of the
ExFT, which is used to raise/lower the external indices on the field strengths.

For d = 5, the E55y = SO(5,5) ExFT is based on coordinates YM in the R, = 16 spinor
representation of SO(5,5), with M = 1,...,16. The Y-tensor in (1) is given by Y %N =
2 (V") mw (1) in terms of the SO(5,5) gamma matrices, with the index I =1,...10, labelling
the vector representation, raised and lowered by the constant SO(5,5) invariant metric 77y . It

induces a tensor hierarchy of p-forms living in representations Iz, as
AM 16, B':10, Cupr:16, Dy’ 45, (2.14)

Strictly speaking, the theory also carries additional covariantly constrained 4-forms D,y s, but
for our purposes we will only consider equations in which all four-forms drop out. The relevant
A products (Z8) and the d operators in [2.5)), (21) are explicitly given by

1 1
(ANA) = 5(71)MN AM AN (AANB)y = 5(’7])]MN ANBT, (2.15)

(@B)M = (v )MN oyB",  (dC); = %(w)MNaMcN. (2.16)

Once again, it will be useful to also define A : Ry ® Ry — 1 as
By A By =1 B By (2.17)

Moreover, the theory features 25 scalar fields, parameterising the coset space SO(5,5)/(SO(5) x



SO(5)), which are most conveniently described by a group-valued generalised metric M sy in the
spinor representation, or by a group-valued generalised metric M in the vector representation.
The ExFT dynamics comes from a pseudo-action [55], which has to be supplemented by first
order duality and self-duality equations among the p-form field strengths

1
jpl/pUM = 5 V |g|€prUnAM]\/IN ]:KANa
(2.18)

1
H;,Wp[ = _5 V |g|€;,wpo'ﬁ)\77]JMJK HGH}\K)

where G,,,, is the external metric which is used to raise/lower the external indices on the field
strengths and |G| is its determinant.

For details about the ExFT actions and field equations, we refer to [55L[56]. In appendices [Al
and [B], we collect/derive the details of the dictionaries between the ExFT fields and the original
ITA/IIB supergravity fields.

3 Half-maximal AdS vacua from ExFT

Generic supersymmetric AdS vacua of 10-/11-dimensional SUGRA have non-trivial fluxes. Since
ExFT unifies fluxes and geometry into generalised tensor fields, it leads to a natural description
of supersymmetric AdS vacua that is largely analogous to special holonomy spaces in Riemannian
geometry, as shown in [30] for the case of 16 supercharges, and in [33] for 8 supercharges. Thus,
having a supersymmetric AdSp x M vacuum is equivalent to the existence of a nowhere vanishing
set of generalised tensor fields on M subject to certain algebraic compatibility conditions and
differential conditions. These conditions ensure that M admits appropriate Killing spinors for
the AdSp vacuum. As shown in [30], for supersymmetric AdSg and AdS; vacua the relevant
generalised tensors are d — 1 generalised vector fields J, € T'(Rq), with u =1,...,d — 1, and a
generalised tensor field K € T (Rp—4), where d = 11 — D and D denotes the dimension of the
AdS vacuum. Here we denote by R, the generalised vector bundle whose fibres are R,,, as listed

in (2.9) and ([2I4). These generalised tensors must satisfy the algebraic conditions

1
Ju/\Jv*__l(Squwa :07

d
JAAJAK >0, (3.1)
K®Kl|p =0,

with the ExXFT A product defined in (2I0), (ZI12) and (ZI8), &IT), the u,v = 1,...,d —1
indices raised and lowered by 6y, and R, = @) for D = 7 and R. = 1 for D = 6. This set

of generalised tensors J, and K defines a Grair = SO(d — 1) structure, because it is stabilised

by SO(d — 1) C E4(4). This ensures the existence of well-defined spinors on M;,; carrying 16

10



supercharges@, and we will therefore also call the set J,, K satisfying ([B.J) a “half-maximal
structure”. The commutant of Gpaf within the maximal compact subgroup of Eyg) is itself
given by SO(d — 1) which acts as a R-symmetry group, rotating the well-defined spinors into
each other, and similarly the generalised vector fields J,. As we will show in section [l one can
express the generalised metric, i.e. the scalar fields on M, in terms of a SO(d — 1) g-invariant
combination of the half-maximal structure, J, and K.

To ensure that the well-defined spinors are Killing spinors of the supersymmetric AdSg 7

vacua, the half-maximal structure J,,, K must satisfy the following differential constraints [30]

E.]qu = *Auvuﬂjw )
L5, K=0,

313v/2
1

2 €upwz N T when D =6,

. L _ewwA o Je AJ®, whenD =7,
dK =
9

where the generalised Lie derivatives, L, J,, £ Juf( , and the dK operator are as defined in

equations (1), 23), ZII) and (2I6). For D = 7, i.e. in the SL(5) ExFT, the explicit
expressions for the generalised Lie derivatives appearing in the first two equations of ([3.2]) are

1 1
EJu J’Uab = §Ju0dachvab - 2Jvc[bacdjua]d + §Jvabachqua

R 1 R R 1. (3.3)
EJuKa = §Jubcacha - Kbachuac + §Kaabcjubca
while for D = 6, i.e. in the SO(5,5) ExFT, they are
1
ﬁJquM = JuNaNJvM - JvNaNJuM + 5 ('YI)MN ('YI)PQ JvPaNJuQ 5
(3.4)

N S 1 4 NP
L. K'=JMouK! + 5KJ (V) un () 0p M.

The objects Ay appearing in [B.2) are totally antisymmetric constants which imply that
the J,’s generate a SU(2)r algebra with respect to the generalised Lie derivative and that the
K is invariant under this SU(2)z symmetry [30]. The cosmological constant, A, of the AdSg 7
vacuum is encoded in Ay, as

Ao A" ~ —A | (3.5)

up to numerical factors which we will fix in sections [@] and [1 by comparing with known super-
symmetric AdSg 7 vacua. From (B.2)), we see that Ay, breaks the SO(d — 1) g symmetry of the
half-maximal structure to SU(2)g, the R-symmetry of the supersymmetric AdSg 7 vacua.

Moreover, (3.2)) implies that the vector fields, J,, generate, via the generalised Lie derivative,

5In 6 dimensions, the above description is equivalent to having 16 non-chiral supercharges. It is also possible
to have a chiral set of 16 supercharges in 6 dimensions, which requires having a different set of generalised
tensors [30]. However, there are no chirally supersymmetric AdSg vacua, and so we will not comment further on
this possibility.

11



a SU(2)g C SO(d — 1) rotation on the .J,’s themselves and leave K invariant. As we will make
explicit in the next section, the generalised metric M is constructed from SO(d — 1) g-invariant
combinations of J, and K and thus

L, M=0. (3.6)

Thefore, the J, are generalised Killing vector fields of the background. As made explicit in
appendices [Al and [B] generalised vector fields consist of formal sums of spacetime vector fields
and differential forms. Equation (6] implies that either the spacetime vector fields in J, are
Killing vector fields of the spacetime metric and leave the SUGRA field strengths invariant [30],
or that some of the J, contain a vanishing spacetime vector field component and consist of only
exact differential forms. We call a generalised Killing vector of the latter type a trivial Killing
vector field. As discussed in more detail in [30], for AdS7 vacua we see that the SU(2) g symmetry
must be generated by the three spacetime vector fields of J,, u = 1,...,3. On the other hand,
for AdSg vacua three of the J,’s contain spacetime Killing vector fields that generate the SU(2) g

symmetry, while the fourth generalised vector field

1 uUvwT
Jr = ie Avw s (3.7)
is given by
3 .
Jr = 5d}(, (3.8)

which implies that it is a trivial generalised Killing vector field. In fact, it satisfies
Ly, =0, (3.9)

when acting on any generalised tensor. We will make use of these general properties of .J,, and
K when constructing supersymmetric AdSg 7 vacua in section [6l and [71
Finally, one can define the following generalised tensor fields from the half-maximal structure

J,, and K which will be useful to us

Ju A Jy = 0uu K, KANK =rP2, Jy=JuNK, (3.10)

where K € T'(R32) and & is a scalar density of weight ﬁ.

3.1 Minimal consistent truncation

One benefit of constructing or describing half-maximal AdSp vacua by the structures J,, and K
is that we immediately obtain a “minimal” consistent truncation around the vacuum to a half-
maximal D-dimensional gauged SUGRA containing only the gravitational supermultiplet [30].
This is therefore a proof and an explicit realisation of the (half-maximal subcase of the) conjecture
that such a consistent truncation exists for any supersymmetric warped AdS vacuum of 10-/11-

dimensional SUGRA [I]. Moreover, the usually highy non-linear truncation Ansatz is given by
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a simple linear factorisation Ansatz on the ExFT structures. If we denote by Y™ the internal
coordinates and by a* the D-dimensional external coordinates, then the truncation Ansatz (of

the purely internal fields from the D-dimensional perspective) is given by [29.[30]

Ju(@,Y) = X"Yx) J,(Y),

R (3.11)
K(z,Y)=X*(x) K(Y).

Here X (z) is the scalar field of the D-dimensional half-maximal SUGRA. For each value of the
scalar field X (z) > 0, 7, (z,Y) and K (z,Y) satisfy the algebraic conditions (3.1 and thus a half-
maximal structure. This guarantees that the theory obtained after truncation is half-maximally
supersymmetric. However, for X # 1, the differential conditions (3.2]) defining the AdS vacuum
are no longer satisfied. Therefore, at X # 1, the theory will not have a supersymmetric AdS
vacuum. Finally, as shown in [30], the differential conditions ([B:2]) ensure that the truncation
Ansatz (B.II) is consistent.

We will show in section [0l how to construct the generalised metric from the half-maximal
structure. By constructing the generalised metric of J,, and K and using the dictionary between
ExFT and SUGRA, given in appendices [A.2] and [B.2] we thus obtain the non-linear truncation
Ansatz for the internal supergravity fields.

For the fields of the ExFT tensor hierarchy, the truncation Ansatz is as follows [30]. For the
ExFT vector fields, we have

Au(2,Y) = A" (x) Ju(Y). (3.12)

In D =7, the truncation Ansatz for the remaining fields is

B;,W(x; Y) = _BMV(:E) K(Y) )
Cuvp(,Y) = Cpupp () K(Y), (3.13)
Do (2, Y) = Dype (@) Ju(Y)

where A,%(z), B (), Cuup(z) and D ,ppe" () are the fields of the 7-dimensional half-maximal
gravitational supermultiplet. In particular, A,* are the 3 vector fields, B, are the 2-forms, Cy,,
are the 3-forms dual to B,
relations between these half-maximal gauged SUGRA fields comes from the duality relations
@I3) between the ExFT field strengths (2.5), (21). Finally, the truncation Ansatz for the

external 7-D ExFT metric is

and D, 0" are the 4-forms dual to the vector fields. The duality

G (2,Y) = G () K*(Y), (3.14)

with G, () the metric of the half-maximal gauged SUGRA.

Similarly, in D = 6, the truncation Ansatz for the tensor hierarchy field is

(3.15)



Now, A," are the 4 vector fields of the gravitational supermultiplet, while B, is its 2-form.
BW is the dual 2-form and C,,," are the 3-forms dual to the vector fields. Once again, the
relationship between these objects arises from the duality relation ([2-I8]) between the ExFT field
strengths (23)), 271). Using the truncation Ansatz (315) and differential conditions ([B.2)), we

find that the field strengths factorise as

Fuz,Y) = F,, " (x) J,(Y),
wl@¥) = Fu (@) 1Y), 16
Hyuwp(,Y) = Fuyp(@) K(Y) = Guup(z) K(Y),
where
- 1
F,"= 28[HAV]U + A AL Ay — §€uvwmAvwr B,
Fuwﬂ =301, By, ; (3.17)
- - 1
Gul/p = 36[#31/;)] + 314[#“81/14;;] wt Auvw AuuAuvpr - _Guvszuvw C ¥

9 urp

and similarly for the higher field strengths of the ExF'T. We will use this to derive the duality
relations between B, and BW explicitly in section 5.2l Similar to D = 7, the truncation Ansatz

for the external ExFT metric is
G (2,Y) = V2 G, (x) K2(Y), (3.18)

with G, () the 6-dimensional gauged SUGRA metric.

4 Consistent truncations with matter multiplets

As shown in [30], half-maximal consistent truncations with N vector multiplets require a further
reduction of the structure group to SO(d — 1 — N) € SO(d — 1) C Egq), as well as differential
conditions on the tensors defining the SO(d — 1 — N) structure. In order to have a SO(d—1—N)

structure, we require d— 1+ N generalised vector fields, J,, wherea = 1,...,d— 1+ N, satisfying
Jo NIy = nap K, (4.1)

in addition to the K as in (3:I). Here 145 is a constant SO(d — 1, N) invariant metric and K is

defined as in (BI10),
1
K=——J,ANJ". 4.2
11 (4.2)
Therefore, given the d—1 generalised vector fields defining the half-maximal structure of the AdS
vacuum (B.1]), we must have a further N generalised vector fields, one for each vector multiplet.

Labelling these extra generalised vector fields by @ = 1,..., N, the algebraic conditions (@I
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become

Jﬂ/\JUZO,

(4.3)
Jﬂ VAN J{, = —6»@5K

Since these algebraic conditions must hold point-wise, it is easy to show that we can only have
N < d — 1 vector multiplets in a consistent truncation.

Moreover, for the truncation around the supersymmetric AdS vacuum to be consistent, the
SO(d — 1 — N) structure must satisfy the differential conditions

KJQJIJ = _fabc Jca

) (4.4)
L, K=0,

where fope = far®4e are totally antisymmetric structure constants with fupw = Auww and
fuvw = 0. Here we are considering a special case of the more general conditions given in [30]
because we want to ensure that the truncation contains a supersymmetric AdS vacuum. The
differential conditions (4] can be thought of as the higher-dimensional analogue of the conditions
imposed on the embedding tensor of 6-/7-dimensional half-maximal gauged SUGRA in [521[58)].

For what follows, it’s useful to note that the first condition of (4] implies that the extra

generalised vector fields form a representation under the R-symmetry group
ﬁju qu; - 7fu7jm:]1f) . (45)

Together with the fact that there can be only N < d — 1 vector multiplets, this will allow us to

fully classify the possible consistent truncations with vector multiplets in sections [9 and

4.1 Truncation Ansatz

As shown in [30], given the d—14 N vector fields satisfying [@1]) and (£4]), we obtain a consistent
truncation by expanding the fields of the ExFT as follows.
For the scalar sector, we expand the background SO(d — 1) structure in terms of the SO(d —

1 — N) structure as

ju(:c, Y) = Xﬁl(m bua(x) Ja(Y) s

. . (4.6)
K(z,Y)=X?*z)K(Y).

The fields b,* must satisfy
buabvbnab = 6uv ) (47)

and are identified up to SO(d — 1) rotations acting on the w, v indices. Therefore, they parame-
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terise the coset space

SO(d—1,N)
SO(d — 1) x SO(N)’
and together with X € R* they form the scalar manifold of half-maximal gauged SUGRA

coupled to N vector multiplets

b, €

(4.8)

SO(d —1,N)

Msca ar —
T 80(d — 1) x SO(N)

xR+ . (4.9)

Using the formulae of section B in which we show how to construct the generalised metric
from the half-maximal structure, we can then translate the above truncation Ansitze into the
non-linear truncation Ansétze of the internal SUGRA fields.

For D = 7, the remaining fields of the ExFT are expanded as

Au(z,Y) = A,%x) J.(Y),
By (@,Y) = —Bu(2) K(Y), (4.10)
G (2,Y) = G (2) £2(Y)

where A,% are the 3 + IV vector fields, B, are the two-form fields and G, the metric of the

seven-dimensional half-maximal gauged SUGRA.
For D = 6, the other fields of the ExFT are expanded as

Ap(2,Y)=A,%x) Jo(Y),

Bun(Y) = Byue) K(Y) = Byulo) K (V). .
Cowp(x,Y) = Cpp(z) Jo(Y),

g,uu(x, Y) = \/§G,uu(1') HQ(Y) ,

Here G, is the metric, A, are the 4 + N vector fields, B, are the two-form fields and their
duals BW of the six-dimensional half-maximal gauged SUGRA. C},,,* are the 3-form fields dual
to the A,°, which appear via Stiickelberg coupling in the field strength of B;w' To see this,
one can compute the EXFT field strengths (Z7). Using the truncation Ansatz (£I1) and the

differential conditions ([B:2)) we find

(4.12)

Fun(@,Y) = Fu,(2) Ju(Y)
'H#UP(SC, Y) F#VP () K(Y) - é#l’p(x) K(Y),
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where

_ .2
™ =20, A" + e A A + gA“BW ,

Fuvp = 301, By,) (4.13)
éﬁ“’ﬂ = 35[#31,,3] + 314[#&81/‘4/3][)77@17 + Avvw A ALY ApY + ;Aa Cuvp®
where we defined )
A = (A“, Aﬁ) = <§e“”m/\mm, 0> . (4.14)

Clearly F,,* are the field strengths of the 6-dimensional half-maximal gauged SUGRA whose
gauge group is determined by the structure constants f,,. and F,,, is the field strength of the
two-form B,,,, of the gauged SUGRA. Using the ExFT/SUGRA dictionary of appendix [B.3.1] we

can use the above formulae to read off the consistent truncation Anséatze for the SUGRA fields.

5 Generalised metric from the half-maximal structure

To obtain expressions for the AdS vacua and their consistent truncations in terms of SUGRA
fields, we need to know how the SUGRA fields are encoded in the ExFT objects used in the
truncation Ansatze of sections Bl and 1l The SUGRA fields with at least one external leg are
encoded in the ExFT tensor hierarchy fields A, B,
fashion via the SUGRA / ExFT dictionary, which we give for the SO(5, 5) case in appendix [B.3.11
However, the purely internal SUGRA fields are encoded in the generalised metric of ExFT, via

etc. and can be determined in the usual

the dictionary we give in appendices [A.2] and [B.2] and therefore we must know how to obtain a
generalised metric from the half-maximal structure.

Firstly, it is clear that one can construct a generalised metric from J, and K. Just like on a
d-dimensional manifold, a Riemannian metric defines a SO(d) C GL(d) structure, a generalised
metric defines a (generalised) Hy C Ej(g4) structure, where Hy is the maximal compact subgroup
of Eq(qy. On the other hand, J, and K define a Gpas = SO(d — 1) C Hy structure and, thus, Jy,
and K provide more information than the generalised metric. In ExFT, the generalised metric

parameterises the coset space

Ea(a)

Muyn € T,

(5.1)

Since J, and K are by construction invariant under Gpair = SO(d — 1) C Hy, we must construct
Mrn using an SO(d— 1) g-invariant combination of .J, and K. Therefore, the generalised metric

must be given by
Muyn = AH672DjquuN + B K47DIA(MN + C e¥r-td-1 (Jul - ‘]ud—l)]\/[]\/' . (5.2)

The factors of k are chosen so that M, has no weight under generalised diffeomorphisms and
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A, B and C are coeflicients which are fixed by requiring My to be an element of Ey4). The
final term schematically denotes an appropriate product of (Rl)d_1 — R1®R;y. In the following
subsections we will give the explicit expressions for the case of SL(5) ExFT and SO(5,5) ExFT.

5.1 Generalised metric in SL(5) ExFT

In SL(5) EXFT, the generalised metric is often used either in the R; = 10 representation or its
dual representation, or in the fundamental representation, Ry = 5, of SL(5). The two are related
by [3]

Map,ca = 2MqeMap (5.3)

where a,b =1,...,5 denote fundamental SL(5) indices. It will be useful to have explicit expres-
sions for both representations.
The generalised metric in the 10 representation of SL(5) is given as in (2] which now

explicitly becomes
Mab,cd =A K_8ju abjucd + B K_geabcdef(e + c K_3€uvw€abefg€cdhijJuevahiJng ) (54)

where Jy, b is defined as in BI0), explicitly

A 1 “
Ju ab = ZeabcdeJquKe . (55)
Requiring this to be an SL(5) element fixes A = 802, B = —0¢? and C = f%, up to a

coefficient 0. Note that the minimal consistent truncation ([BIT]) corresponds precisely to a
rescaling 0 — o X. o is determined by the differential conditions ([B.2]) and can therefore be
fixed by comparison of AdS vacua obtained from the half-maximal structures to known AdS7
vacua, for example the maximally supersymmetric AdS; x S* vacua of 11-d SUGRA. This way
we find ¢ = 1. Thus, the generalised metric and its inverse in the 10 and 10 representations are
given by

Maped =86 8Ty ap " ca — K €apede K€ — Lﬁ_seuvweabefgecdhijJuefJ'uhiJng ,

6v/2

Mab,cd -9 H_2JuabJu’Cd _ I<Q_26ab6deKe _ 2\3/§,€—12euvw6abefgecdhijju

(5.6)
efJU hiJng .

Similarly, one can show that the generalised metric and its inverse in the 5 and 5 represen-

tations of SL(5) are given by

44/2 . _
Mab = 5_4 (KaKb + T\/_Fﬂ_5 Guvau,ach,dede> )

PN 24/2 ~
Mab — H_6 (KaKb + T\/_ GuvauaCJUdew,cd> )
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5.2 Generalised metric in SO(5,5) ExFT

In SO(5,5) ExFT, the generalised metric is often used either in the spinor or vector representation

of SO(5,5). In the fundamental representation, the generalised metric M;; must satisfy
Mg Marn™t =ni;, (5.8)

where I = 1,...,10 labels the 10 representation of SO(5,5) and 7y is the constant SO(5,5)-
invariant metric with which the I, J indices are raised/lowered. The generalised metric in the
16 is related to that in the 10 by

MurpMng ()" MY = (1) (5.9)

PQ >
where M = 1,...,16 label the 16 representation and (y;)™" and (v1) N are the SO(5,5)
~y-matrices satisfying

MP MP
) )" (i) yp = 211007 (5.10)

(71 Y1) np + (Vs

We thus find the generalised metric and its inverse in the 16 are given by

1 6w s B R
MMN:—(4K 6J IV[JuNfﬂ Q(WI)MNK[

V2

1

— uvwIT < S 7
—2i 7 (e (1) ng (1) RJuPJuQJwRmes),

) (5.11)
MMN _ G (2 k2T M TN =2 ()M 1

2 _ S sy tw 7
_EH 1O€uvwm (VI)MP ('YJ)NQ (’71‘]) RJ PJ QJwRJz,S) )

where J, s is defined in (3I0), and is given explicitly by
(v") yy K1 "N (5.12)

Similarly, the generalised metric in the 10 is given by

1 . . B IR
My = (Eewm i) N (755) p QTN Ty N T e + KK + R 4K1KJ> . (5.13)
Just as in SL(5), there is a scaling degree of freedom which is generated by the minimal consistent
truncation (B.I1]). Thus, the coefficients above can only be defined once those in the differential
conditions ([B2) are fixed, or vice versa. Once one set of coefficients is fixed, the other can
be obtained either by comparison with known AdS vacua, by a careful analysis of the ExFT

BPS equations or by reducing the ExFT action to that of gauged SUGRA upon applying the
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consistent truncation.
We can now explicitly compute the relationship between F,,,, and F, wvp in [@I3). Using the
expression for the generalised metric (5I3) and the scalar truncation Ansatz (L), we find

(MTVKy = X" (2) K'(Y),

e iy o (5.14)
MKy =X a) K'(Y),

where (M) denotes the generalised metric with the truncation Ansatz plugged in, i.e. that
computed from 7, K and K of {6). Therefore, the twisted self-duality equation (2I8) becomes

Gy =X "% F3). (5.15)

6 AdS; vacua from massive ITA supergravity

As shown in [30] and reviewed in section[3] supersymmetric AdS; vacua are characterised by three
nowhere-vanishing generalised vector fields J, € T'(R1), transforming as a triplet of SO(3)g,
and a nowhere-vanishing generalised tensor K € I'(R3), transforming as a singlet of SO(3)g.
The differential conditions involve a constant totally antisymmetric 3-index tensor Ay, which

therefore takes the form

Au'uw =V —C€ypw , (61)

where the constant ¢ is related to minus the seven-dimensional cosmological constant. The
precise relation between ¢ and the cosmological constant, or, equivalently, the AdS; radius, can
be found from the ExFT BPS equations and using the formula for the generalised metric (5.6)),
or by comparison to known AdS; vacua of 10-/11-dimensional SUGRA. By comparing to the
AdS; x S* vacuum of 11-dimensional SUGRA, we find Aypw = 2 V2 R 'eyow, where R is the
AdS7 radius. Plugging this into the differential conditions (3.2]), they become

2V/2

KJUJU = __R 6u'quw ’
L7 K=0, (6.2)
. 2
dK = = K
R b
where K is defined via
Ju N Ty = 0uo K . (6.3)

6.1 Half-maximal structure

Here we are interested in studying AdS; vacua of massive IIA supergravity. As we discussed in
section [ the SO(d — 1)g = SO(3) g symmetry must be generated by spacetime Killing vectors.
This suggests that the vacua are of the form AdS; x S? x I, with the Killing vectors on S2
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generating the SU(2)g symmetry. As we explain in appendix [A] the generalised vector fields
J. and tensor K are formal sums of internal spacetime vector fields and differential forms as
follows

Ju:Vu+/\u+Uu+¢ua (64)

K =w@) +we) +wa),

where Vi, Ay, 0, and ¢, are the vector, 1-form, 2-form and scalar parts of J,, while w, are the

p-forms appearing in K. Similarly, K = %Ju AJ* €T (Rz) is a formal sum of differential forms
K= Wiy + W) + &), (6.5)

where @w,) are p-forms.

In terms of the above, the wedge products (Z10), (ZI2) appearing in the algebraic conditions

BI) become

Ju Ny = QZV(u)\v) —2 ()\(u(bv) + lv(udv)) - 2)\(u N Oy s
K NK = W(O)CJ@) + w() AN @(2) + W(3)CIJ(O) ,

while the quadratic algebraic constraint on K is automatically fulfilled for SL(5).

The differential operators appearing in the differential conditions (6.2) are modified as de-
scribed in [T920] to capture the Roman’s mass, m, of massive ITA SUGRA. We explain in detail
how to do this in appendix [A3l Including the Roman’s mass, and thus using equations (AS),
(A10), (A1), the differential operators appearing in the conditions (6.2]) become

Ly, Jy =Ly, Vy+ Ly, Ay + Lv, 00 + Ly, &y
+ v, (MAy — ddu) — vy, (dAu) =, (dow) + ¢ (dAu) + Ao A (MAL — dou)
L;,K = Ly,w) + Lv,we) + Lv,w (6.7)
—w(o) (dAu) — w(o) (doy) — wy A (MAy — dy)
dK = —dwgy + dw(z) -

To describe supersymmetric AdS; vacua, we must therefore find the vector fields and differ-
ential forms satisfying the above algebraic and differential conditions. In doing so, we will use

the differential equations

22

EJqu = - R

euvaw > E.]uf{ = 05 (68)
as a guiding principle. These imply that the J,,’s must transform as a triplet under SU(2)r and

K as a singlet under SU(2) g, which as we discussed before is generated by the Killing vector

fields on S2. Therefore, we will construct .J,, out of spacetime tensors on S? x I that are triplets
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of SU(2)r as generated by the Killing vectors on S?, and similarly K out of differential forms
that are singlets of SU(2)p.

In fact, the above decomposition (6.4)), (€3] of the generalised tensors in terms of vector fields
and differential forms on the internal space is only true locally, because the generalised tangent
bundles are twisted by the internal gauge potentials of the ITA supergravity, in this case the
three-form potential C, two-form potential, B, and one-form potential, A. The gauge potentials
mix the different components of the generalised tensors, for example, if A = B = 0 but C # 0,
then

ou =64 +1,C, W) = w3y +wo) C, @3y = W) — @) C, (6.9)

where G4, W), @(3) are the globally well-defined 2-forms and 3-forms, respectively, while o,
w(3) and w3 are only local 2-forms and 3-forms. Therefore, to construct the .J,, and K we must
understand what the possible form of the gauge potentials is. Since their field strengths must be

invariant under the SU(2)r symmetry, the gauge potentials must take the form
dB = R? f(z)volg> Ndz, dA = R?1(2)volge , (6.10)

for some functions f(z) and I(z), where z labels the coordinate on the interval I and volg: is the
volume form on S?, see also appendix [C] for our S? conventions. C' is always pure gauge since

the internal space is three-dimensional. Moreover, we can choose a gauge such that
B = R*F(z)volg: , (6.11)

with dl;—iz) = f(2), so that B is constructed from well-defined differential forms on $? and I.
On the other hand, A cannot be written in terms of well-defined differential forms on 52 since it
necessarily breaks the R-symmetry. This implies that we can automatically cater for the twisting
by the two-form potential by writing the most general J, and K built of out spacetime tensors
on S? and I. On the other hand, the twist by A will break the SU(2) g symmetry and, therefore,
we will keep track of it explicitly.

In particular, we will write ¢, = giA)u +ay,Aand 0, = 6y + Ay A A and wz) = W3y +wz) A4,
where qAbu, 6y and w(z) are spacetime tensors on S? x I that respect the SU(2)g symmetry. In

terms of the hatted objects, the differential operators appearing in the differential conditions
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become

Ly T = Lo,V + Lv, M + Ly, 00 + Ly, 6,
v, (M + v, dA = ddy) = v, (dXa) = v, (A6 = Ay A dA) + 6y (dN)
A + Ao A (MAy + v, dA — doy) + (Ly, Ay — v, dA0) AN A+, v, 4, (6.12)
Ly, K = Ly,wq) + Ly,we) + Ly, @s) + Ly,weo) AN A —weydAy A A
— wo) (@A) = w(o) (A6 = Ay A dA) = wioy A (A +10,dA = dd )

dK = —dw(o) + dW(g) .
The most general J,, we can construct that is compatible with the SU(2) g symmetry is

242 R R
Ju = T\/_’Uu + 7 (R(2)yudz + 9(2) dyu +1(2) 0u) = p(2) yu
RB
+ —— (n(z)y, volgz + h(2) 0, Ndz + v(z) dy, N dz 6.13
16\/5(()9 s2 + h(z) (2) dy ) (6.13)
22 R
+ %zwﬁl + o (k(2) yudz + g(2) dyu +7(2) 6u) N A,
where k(2), g(2), p(z), n(z), h(z), v(z) and r(z) are at this stage arbitrary functions of z, the
coordinate on I, y, are a triplet of functions on S2, v, are the Killing vector fields on S? and

0, are 1-forms on S2. The objects on S? are defined in appendix [Cl The algebraic conditions

impose
2v/2 R ([ h(z) R
= —— vy + = | — wd dy, | — = u
Ju =~ +4< L z+9(2) y) 5 P(2)y
R3
+ W (p(2) g(2) yuvolgz + h(z) 0, A dz + v(2) dy, A d2) (6.14)
22 R [ h(z)
v, A+ — | ——=yu d dy, | NA,
+ 7 +4 ( p(z)y z+g(2) y)
such that K defined via
Ju N Ty = 0y K| (6.15)
is given by
R? Rg(z) h(z)
K =——n(2)dz + —————vol dz. 1
1 (2)dz + 39v3 volgz2 A dz (6.16)
Furthermore, the most general K constructed from R-symmetry singlets is given by
~ R R3 5
K=—3s(2)+ ——=(9(2) s(z) — t(2)) volgz + R’ u(z)volgz A dz
2 16v2 (6.17)

3
+ m (9(2) s(z) — t(z))volgz N A.
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The algebraic condition J, A J* A K > 0 then becomes

R5

PYW h(z)t(z)volgz Adz > 0. (6.18)

While this suggests that we must have h(z)t(z) > 0, this is not true at the endpoints of the

interval parameterised by z. There we can in fact have h(z)¢(z) = 0. Thus, we must impose
h(z)t(z) >0, (6.19)

with possible equality at the boundary. This ensures that the metric is non-singular everywhere.

For holographic applications, we also want to impose that the internal space is compact by

requiring that the S? shrinks at the endpoints of I, which will further refine (619). However, to

determine the precise conditions, we must first construct the SUGRA fields of the AdS7 solution.
With (€14)) and (6I7), the differential conditions ([G.I2) reduce to

mAy + 1y, dA — d, =0,
dh, =0,
A6y — Ay NdA =10,

(6.20)
2
chJ(O) + E@(l) =0,
2 _
dCLJ(Q) - EW(g) = 0,
where, as we discussed above, R-symmetry implies that
dA = R*I(2)volg: . (6.21)
Explicitly, the differential conditions imply the following set of ODEs
. h . . . hs P mg
=——, 2pp=mh, $=h, t=——, l=——=-—=. 6.22
g=- pp ’ VAN (6.22)

Note that the functions u(z) and v(z) do not appear in the differential conditions. This is
due to the fact that they can be removed by gauge transformations of the gauge potentials A
and C, as can be seen from ([6.9) and ([GI3). Thus, we can, and will, set w = v = 0 without loss
of generality.

Using the ODEs (6.22) and having set u = v = 0 by gauge transformations, the half-maximal
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structures simplify to

22 R R R?
J. 7 vut 7dgy) 2py+16\/§p( (90u) — g yuvolg:)
22 R
+ T‘[ZMA + 5 d(gy) N A, (6.23)
.~ R R3 R3
K=—s+——=(gs—t)volgs + ——=(gs —t)volga N A,
5 16\/5(9 ) volg: 16\/5(9 ) volg>

with )

m
dA = —m (p + 3 g) ’UOlsZ . (624)

Moreover, we can redefine the z coordinate to set h(z) to anything we like. There are two
convenient choices that help us solve the ODEs (6.22)).

Choice 1 The first is to take h(z) = p(z) so that we can integrate the equation g = fz to set
g = —z, where we absorb the integration constant by shifting z. Then, the remaining ODEs are
solved by )
. . t mg
s=—t, =i, l=—- 2 6.25
y W3 e (6:25)

where t(z) must satisfy
t=——. (6.26)

Finally, with this gauge, the regularity condition ([G.I9) becomes

t(z)(z) <0. (6.27)
Choice 2 The second choice is to simply take h(z) = 1 and integrate the equation § = 1 to set
s = z without loss of generality. The remaining ODEs now become

z P mg
G e L 6.28
p 4/2 82 (6.28)

The functions g and ¢ are therefore determined in terms of p, its integral and its derivatives, and

1 .
9:7_7 2pp:ma t=—
p

where p satisfies

op?
S 6.29
5, =™ (6.29)
The regularity condition (GI9) becomes
t(2) >0, (6.30)

with equality only possible at O1.

To compare to the literature, especially the form of AdS7 solutions given in [59], it is worth-
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while to introduce

p 9 81
= —, =—z, = —=t, 6.31
which now satisfy
9¢* 9 VB
— == =—4y5— 6.32
o 2" ¢ ¥ g (6.32)
where ' is our shorthand notation for a%' Moreover, we note the following identities
t 1p 3287 9 16 _(/_ 48
-—=——— t=——" 2pt = — - — |, 6.33
. 8ly b 81 G FAEt=gv\V g (6:33)

which will allow us to recover precisely the description of AdS7 vacua given in [59].

6.2 The supersymmetric AdS; vacua

It is now straightforward to compute the SUGRA fields of the supersymmetric AdS; vacua. We
first plug J, and K, given in (623), into the generalised metric. We then use the ExFT / ITA
dictionary worked out in [I7] and summarised in appendix [A2]to read off the supergravity fields.
In string frame, the warp factor of the AdS; part of the metric is given by [29,30]

Fr = |gine| TY/OK2 2/ (6.34)

where |gin¢| is the determinant of the internal metric, v is the dilaton and x® = %Ju AJUAK.
Without fixing h(z) we therefore find the following SUGRA fields in string frame

t RZ [t pt h?
ds?, =/ —ds? — )= | ———ds%, + —d2?

£\ /4 1
w_2(t (6.35)
e b
(p) Vst 2pt

2

R

R? st
B=—"(—g+ -2V

8\/5( g+82+2pt)vosz’

with 2-form field strength Fy = dA — m Bs and 3-form field strength H = dB given by

R? t
Fy = <2p+L) volgz ,
p

82 s2+2pt
R? ht 3p mst
Hs = — — volgz N dz
Tev2 <82+2pt (82+2pt)2> ” (6:36)

2 (y(1 A s e\ z
== - - - V0
R D s2+2pt \p Ms >

where vol s, denotes the volume form on the internal manifold with the metric (6.35]). Note that
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we have the opposite sign convention for our B field to [40] so that the Bianchi identity of F» is

Choice 1 With the choice h(z) = p(z), the expressions for the AdS; vacua (€38]) reduce to

t R? t 2
dsio = |/~ dhas, + 5\ (md * dz?) |

3/4
ewzﬁ(—?) S (6.38)
Vi —2tt

R? tt
B= — ) wolg:
8v2 (Z t22tt) vols

with field strengths

R2 . m
Fy = 2{ 4 - lg
2 8\/§< e )UOS
R? mt?t tt
Hs = — - le2 AN d
’ 8\/§<(£22ti€)2 2 m) ol A as (6.39)

. t>0, (6.40)

with ¢ = 0 at OI so that the internal space has no boundaries. For every such function ¢ there
is a supersymmetric AdS; vacuum of massive ITA supergravity. This matches the infinite family
of supersymmetric AdS; vacua of [40] when we set the AdS radius to R = 2, and where our

variables are related to those of [45] by a rescaling

4v2
= —0

t
81

z=2V271%, (6.41)

where we denote the “z” coordinate of [45] by Z to distinguish it from our z coordinate.
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Choice 2 With the choice h(z) = 1 and using (6.33), the AdS7 vacua (6.30]) are given by

/ [ B 4 1 8'd
d810 = dSAds7 —% 4ﬂﬁ/ ﬂ’gd82 T ﬁﬂ‘; )

ﬂ/ys/4

18 g\ m__(8)
HBE(E) (1@,@ ot

_ "2
F = RQyﬁ <4+£L> volgz ,

e = R™ 1
(6.42)

18543 —p'y

Here volyy, is the internal volume form with respect to the full internal metric in ([6.42), and g

satisfies the ODE

2
%ig = gm, with g = a5 Y2 (6.43)

This matches the AdS vacua in the coordinates of [59] when the AdS radius is set to R = 2.

7 AdSg vacua from IIB supergravity

As we reviewed in section Bl and was shown in [30], supersymmetric AdSg vacua are described

in ExFT by four nowhere-vanishing generalied vector fields J,, € I' (R1), transforming as a 4 of

SO(4), and a nowhere-vanishing generalised tensor K € I' (R3) which is invariant under SO(4).
Upon defining A* = 1 1€ Ny, the differential conditions ([B.2) become

L, K=0, (7.1)

We can use a SO(4) g rotation to write, without loss of generality,

A, = (o,o,o,%) , (7.2)

with R the AdSg radius. The numerical coefficient in front of R have been fixed by comparing
the solutions with known supersymmetric AdSg vacua of IIB [41].

Ay breaks the SO(4) symmetry to the SO(3) g R-symmetry of AdSg vacua. Let us therefore
write u = (A,4) with A = 1,2, 3 labelling the vector representation of SO(3)g. With respect to
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(A, 4) the differential conditions become

3
ﬁJAJB:*—\/iRGABCJCa
EJAJ4:07 (73)
‘CJAK:Oa .
. V2
dK = — Jy.
R 4

Note that the conditions £, J, = 0 and E‘]4K = (0 are automatically satisfied by J; x dK [30].

7.1 Half-maximal structure

We will now construct the half-maximal structures on the internal space that yields an AdSg
vacuum. To do this, we will guide ourselves by the differential equations (Z3)) determining
the AdS vacuum. Recall from section [ that these imply that the J,’s are generalised Killing
vector fields and therefore either consist of a Killing vector field plus a compensating gauge
transformation, or consist of a trivial gauge transformation. The latter can be written as dB
for some B € T'(R2) and will always generate a vanishing generalised Lie derivative on any
vector field. We see from (Z3]) that J4 generates such a trivial gauge transformation, while J4
must generate the SU(2) g symmetry of the AdS vacuum and therefore have non-vanishing vector
components which generate this symmetry. The generalised tenors K and J, must be invariant
under this R-symmetry.

To generate the SU(2)r symmetry we take the internal space to contain an S? and on the
remaining two-dimensional space, the Riemann surface ¥, we introduce coordinates =%, a =
1,...,2. We will raise/lower « in a Northwest/Southeast convention by the SL(2)-invariants
€ap = 1 and ¥ = £1 with

€“Vegy = 03 - (7.4)

Thus we write

v =Py, To = 2"€s, . (7.5)

In IIB SUGRA with the conventions in appendix [BI] the J,’s and K become formal sums

of spacetime vector fields and differential forms as follows

Ju =V + A + 0oy,
(7.6)

K= w(%) +w(z) +w(021) ,

where V,, A\,* and o, denote the vector, 1-form and 3-form parts of J,,, while w, are p-forms

p)
appearing in K. With our conventions [B.I] the wedge products and tensor products appearing
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in the algebraic conditions (3.]) become

1
JuNJy =2 (zv(uAg) + AL Aoy + (—zv(uav) — Mg A Af)) :

. N o 7.7
K®K|RC :w(Q)AW(2)+2w(O)aw(4), ( )

K NK = w(2) A (IJ(Q) 4+ W) (IJ(OZL) 4+ CIJ(O)a w&) ,

where we defined K = %Ju ANJY = Cu(%) + W) + Q(Ojl). Moreover, the differential operators

appearing in the differential conditions (Z.I]) become

Ly, Jy = Lv,V, + Lv,0, + Ly, \Y
—ay, d\S —ay,do, — Mg AdND
Ly, K = Ly,wfy) + Lv,we) + Lv,w (7.8)
+ w0y AN, — wihy dow — wiz) AdAY
dK = —V2dw () + V2 duwy) .

As discussed above, the J4’s will need to be formed out of vector fields and differential forms
forming SU(2) g triplets, while J; and K will need to be constructed from SU(2) g-invariant vector
fields and differential forms. We will now construct the most general J4 and K, up to gauge
transformations, which transform as an SU(2)-triplet and singlet, and satisfy their algebraic
conditions. We then calculate J4 from dK and impose its algebraic condition Jy A Jy = %J ANJA

and Jy A J4 = 0 and finally solve the remaining differential conditions

3
KJAJB = __ﬁReABCJCa
Ly Ja=0, (7.9)
L, K=0.

Just like for AdS; vacua, we must first ascertain whether the gauge fields of the supergravity
can be chosen in a way that respects the SU(2)r symmetry and will thus naturally appear in
the most general structures we write down, or whether the gauge fields necessarily break the
SU(2)g symmetry and need to be included by hand as a “twist” term. Since we are considering
IIB SUGRA with an internal four-manifold, we will only have 3-form field strengths dC* which
must necessarily be SU(2) g singlets. Therefore, they must be given by

dC* =b* Awolgz , (7.10)
for some 1-forms b on 3. Therefore, we can choose a gauge such that locally

C* = c®volg2 (7.11)
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for functions ¢® on X which are SU(2)g singlets. Hence, the gauge potentials can be chosen to
be SU(2)g invariant and will naturally appear in the most general structures we write down.
This is in contrast with the mIIA AdS; vacua we studied in section [6, where the R-R 1-form
potential had to be included via a “twist” term.

The most general J4 we can construct as an SU(2)g-triplet is

1 /3 16 2 R?
=5 (E va+dcs RE“dya +4cs Ryam® + n®0 + ——2—yah Avols:
(7.12)
16 2 R3
+——2>—104 Nvols + fdya Nvols | ,

where v4 are the Killing vectors, §4 are 1-forms and volg: is the volume form on S? as defined
in appendix [(] and
1
voly = ieagdza AdzP . (7.13)

I, k* and n™ are at this stage arbitrary functions on >, while h = hodz® and m® = m®g dzP are
1-forms on ¥. c¢g is a constant. It and the other numerical coefficients in front of R have
been introduced for later convenience. We can further simplify (ZIZ2) by using generalised
diffeomorphisms, i.e. a combination of diffeomorphisms and gauge transformations: we can
use the generalised vector field

V =x Avolgz, (7.14)

where x is a one-form on ¥ satisfying

R
dy = —gfvolg , (7.15)

to remove the term in J4 that depends on the function f by acting with Ly J4. In fact by
working out the explicit twisting of the generalised tangent bundle by gauge potentials, e.g.
using appendix E of [60], one sees that this generalised diffeomorphism corresponds to a gauge
transformation of the R-R 4-form.

We now impose the algebraic conditions (B]) such that the functions appearing in Ja are

now no longer all independent. As a result, we find

J _ 1 EU +4cg R(yam™ + k*d )+16€7§R3(|m|9 Avols — yakPmg A vol )
A—\/5 R A 6 11 YA Yya 3 A L —Ya B S2 )
(7.16)
where [m| = 1mggm®F.

Next, we construct K such that is an SU(2)g-invariant and satisfies K A K = 0 and J4 A
JANK > 0. We find the unique combination
L1 2ce R 16 c3 R?
K=— (4 C6 Do + %QQ’UOZSQ A vols — %

V2

B
(T +pﬁk5) ’UOlQ + %UOZE) , (717)
vy
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in terms of r, p, and g, which are so far arbitrary functions of z®. However, just as for J4 we
can use gauge transformations to further simplify this expression. A particular class of gauge

transformations corresponds to shifts of K by d-exact terms,
K~ K +dQ, (7.18)

where @ € T' (R3). Taking
Q = Q%volg Ndag , (7.19)

with 95Q*? ~ ¢ (with appropriate coefficients) we see that we can remove the functions ¢ in

([TI7). Thus, we are left with the general K up to gauge transformations given by

16 ¢ R?
3

. 1
K=— <4c6pa—

V2

The algebraic condition J, A J* A K >0is equivalent to J4 A J4 A K > 0 once we impose the

(r+ plgkzﬁ) ’UOl2> , (7.20)

remaining algebraic conditions. Therefore, we require
Ja NJANK =128 iR [m|volg> Awols, > 0, (7.21)

which implies that |m| > 0 with equality at the points on ¥ where the S? degenerates. From
K we find

R 1 16 2R3
Ji=—=dK = — (4¢sRdp® — —2—d (r + pgk®) Avol > 7.22
1= Sk = = 1Ry (1 + psh?) Avols: (7.22)
The algebraic conditions
1
J4/\J4:§JA/\JA, JiNJs=0, (7.23)
now impose
me ANdp® =0,
m* AmP = dp® A dp®, (7.24)
dr + padk® =0.

Note that the final condition can be used to simplify the expression of Jy

1 16 2R3
Ji=—(4csRdp* — —2—
4 NG < 6Lvap

Finally, we are left to solve the differential conditions (Z.9]). Using the explicit expression of
the generalised Lie derivative (Z8) and the fact that J,, J; and K are SU(2) triplets, singlet

kg dp® A v0l52> . (7.25)

32



and singlets, respectively, these equations reduce to

w,dA\g =0,

w,dop + Aaa NdAE =0,
Ao NdXG =0, (7.26)

W(0)adAy =0,

w%)dUA +wi) A d g =0.

For our Ja’s and K these further simplify to

d\% =doy =0, (7.27)
which implies m® = —dk®.
Thus, we find that
1 /3 8c2R?
o= (EUA +degRd (K ya) + =8 (k04 /\dkza)) :
1 16 2R3
Ji=— (4cgRdp™ — —5 kdBAvolz), 7.28
1= s (teamar = 28 by vols (7.28)

. 1 16 2 R?
K=—4c¢cpa — 6 r 4 pgk®) vol z),
\/5( 6D 3 ( bg ) S

where k% and p* are any SL(2)-doublets of functions on ¥ subject to the differential conditions
dk® A dkP = dp® A dp? | dk® Adpa =0, (7.29)

and r is defined up to an integration constant by
dr = —po, dk* . (7.30)

The condition (T.2I]) implies
r|dklvols A volg2 >0, (7.31)

where |dk| = $0,k30“kP. This seems to suggest that 7|dk| > 0 but care needs to be taken at

the boundaries of . Instead, we must have
r|dk| >0, (7.32)

with equality only possible at the boundaries of ¥. In fact, as discussed in [41L[43], and as will
become appart from the explicit SUGRA solution given in section in order for the internal
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four-manifold not to have a boundary, we must have
r=20, |dk| =0, (7.33)

on 0X.

At this stage, one might wonder how the quadratic differential conditions (Z.29) can underlie
supersymmetric AdS vacua, which ought to be described by a first-order BPS equation. The
answer is that we still have residual diffeomorphism symmetry on the Riemann surface ¥ that
can be used to turn ((29) into first-order differential equations. We will show how to do this
after calculating the supergravity fields from the structures.

We conclude this section by giving the explicit expressions for the objects K = iJu A J* and
k* = K A K, which appear in the truncation Ansatz (@I0I). They are given by

2 2 4C6R2
K = —8V2c2R?|dk| ( vols + volgz Avols |
1o (7.34)
o TC%R47“ |dk| volgz Awvols; .

7.2 The AdSg vacua

We will now compute the supergravity background corresponding to the half-maximal structures
[C28)). The supergravity fields are encoded in the generalised metric (B.11]), (B.13) as detailed in
appendix Moreover, the AdSg part of the metric is warped by the factor [30]

fo = |gime| K7 (7.35)

Thus, we find the following background

475/t AV s R? T3 |dk|? 1
2 _ 6 2 2 a
dS = W |:;dSAde, + Tdssz + mdk/’ ® dpa:| 5
4 2 kY §Bpe
Oy =~ ol (m WW) , (7.36)

1 /|dk|
Hoyg = — | —= pa 31 0y ka 07 :

where )
A = 37|dk|?* + |dk|p,ps0s k0P, |dk| = 5aakﬁaakﬁ : (7.37)

The solutions are completely determined by the two pairs of functions p® and &% on X satisfying

dk® A dkP = dp® A dpP, dk® A dpa = 0. (7.38)
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r is defined in terms of these functions as
dr = —padk® . (7.39)

In order to have a compact internal space, we must require that the S? shrinks on the boundary
of ¥ while the warp factor and the metric on ¥ remain non-singular. From the explicit metric

([36]), one can easily see that this requires
r=|dk| =0, (7.40)

on 0.
We will now show that the differential equations for &% and p® can be turned into first-order
PDEs by coordinate choices. In particular, we can always use diffeomorphisms to make the

metric on ¥ conformally flat. From ([Z.30) we see that this requires
81k“81pa = 821&‘82]7& , 81k:“82pa =0. (741)

Together with (Z29]), and imposing the condition (732), the differential conditions become the
Cauchy-Riemann equations
dk® = I - dp® (7.42)

where [ g = 5Mew is a complex structure on 3. Therefore, p® and k“ are the real and imaginary

parts of two holomorphic functions on X
fO=-p*+ik>. (7.43)

We now recover the description of supersymmetric AdSg vacua of [41] by identifying our

holomorphic functions with the Ay of [41] via
Ar =i fL £ f2. (7.44)

We present a dictionary between our objects and those of [41], as well as [50], in appendix
As discussed in [42H44] these local solutions can be extended to globally regular solutions by
including a boundary of the Riemann surface on which the holomorphic functions f* have poles,

and by introducing SL(2) monodromies.

8 Minimal consistent truncations

As shown in [30] and reviewed in section B}, given the half-supersymmetric structures describing
an AdS vacua, one can automatically construct a consistent truncation around it containing

a gravity multiplet and a scalar. This method was applied in [5I] to construct the minimal
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consistent truncations around the supersymmetric AdS; and AdSg vacua, for the case where
only the scalar fields of the lower-dimensional gauged SUGRA are turned on and are constant,
agreeing with the consistent truncations found in [49] and [50] for the AdS; and AdSg vacua,
respectively. Furthermore, as described in section Bl using the exceptional field theory tensor
hierarchy and the dictionaries in appendix [B.3.1] one can construct the uplift of all the fields
of the minimal half-maximal gauged supergravity, including the p-forms. In the following, we
summarise the results for the the minimal consistent truncations around AdS; and AdSg. For the
latter, we show explicitly how to construct the full ten-dimensional uplift, including all the fields
of the 6-dimensional gauged SUGRA. This result will be generalised in section [0 to construct

uplifts of half-maximal gauged supergravities around AdSg including matter multiplets.

8.1 AdS;

We can now use BI1]), (@I0) to construct the consistent truncation Ansatz of ITA SUGRA
around the supersymmetric AdS7; vacua of section [0l to the pure 7-dimensional half-maximal
SU(2) gauged SUGRA [47]. Here we will consider the truncation Ansatz where only the scalar
fields of the 7-dimensional gauged SUGRA have been turned on and are constant. Thus, we
compute the generalised metric of 7, (z,Y) and K(z,Y) given in (ZII) and use the ExFT/IIA
dictionary of appendix [A.2] to find the supergravity expressions. This way, we obtain the trun-

cation Ansatz in string frame

h?
1/2 X5/2 —5/2
ds1 X/\/7d +—\/7{ X532—|—2 td 2+ X dz ,

)(5/4(t)3/4
"R D \/X532—|—2pt

B R? " XOst ;
= —F= — — s VO
WA T A

and field strengths

2 R? 2+ X®mst ;
=——F ————— | volg2
2 8\/5 p X5S2+2pt S2

H _2(t 71/4X*5/4 3,_L ] - (8.2)
57 R D p X552+ 2pt VOt '

2 [\ V* dpt t ms
~ (= X514 (1 - x5) (1— ° -
+R(p) ( ) X552+2pt+pX552+2pt VO -

where voly; denotes the volume form of the internal 3-manifold with the metric (&)

(8.1)

Let us now evaluate the truncation Ansatz for our two gauge choices.
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Choice 1 With h(z) = p(z), the truncation Ansatz becomes

dsty = X1/2, [~ ds7+—wz 5/2X5t2 dsSQ+X_5/2dz

3/4
X5/4< t> I S (8.3)
"R t \/X5t2—2tt
R X°tt l
AN ST A
and field strengths
R? .. Xomtt
Fo=—2t+ —————— [
? 8\/5( +X5t2—2tt)vosz’
oy 1/4 .
2 t mt
Hy3=—|(—- X—5/4 37_7 [ v 8.4
3 R< t> < PX5i2 —2¢1) 0 (84)
- 1/4 . .
2 t 4tt t mt
= (—- X (1-x% (1 : 4 a— - ) vol . .
+R< t> ( ) Y Xsi o ixsiz—a2ei) Vs
Choice 2 We now take h(z) = 1 and find
[ 1/2 /ﬂ/ X5/2B/4 2 L 520 dy?
dSlO— X/d +— —_— 4ﬁ X5 B/dSSQ*EX /ﬁ—g ,
54
e’ — R— 1X5/4 (=8'/9) /
61/48 — X555 ’
Ry B XPm  (8)
== (Y 5y 1—xe 7y ) Vol (8.5)

B o / m (5/)2 .
<;) X 5/4 9 — 12ym ’UOl]\/L5

6/ g\ 83 (8
+—<—) X1 - X7) <1m+%m vobi

The truncation Ansatz is completely determined by the function ¢(z) satisfying (640) for
gauge choice 1 and §(7) satisfying (632) for choice 2, and corresponds to the truncation Ansatz
found in [49] in the coordinates of [45] and [59], respectively. Upon truncation, X becomes the
scalar field of the minimal 7-dimensional gauged SUGRA [47] and all of the supersymmetric AdS

vacua correspond to the same vacuum of the 7-dimensional theory.
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8.2 AdS;

We can similarly use (BII]) to find the minimal consistent truncation corresponding to the
supersymmetric AdSg vacua of IIB SUGRA described in section [l For example, the internal
fields can be read off from the generalised metric (&I, while the remaining fields can be
determined using the truncation Ansatz (81H). Recall that the AdS vacua are characterised in
terms of two holomorphic functions f¢, with real/imaginary parts k®, p®, and a real function r
defined through (739)).

As before, we will denote by X the scalar field and A4, A4 the SU(2)g and U(1) gauge fields
of the 6-dimensional gauged SUGRA, the so-called pure F(4) gauged SUGRA [48], obtained from
the consistent truncation. In terms of these objects, we find that the metric in Einstein frame,

the axio-dilaton and the 2-forms are given by

1
X2 2

ArS/P AV R [ 3 X2 |dk|?
2 4T Cé |: 2 | |d825,2—|—

4" = —ssmape | R A
1 (X4|dk|

Hop= —— [ 20 ps + 33/r 0. ka0 )
8= X\ PePs V1T 0yka07pga

dk® ® dpa] ,

4 ¢ R? X4rp, 0skY 0P p> -
Cp)® = ——=2 <k“ 4 2Py Aﬂ p |dk|> volgs + 2v2 cgR A% A (yAdka + ko‘DyA)
+2V2c6R A N dp® + 4 ¢6Bp® — 3csk®eapcy AP A AC
(8.6)
where
A =37 |dk|? + X*|dk| p,psOs k707 p° . (8.7)
Moreover,
. 3
Dy? = dy? + ——— 2B Ay, 8.8
Y vt SR BYC (88)

is the SU(2) g covariant derivative of y4, in terms of which the SU(2)g covariant S? metric and

S2 volume form are defined as
dsg. = 6apDy* @ Dy”,

1 - .
volg, = §eAchADyB A Dy© .

After applying a gauge transformation, the two-forms can equivalently be written as

X1 rp, dsk7 9%p° - :
Py Aﬁ P |dk|> volg, + 22 c6R (kaF(z)AyA + F(2)4pa) ;

(8.10)
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where

3
2v2R
\/_

~ 2
F(2)4 =dA* + fB,

F(Q)A = dA? + EABCAB ANAc,

(8.11)

are the 2-forms of the 6-dimensional gauged SUGRA as defined in (3I7) and using equations

1), @2).

The five-form field strength can easily be computed from [B.13) and using its self-duality. We
find

Fisy = Fla3) + Fiz o) + Fla (8.12)

where F{,, ;) are the parts of the 5-form with p external and ¢ internal legs, appropriately SU(2) -

covariantised. Explicitly, they are given by

8v2 2 R? |dk|
3

X4 7 |dk|

Fos = A

<F(2)A A B4 Avols + Pa (yA F@)A A dp® — F(2)4 A dka) A volgg) ,

2 |dk| -~ -
F(372) =16 C§R2|dk| (r |A |F(3) /\’UOZS«Z +X74 *6 F(3) /\UOZE) ,

F(471) = 8\/§C§RX2 (77" *6 F(Q)A A\ DyA + Pa (*GF(2)4 A dp® + ya g F(Q)A AN dka)) ,
(8.13)

where F{5 3) and F{3 9) can be read off directly from (3.I7) and F{4,) can be obtained from F{5 3
by self-duality of the 5-form field strength. Above x4 refers to the Hodge dual of the metric of
the six-dimensional gauged SUGRA, and F(3) is, as defined in ([BI7), the field strength of the
2-form potential

Fiz) = dB). (8.14)

Moreover, we have used (G5.15) to replace G 3) by X 6 F(g). A non-trivial check of the truncation
Ansatz is that the component F(3 o) is self-dual.

In deriving these relations, we used the fact that the 10-dimensional Hodge dual is related to
the 6-dimensional Hodge dual and the Hodge dual on S? and ¥ as

*10F(2) A Oy Avols = ;—; *g2 O4 /\*GF(Q) s

fo (8.15)
*10F(2) Aw Avolg: = f_ *nw A *GF(Q) s
S‘Z
for any 1-form w € QM) (¥) and where
3 |dk| X2|dk|2
f6:R27” fzzma fSZZTa (816)
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denote the relative factors of the 6-dimensional, S? and Riemann surface metric in ([8.6]). Also
*x dk® = —|dk| dp™ , *xndp® = |dk| dk* . (8.17)

After the consistent truncation, all the 10-dimensional AdS vacua correspond to the same
vacuum of the 6-dimensional gauged SUGRA. Our truncation Ansatz includes the previously-
found consistent truncation of a particular AdSg vacuum in this family [61] as a particular

example. This arises by using the form of the holomorphic function given in [50].

9 Consistent truncations with vector multiplets for AdS;

Here we will now search for consistent truncation with vector multiplets around the supersym-
metric AdS7 vacua of massive IIA SUGRA. There are in fact many 7-dimensional half-maximal
gauged SUGRASs that contain supersymmetric AdS; vacua [58] and could, in principle, arise as
a consistent truncation of 10-dimensional SUGRA. We will see that in fact only the pure SU(2)
gauged SUGRA [47] and coupled to one vector multiplet can be uplifted, where in the latter case
the Roman’s mass must vanish.

As we discussed above, we can only have N < 3 vector multiplets in a consistent truncation
and the corresponding generalised vector fields must form representations of the SU(2)r sym-
metry group generated by the J, of the AdS; vacua. Therefore, we must consider generalised
vector fields that are singlets or triplets under SU(2) g, and satisfy the algebraic conditions (£.1])
as well as the differential conditions [@4]). Doublets under SU(2)g do not lead to fape of the
form required in (£4). Moreover, plugging in the form of the .J,, for the AdS; vacua, we have

L. Js=2V2R L, Jy, (9.1)

where on the right-hand side we have the usual three-dimensional Lie derivative generated by v,
acting on the vector, scalar, 1-form and 2-form parts of J; separately. This implies that the Jj
must form a representation of SU(2)g under the Lie derivative generated by the SU(2) g Killing
vector fields on S2.

In the following, we choose the gauge h(z) = p(z) so that the AdS vacua are described by a

cubic function #(z).

9.1 Singlets under SU(2)g

For the Jz to form singlets under SU(2)g, they must take the general form
Ja = fa(2) 02 + ga(2) + la(2)ta, A+ ha(2) dz + ka(2) volgz + ra(z)dz N A. (9.2)

Plugging the above parametrisation into the algebraic conditions ([#3]), we find they can be solved

by only one generalised vector field which is unique (up to an overall sign which just amounts to
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a redefinition of the scalar field in the truncation Ansatz)

R. R R3
Ji=—7t+—dz+
1= 4 16v2

Therefore, the algebraic conditions already restrict us to having at most 1 vector multiplet

. R
tzvolg—i—zdz/\A. (9.3)

that transforms as a singlet under SU(2)r. However, we must now also check the differential
conditions (@) but find that
£J1K = —mﬂvolg Adz # 0 unless m=0. (9.4)
32v/2
Therefore, if the Roman’s mass is non-vanishing, it is impossible to have a consistent truncation
with singlet vector multiplets.

For vanishing Roman’s mass the existence of this consistent truncation is not surprising. In
this case the vacuum lifts to a AdS; x S* solution of 11-dimensional SUGRA, where the S* is
written as a S2 fibred over an interval. It is known that there is a maximally supersymmetric
consistent truncation of 11-dimensional SUGRA around this vacuum with gauge group SO(5).
This truncation of 11-dimensional SUGRA can be further consistently truncated to a consistent
truncation with gauge group SU(2) x U(1) C SO(5) by keeping only the singlets under a Cartan
U(1) € SU(2), C SU(2), x SU(2)r C SO(5). Moreover, the generators of SU(2) x U(1) are
independent of one of the four internal coordinates, which can be identified with the Hopf fibre
of S3 when writing S* as a S® fibred over an interval, see for example [14] for an explicit realisation
of the SO(4) generators on S3, albeit in O(3,3) generalised geometry. Thus we find a consistent
truncation of ITA SUGRA giving rise to SU(2) x U(1) gauge group, which corresponds precisely

to the above setup.

9.2 Triplets under SU(2)p

We repeat the above analysis but consider J; with @ =1,...,3 forming a triplet under SU(2)g,
which implies they must take the general form (G.I3]). The algebraic conditions (@3] then lead

to (up to an overall sign)

2v/2 R. 2v/2 R
= ?’Uﬁ —eg tyg + ?LUﬁA - Z(zdyﬂ + eypdz)
RB

+ -
162

Jau
R (9.5)
t(0a Ndz — ezygVolge) — 7 (zdya + eyadz) N A,

where e = +1. Finally, one needs to check the differential conditions ([@4]). However, we find

. 2 : R* (met+2it
[,JEK:%(lfe)tdyﬁ/\dzf (met+ )

Yz volg2 A dz

R? .
+ 3 (1—e)tdya Ndz N A.
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Looking at the two form part of (@.6) we observe that it can only vanish when € = 1, since #

cannot vanish for non-zero Roman’s mass. In this case, (@.6) vanishes if the condition
(mt+2tt) =0, (9.7)

is satisfied. However, by taking a z-derivative of this condition we find that it implies
t=0, (9.8)

which can never be satisfied for m # 0 due to the condition ([6.26]). We therefore conclude that,
if the Roman’s mass is non-vanishing, consistent truncations with a SU(2)p triplet of vector
multiplets do not exist.

Moreover, even when m = 0, the truncation is only consistent if e = 1 and ## = 0 and hence
requires t = 0, or ¢ = —1 and ¢ = ¢ = 0. However, from (6.27) we see that for the AdS; solution
to be non-singular requires ¢t < 0 with equality only allowed at dI. Therefore, if # = 0, the AdS
solutions would be badly singular, as is also apparent by direct inspection of (6.38). Therefore,

there are no consistent truncations around AdS7 vacua of ITA with a triplet of vector multiplets.

10 Consistent truncations with vector multiplets for AdS;

We now turn to consistent truncations with vector multiplets around AdSg vacua of 1IB. In
principle there are a large number of 6-dimensional half-maximal gauged SUGRAs (containing
vector multiplets) that contain supersymmetric AdSg vacua [52], and which could thus arise from
a consistent truncation of AdSg vacua of IIB. Here we will now address the question of which of
these 6-dimensional gauged SUGRAs can be uplifted to 11B.

Since we can only keep N < 4 vector multiplets in a consistent truncation and the generalised
vector fields corresponding to the vector multiplets must transform as representations under the

SU(2) g we have the following possibilities:
e up to 4 singlets,
e a triplet,
e a triplet plus singlet.

Once again, doublets under SU(2)r are forbidden by (@.4]).
Just as for AdS7 vacua, the form of the generalised Lie derivative simplifies when plugging
in the form of the J, for the AdSg vacua. We find

S VeR T (10.1)
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where in the first equation on the right-hand side we have the usual four-dimensional Lie deriva-
tive generated by v, acting on the vector, 1-form and 3-form parts of J; separately. This implies
that the J; must form a representation of SU(2)r under the Lie derivative generated by the
SU(2)r Killing vector fields on S2.

10.1 One singlet under SU(2)g

We first consider a single vector multiplet whose corresponding generalised vector field satisfies

the differential conditions

Ly, J1 =0,
Jacl (10.2)
L K=0.
Note the algebraic conditions ([@I]) together with the above immediately imply that
E.]iJa = 07 (103)
while Jy oc dK implies
Ly, Ji=0. (10.4)

The corresponding consistent truncation will lead to a half-maximal gauged SUGRA with one
vector multiplet and gauge group SU(2) x U(1).

The most general Ansatz we can write for a generalised vector field that transforms as a
singlet under SU(2)g is

16 R3 2
3

1 (e
Ji = 7 (w(z) +4Regn™(z) +

where w(z) is a vector field on ¥ and n®(z) is an SL(2)-doublet of 1-forms on ¥ and I(z) is a

1(z) /\v0l52) , (10.5)

1-forms on ¥. The algebraic conditions [@3]) now impose that
w(z) =0, 1(z) = ka(2)n%(2), (10.6)
and further imposes on n, that

na ANdk® =ng ANdp® =0,

(10.7)
na An® = —dkqs N dk .
Thus, the generalised vector field simplifies to
1 16 R3 c2
Jg=—(4Rcegn®+ 5 kon® Avolge | . 10.8
1= 5 (47 ) (105)

The conditions (I0.7) fix n® up to one degree of freedom. The explicit form of n® depends
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on the precise relation between dk® and dp®. For example, if we impose the Cauchy-Riemann
equations ([T42]), then n® can be nicely expressed in terms of the holomorphic function f* =

—p* + ¢ k® and complex coordinate z = x1 + ¢ x5 on X
1 1.
no‘:§gafadz+§gafadz. (10.9)

Here g € U(1) is the single degree of freedom left in n®.
The differential condition
LrK=0, (10.10)

imposes that we must have
dn® =0. (10.11)

If we impose the Cauchy-Riemann equations then together with (I0.9) this becomes
9(go0f*) —ecc=0, (10.12)

where c.c. stands for complex conjugate. (I0.I12)) is an equivalent conditions to having a consistent

truncation.

10.1.1 Uplift formulae

By computing the generalised metric using (5I1), (5I3) and using the ExFT / IIB SUGRA
dictionary (B.13), (B.I6]), we can read off the consistent truncation Ansatz for the purely internal
components of the metric, 2-form, 4-form and axio-dilaton. The components with some external
legs can be read off from the ExFT fields of the tensor hierarchy, A,, and B,,, and using their
IIB parameterisation given in section [B.3.1l Moreover, we can also compute the field strengths
of 1IB supergravity from the ExFT field strengths (2.7)), which become ([I3) upon plugging in
the truncation Ansatz.

It is now straightforward to read off the uplift formulae for the consistent truncation including
a vector multiplet by using the ExFT/IIB dictionary B3l The result is best expressed in terms
of the scalar fields

mq = (ma, mg, ms) , (10.13)

which satisfy
man®mp = —1. (10.14)

Therefore, they parameterise the coset space

SO(4,1)

S00) (10.15)

Mg €

and are the scalar fields of the half-maximal gauged SUGRA. They are related to the b, of the
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truncation Ansatz (£8) up to SO(3) transformations. In particular, they satisfy

m®m® = §"b, b’ — n?, (10.16)

so that m, and b,* parameterise the same coset space SSC)CE?;S). Moreover, we define

m-y=may?, (10.17)

and the SU(2)-covariant derivative in the 3 representation of SU(2)

~ 3
Dy* = dy* + —=— """ Ap ye,

V2R

3 (10.18)
Dm? = dm? + ——e*BCApme,
\/§R B1c

Similarly, we define the SU(2)-covariantised 1-forms

04 = eancy® Dy, (10.19)
and the SU(2)-covariantised volume on S2
1 A7 B A 7y C

volg, = Seancy Dy~ N Dy*~ . (10.20)

In all our uplift formulae, we will throughout impose the Cauchy-Riemann equations (7.42)
on k* and p®, so that n® is given by (I0LY]), although one can use the above method to derive

the uplift formulae in a different gauge as well. Then, with the above conventions, the metric is

given by
4 cg R? ro/*|dk|?/? 3A - - 1
2 _ 6 2 2 A B - a B
ds” = 33/4 A3/4 R2r |clk|2d56 A <5ABDy @Dy +wdw pabebpn @ )
+Ldk“®d 3 ® (my dk® — dp®)
X2,2 |dk|2 Pa X2rna my m-yap )
(10.21)
where
A = X*\dk| pa pp (m5avkza87p'6 +n ((m-y) dypP — m487k:'6))
+ 37 |dk|? (mg —m2 —(m- y)Q) ,
A = 3rms|dk|* + X*|dk|pappd, k@0 p” (10.22)

~ 1
w:mADyAJrﬁana,

0% =37 (msn® —madp® —m-ydk®) — Xp® pgHan”.
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Here x9n® denotes the Hodge dual of n® with respect to the flat metric on the Riemann surface.

The axio-dilaton is given by

X4p2 pP |dk| 3r
HY = — Z = 1 4 [ (5 0, k%07 p° +n® (m -y 0,p° — madyk?)) | (10.23)
Vs VE o m -y 8¢~ maBii))
and the 2-form by
4 cR? AcgR%|dE)?> . -
Ci)* = ————volg (k*+ LY) — ————0“ANOsam
@ 3 3 A (10.24)

+ 2\/§CGR (k?a F(Q)AyA + p® F(2)4 + Al A na) s
where we have defined the SL(2)-doublet function

~ X*r|dk|

LO(
A

D3 [m5avkzﬁ87po‘ +nP (m-yd,p* — mad, k)] . (10.25)

Moreover,

3
22 R

- 2
Fpt = dA* + %B, (10.26)

F(Q)A:dAA-‘r GABCAB/\Ac,

Foy' = dA®,
are the 6-dimensional two-form field strengths as defined in (£I3), using (ZI) and (C2)). In
constructing C()® from the truncation Ansatz (&6) and (@IIl), we have performed a gauge
transformation to write the 2-form in terms of the field strengths of the 6-dimensional gauged
SUGRA, just like we did in the minimal case in going from (8.@) to (8I0). When n® is exact
(it must always be closed), i.e. n® = dx®, e.g. if H () = 0, we can perform a further gauge
transformation to write the 2-form as

4 CGR2

4 cgR? |dk|? ~
Cy)* = 7TUOZ§2 (K + L) — Luaa NI

3 A . (10.27)
+2vV2¢R (kCY Fioy*ya +p* Fio)* + x™ F(z)l) :
The self-dual 5-form of IIB supergravity is given by

Fisy = Fua + Fez) + Fa2) + Fu + s, (10.28)
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16 C%R4 |dk|3 T ABC
e N
3 A
 8V2cER3|dk|
=

dk 1 - - U
Jr% <6T |dk| (5 ((m . y) YA+ mA) F(Q)A + my F(2)4 + ms F(2)1>

Faay = yamp Dme A volgs Avols ,

F(ng) |:F~‘(2)A AN éA A vols,

+X* papp (nCw (8716515(2)4 — .Yp’ﬁ Yya F(Q)A) + &ﬂco‘avp’ﬁ F(g)i)) Avols;, A g m®P
n X4 7 |dk|
A
2 dk 2 ~
F39) =16 CERQT |A | Fiy A ((mg —m2—(m- y)2) volgs —w A HBmB)

Pa (F(Q)A A (YaA® + mg xon®) — F(2)4 Ap*+ F(g)i A *200‘) Nwvolgs ,

+16 2R2|dk| X 4 (*GF(3)) Awvols

Fa,1 =*10F 23,

F5,0) = 48 cgreAchA mp x¢ Dma ,

(10.29)
where
AY = ms5 dp® — mgan®,
° ! (10.30)
p% =mydk® — (m-y)n® — myxan®,
and
*90% = mp*on® + (m - y) dp® — my dk* , (10.31)

is the Hodge dual of ¢ with respect to the flat metric on ¥. Fy, ;) are the SU(2) g covariantised
components of the 5-form field strength with p external and ¢ internal legs. g refers to the
Hodge dual operator with respect to the full 10-dimensional metric (I0.21]), while x4 refers to the
Hodge dual operator of the metric of the six-dimensional gauged SUGRA whose line element is
ds?. 1:“(3) is as defined in (BI7) the field strength of the two-form

Fi3) = dBy), (10.32)

In the above, we have used (E.I5)) to replace 6(3) by X ~*x¢ F(g). The self-duality of the five-form
relates the components F{y, o) t0 Fis_p 4—q)-In particular, it implies that F{3 ) should be self-dual,
which can easily be checked using (I0.2T)). This provides a non-trivial check of the truncation
Ansatz. Moreover, we have used the self-duality of the 5-form to compute Fi5 o) and Fy 1) from

F(1,4y and F{3 3y rather than using the truncation Ansatz of section [L.1l
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10.2 Multiple singlets under SU(2)p

We next consider the situation where we have N < 4 vector multiplets transforming as singlets
under SU(2)g. The corresponding consistent truncation will lead to a half-maximal gauged
SUGRA with gauge group SU(2) x G, where as we will see we can only have G = U(1) or
G = U(1)2. Following the same logic as in the case for one single vector multiplet, the most

general solution to the algebraic conditions (£1]) and differential conditions

L7, Ja=0, L. K=0, L5.Js=—fas"Ja, (10.33)
is
1 16 R3 c2
Jo=—(4Resgng® + ———S5 kona® Awol , ithai=1,...,N, 10.34
7 ( ceng® + 3 n V0 52) with @ ( )

where the ngz® have to satisfy

nﬂa/\dka:nﬁa/\dpaio,

(10.35)
Naga N\ /n/{)a = —(Sﬁ{, dk/’a A dk® s
as well as
dnge =0. (10.36)
As in the one vector multiplet case, we can solve the algebraic conditions (I0.33]) by
a 1 [o Y P 1 - ara
ng :§ga8f dz+§gﬁ8f dz, (10.37)
with gz € U(1). But the second of the conditions (I035) now imposes that
9ags + Gags = 2 Oap - (10.38)

It is easy to check that these conditions can only be solved when N < 2, which implies that
consistent truncations with N = 3, 4 vector multiplets which are singlets under SU(2)g cannot

exist. For the case N = 2, the condition is solved by
9z =*igr, g1 €U(1). (10.39)

Without loss of generality, we can take g5 = i g7, by suitably redefining the scalar fields of the
truncation Ansatz. In this case, the differential conditions (I0.36]) implies

9(g10f*) =0, (10.40)
which admits non-trivial solutions only in the cases where

df? = Noft, (10.41)
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with A a constant. In this case,

icéfl icéf2

gi=¢e a—flze a2 (10.42)
where c is a real integration constant.
Recall that Jy o< dK immediately implies
Ly, Ja=0, (10.43)
while one can also easily check that
L. Js =0. (10.44)

Therefore, the consistent truncation leads to a SU(2) x U(1)? gauged SUGRA.
One can then wonder whether AdSg vacua described by two holomorphic functions satisfying
the relation 9f? = AOf! exist. Firstly, we see that this rules out having SL(2) monodromies.

Moreover, we observe that, in this situation,
1. aff L. Y 12
|dk| = 5i0f* 0fa = (A = A) [0f[. (10.45)

However, as explained in section [[2 and [42444], any globally regular vacuum must be described
by functions satisfying the condition » > 0 and |dk| > 0, with equality on the boundary of the
Riemann surface ¥. The latter ensures that the total space has no boundary. For (I0.45) this
condition implies that A # X\ and that 9f' = 9f2 = 0 on the boundary of 3. However, since 3
is compact, we must have 8f! = 0f? = 0 everywhere. Therefore, although the differential and
algebraic conditions for consistent truncations with two vector multiplets can be locally solved,
there are no half-supersymmetric compactifications to AdSg vacua with an internal space without

boundaries that allow such a consistent truncation.

10.2.1 Uplift formulae for two singlets under SU(2)r

As we discussed above, a consistent truncation with two vector multiplets and gauge group SU(2)
around an AdSg vacua of IIB SUGRA necessarily requires the internal space to have a boundary.
Although this is not particularly interesting from a holographic perspective, we can nonetheless
use the formalism described in [30] to derive the consistent truncation. For simplicity, we will
only give the truncation Ansatz which preserves the full SO(5,2) symmetry of the AdS vacuum
since this is sufficient for a wide variety of applications. Therefore, we will consider the case where
only the scalar fields of the six-dimensional gauged SUGRA are non-zero and depend only on the
internal four coordinates. Moreover, as in the case of only one SU(2)p singlet, we will impose
the Cauchy-Riemann equations (T42) on k* and p® throughout. However, it is straightforward
to obtain the uplift formulae in a different gauge.

The scalar manifold of the six-dimensional SUGRA obtained from the consistent truncation
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is

SO(4,2)

Msca ar = AAaN . G~ e 10.46
T S0 (4) x SO(2) (10-46)
and can be parameterised by m;* with a = 1,..., 6 labelling the vector representation of SO(4,2)
and i = 1,2 the doublet of SO(2). The m;# must satisfy
miamjbnab = 751']' 5 (1047)
and are related to the b,% of (€G] by
§9m;“m;® = §“0b,"b," — 0. (10.48)
Moreover, we can decompose SO(4,2) — SO(3) x SO(2) such that
6—(3,1)®(1,1)®(1,2). (10.49)
We accordingly write
m;® = (mi*, mi, A" (10.50)
where \;" are constrained by (I0.47), i.e.
)\iﬂ)\jiéw = miAijéAB +mym; + (Sij . (10.51)
The uplift formulae can be conveniently formulated in terms of
n;® = N"ng”,
w;* = (m; - y) dk® + m; dp® ,
1 1
A « e’
w; =m;" dya — —pawi” — —pani®,
AT r’ (10.52)

o = |\ = €e’m; (mj-y)
A = X*|dk| paps (0 04k*07p? — €91;°Y w;P.)) + 37 |dk[* [|A]?
+ ¢RI (AN ban (mamy + (mi - y) (my - ) +mimg (my - y) (my - y))]
where |\| denotes the determinant of the 2 x 2 matrix \;". Just as in the singlet vector multiplet

case, we use the shorthand

mi -y =mi*ya. (10.53)
The metric is given by

_ dcg R2ro/4|dk[3/? 3A

2
ds 337473/ R2r [dk2

dsg + X2 (5AdeA @ dy? + 59 w; ® wj)
(10.54)

+ ((O’ +2 eijmimj“yu) dk® @ dpe + €m0 @ wjo‘) ,

X2y
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the axio-dilaton by

o X4papﬁ |dk| 3r a 1 0y O
H ﬁ = W + Z (O' 8.Yk 8'Ypﬁ — € Jni 'ijﬁ.y) . (1055)

and the 2-form by

4 C6R2

X4r|dk
C(g)a = 3 vol g2 (kﬁa + $

A

ps o D, kPO p™ — €inP wf‘ﬂ)

dcg R2|dK|?
3A

2c R2|dk|?
- 3A

(X4pap56ij +3T(Sg 61_7) (ij +n]’6) /\eAmiA (1056)
r (eace®mimiPy) €7 (wi® +ni®) Aw; .

Since we are considering the subsector of the truncation where only the scalar fields are turned

on and are constant, the IIB five-form field strength vanishes

Fsy=0. (10.57)

10.3 Triplet under SU(2)x

We next move to the case where we have N = 3 vector multiplets transforming as a triplet of
SU(Q)R, i.e.

L. J5=———€,5J5, (10.58)

where A = 1,2,3. As we will see shortly, this leads to a ISO(3) gauged SUGRA. Equation (T0.58)
implies that the most general ansatz for the fields J; must be of the form given in (ZI2). The
algebraic conditions (£3)) then fix Jz to be

1 /3 16 2 R3 16 2R3
Ji= 7 (EUA +dcg Ryzm® +4dceg REdy 5 + Cg Yz kam Nvolgz — % |7|6 1 /\volg) )
(10.59)
where |7r| = %ﬂ'o‘ 57" and 7@ is a SL(2)-doublet of one-forms on ¥ satisfying the algebraic
conditions

To Ndk® =71y Ndp® =0,

(10.60)
T A% = —dko N dE® .
Furthermore, in order to satisfy the differential condition
L, K=0, (10.61)
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one needs to impose the conditions

pozﬂ-a = padka

1 (10.62)

dﬁa:;paﬂg/\ﬂ’ﬁ.

As in the case of the singlet vector multiplet, conditions (I0.60) can are solved by
1 1. ==
T = §g,r8fadz+ 3r of%dz, (10.63)
where again g, € U(1). In this case, however, the first condition of (I0.62)) fixes the phase g, to

Gr = ipag.fa
T pﬂafﬁv

(10.64)

thereby fixing the one-forms 7 completely. The second equation in ([0:62) then give an extra
differential condition on f* that has to be satisfied for the vacua to allow consistent truncations
with a SU(2)g triplet of vector multiplets.

Using (I0.59) and the above differential conditions, we find

3V2

5 3
Loydp=——p€apJe+

meABCJC ; Ly, Ji=0, (10.65)

where A and A are raised/lowered with & 55 and 645, respectively. Together with the relations

3
KJAJB:_\/iRGABCJCa
Lydp = —— e, 0 (10.66)
JaYB \/iR AB (O]

Ly Joa=L5,Js =0,

this implies that the gauge group of the six-dimensional half-maximal gauged SUGRA is ISO(3).

10.3.1 Uplift formulae

Just as for the case of two vector multiplets forming SU(2) singlets, we will here only give
the consistent truncation Ansatz preserving the SO(5,2) symmetry of the AdSg vacuum, i.e.
where the scalar fields are the only non-zero fields of the six-dimensional half-maximal gauged
SUGRA and are constant. The full consistent truncation Ansatz including general values for all
gauge fields of the six-dimensional gauged SUGRA can be obtained as discussed above 1] and
demonstrated explicitly for the case of a single vector multiplet in section [0.1.1]

The scalar manifold of the six-dimensional half-maximal gauged SUGRA is

SO(4,3)

Msca ar = TNAN QoY
T = 50 (4) x SO(3)

x RY . (10.67)
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We will parameterise the coset space % by

mi® = (mg* = A mp, M) (10.68)
where I = 1, 2,3 and which satisfies
mr my ey = —61 . (10.69)
The m;* are related to the b,* of (£8) by
mr®m 2ot = b, b, 6w — 0. (10.70)
The uplift formulae can be conveniently expressed in terms of

wr = (mg - y) pa dk™ + mr po dp®
ali = (A1 Y) pa dp® £ My po Ak,
A = pa ps 0,k*07p"
_ 1 2
A = X*N|mA||dk| — 37 |dk|? <|m1A| [mi® —2(\r-y) v + 1 (eapce’EmpytmBmi) ) ,
(10.71)

with
(mr-y) =msya, (Ar-y) =Aya. (10.72)
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The metric, axio-dilaton and 2-form are given by

ds?

4CGR27’5/4|dk|3/2[ 3A 052

33/4A3/4 R2r|dk|?
+X2 [ m2d 1 IBgq L X dp® ® dp”®
raya = wr ®|m “dys ow + 2 PaPpap ® ap

3 |dk|
X2Ar

(|m1A|pap3 (dk* ® dk? — dp® ® dpﬁ)
1
+§€ABC€IJKyAmJBmKCpa (U;r ® dp® + dp® @ U;r))} g

X*|dk| _2V3r
V3r A

L
VA
V3T

+=—|dk| €K eapcyrmiPm,C o (p*0,p° + Pﬁavpa)l ;

H =

|m[A||dk|2> pp” +V3r |mIA|(9.YkO‘8’Ypﬂ

2A
_ VAl

\/ZHQBC(QW = [—GUKmJA)\KAwﬂ@Vpa + 2p° |dk|e" " Empm A Ak B (0ap — yAyB)] voly,

2Vr

2 (e}
+V3r |dk|6”K mr? dya N [%pﬂ |dk| (mJB)\KC (e —yBYC) dkP

+2 |dk/’| mj (mKB — )\KB) YB de) + mKB (mJ YB dk“ + AjB dpa)‘|

V3r (2 X*dk| p™
+ —
2 3r

~ V3r|dk|
2

4p* |dk|?
(r + k°pp) — lma“[kpo,pP o7 ke + = 1|\ | Pﬂk6|miu|) volg2

2
(ko‘ mr + Kpa alﬁkvaﬁp"’) el K mJA mg? dya Ndyg,
(10.73)

and the five-form vanishes by our assumption that the scalar fields are the only non-vanishing

fields and they are constant.

10.4 Triplet plus singlet under SU(2)r

We finally consider the possibility of having consistent truncations with four vector multiplets

forming a triplet and a singlet of SU(2)pg, i.e.

Ly, J5= Jo, Ly, Ji=0. (10.74)

3
2 A
\/§R AB
Since Jy < dK we automatically have

L£1,Ja=0. (10.75)
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For a vacuum to allow such consistent truncations around it, it must allow both a truncation
with a single vector multiplet, characterised by (I0.9)), and a truncation with a triplet of vector
multiplets, characterised by (I0.G3)). The resulting gauge group will clearly be ISO(3) x U(1).

Futhermore, in order to have both simultaneously, we need to satisfy the condition
JiNJz =0, (10.76)

where A = 1,2, 3 labels the triplet and 4 the extra singlet. Similar to the case of two singlets,
the above condition fixes the phase g that characterises the singlet to be (as before, up to a sign

which can be absorbed by a field redefinition of the scalar fields in the truncation)

_ padf®

= gy = 10.77
g T (10.77)

Therefore, a vacuum allows a consistent truncation with four vector multiplets only in the case
where it allows a consistent truncation with a SU(2) g triplet of vector multiplets and a consistent

truncation with a single vector multiplet characterised precisely by the phase (I0.71).

11 Conclusions

In this paper, we showed how to use ExFT to easily recover the infinite families of supersymmet-
ric AdS7 and AdSg solutions of massive ITA and IIB SUGRA, respectively, known in the litera-
ture [40,4T1[43]/44]. The ExFT description of these vacua allowed us to immediately construct the
“minimal” consistent truncation of 10-dimensional SUGRA around these solutions [49H5T][61], in
which we keep only the gravitational supermultiplet of the lower-dimensional gauged SUGRA.
We then analysed whether it is possible to construct consistent truncations around the supersym-
metric AdS vacua keeping more modes, which would result in lower-dimensional gauged SUGRAs
coupled to vector multiplets. Assuming the method developed in [2930] is the most general one

for constructing consistent truncations with vector multiplets, we found that

e there are no consistent truncations with vector multiplets around AdS; vacua of massive
ITA, unless the Roman’s mass vanishes. For vanishing Roman’s mass, there is a consis-
tent truncation that is itself a truncation (and dimensional reduction) of the maximally

supersymmetric consistent truncation of 11-dimensional SUGRA on S4,

e there are consistent truncations with vector multiplets of IIB SUGRA around its super-
symmetric AdSg solutions. In this case, the holomorphic functions describing the AdSg

solutions must satisfy further differential constraints.

In particular, we found that the only consistent truncations with vector multiplets of IIB SUGRA
around the supersymmetric AdSg vacua yield N < 4 vector multiplets with gauge group SU(2) x
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U(1), SU(2) x U(1)2, ISO(3) and ISO(3) x U(1), when the holomorphic functions f satisfy the

following differential conditions.

Consistent truncation with one vector multiplet The differential condition (I0.I2) is
0(gof*) —ce.=0, (11.1)

for some function g € U(1), where c.c. denotes the complex conjugate. While we will not attempt
to find general solutions of (ITI]) that are holomorphic and satisty (T33]) and (732), it is easy
to show that if one of the holomorphic functions is linear in the complex coordinate z, i.e.
f' = Ag + A; z, then the other function must be quadratic, i.e. f2 = By + By z + By 22, where
Ag, A1, By, B; and By are constant complex numbers. This implies that the Abelian T-dual
to the Brandhuber-Oz solution [62], which is described by a linear and quadratic holomorphic
function [41[63], admits a consistent truncation with a single vector multiplet, while the non-
Abelian T-dual to the Brandhuber-Oz solution [37], which is described by a linear and cubic
holomorphic function [50,63], does not. The consistent truncation Ansatz is given in section
[[0TT and leads to F(4) gauged SUGRA coupled to one vector multiplet.

Consistent truncation with two vector multiplets The differential condition that the

holomorphic functions must satisfy is now
af? = \oft, (11.2)

for some constant A\. As we discussed in section [IL.2] this necessarily implies that the internal
space of the AdSg solutions has a boundary. While such solutions are not interesting from a
holographic perspective, we can nonetheless compute the consistent truncation Ansatz, which
we have given in [[0.Z1] and which leads to F(4) gauged SUGRA coupled to two Abelian vector

multiplets.

Consistent truncation with three vector multiplets To allow for a consistent truncation

with three vector multiplets, the following differential condition must be satisfied:

1
dn® = = p*mg AP, (11.3)

r

where 5F of
1. padf® _ 1.pa0f* 54

a_ = @z — = ZJ aq 114
7 QZpgafﬁ of*dz 2Zp58f5 af%dz, ( )
and dr = —k, dp® with p*, k% the real/imaginary parts of the holomorphic functions f¢ =

—p® 4+ ik“. For any pair of holomorphic functions f® satisfying the above condition, there
is a consistent truncation of IIB SUGRA around that AdSg solution to 6-dimensional half-
maximal ISO(3) gauged SUGRA. The uplift formulae for the scalar fields is given in section
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0311 It is unclear whether there are globally regular supersymmetric AdSg solutions satisfying
the differential conditions (ITL3).

Consistent truncation four vector multiplets To admit a consistent truncation with four
vector multiplets, the AdSg vacua must satisfy the differential condition for the triplet, i.e. (II3])
with 7% as in (IL4), as well as

575
a<zig?afa) —ce.=0. (11.5)

For any pair of holomorphic functions f¢ satisfying the above, the corresponding AdSg solution
admits a consistent truncation to 6-dimensional half-maximal ISO(3) x U(1) gauged SUGRA.
Once again, it is unclear whether there are such globally regular supersymmetric AdSg solutions
of IIB SUGRA.

It would be interesting to classify for which Riemann surfaces ¥ these consistent truncations
exist, i.e. for which Riemann surfaces one can have holomorphic functions f® which satisfy the
above differential conditions and lead to closed internal manifolds, thus also satisfying (T.32) and
[T33)), or even to find a complete list of such holomorphic functions. For now, we are able to say
that the Abelian T-dual of the Brandhuber-Oz solution admits a consistent truncation with one
vector multiplet, the non-Abelian T-dual does not, and there are no globally regular solutions
that admit a consistent truncation with two vector multiplets. Moreover, the only possible gauge
groups in six dimensions are SU(2) x U(1), SU(2) x U(1)?, ISO(3) and ISO(3) x U(1). This is only
a subset of all possible 6-dimensional half-maximal gauged SUGRAs that admit supersymmetric
AdS vacua [52]. The other six-dimensional gauged SUGRAs do not have uplifts to IIB SUGRA.

Our results can be used to uplift the 6-dimensional solutions found in [64,[65] and to complete
their holographic study, while they also suggest that there are no IIB uplifts of the 6-dimensional
solutions [66] which requires the six-dimensional gauge group SU(2) x SU(2) (xU(1)). Similarly,
we found that of all the 7-dimensional half-maximal gauged SUGRAs that admit a supersym-
metric AdS; vacuum [58], only the pure SU(2) gauged SUGRA [47] and it coupled to an Abelian
vector multiplet can be uplifted to ITA SUGRA, where in the latter case the Roman’s mass is
necessarily zero. This suggests that the other 7-dimensional gauged SUGRAs with supersym-
metric AdS; vacua are lower-dimensional artifacts without a clear relation to 10-dimensional

SUGRA.
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A SL(5) ExFT conventions and ExFT/IIA dictionary

A.1 Embedding IIA into SL(5) ExFT

To embed ITA SUGRA in SL(5) ExFT we decompose SL(5) — GL(4)T — GL(3)T xR™, where
GL(n)* = SL(n) x RT. The GL(4) is the geometric group realised by the internal manifold of
a 11-dimensional compactification, which is broken to GL(3) x RT by reducing to ITA SUGRA.

Accordingly, we decompose an object in the fundamental SL(5) representation as
F* = (F', F*, F°) , (A1)

where a = 1,...,5 is the SL(5) fundamental index and ¢ = 1,2,3 labels the fundamental of
GL(3).

We will need to decompose the generalised tensors of the half-maximal structure, i.e. gener-
alised vector fields and generalised tensors in the 5 and 5 representation. A generalised vector

field, A%, decomposes as

1

AP = Vi, AT = ¢k W(1)k 5 A = §6ijk W(2)jk 5 A = w(o) s (A.Q)
a generalised tensor field B, in the 5 as
= 56 W(2)jk = ﬁf W(3)ijk = W(0) (A.3)
and a generalised tensor field C* in the 5 as
L ik
Ci = wyi, Cs = w(o) Cs = 3¢ Wik (A.4)
where V' are spacetime vector fields, w(,) are spacetime p-forms and €7k = 41 denotes the

three-dimensional alternating symbol, i.e. the tensor density.

Just as in the above, we also decompose the SL(5) “extended derivatives” as
Oab = (035, 0ij, Oia, Oss) (A.5)

These derivatives 05 # 0 are the usual ITA internal spacetime derivatives, and solve the SL(5)
ExFT section conditions
a[abacd] =0. (A.6)
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A.2 1IIA parameterisation of the generalised metric

The ITA parameterisation of the SL(5) generalised metric is given in [I7]. Here we translate
the parameterisation given there to the string-frame metric which we use in section [0 when
describing the supersymmetric AdS; vacua. The components of the generalised metric M® are

parameterised as

MiT = |g21262/5 (g5 4 |g| = BY BI) |

Mt — |g|2/562¢/5 (_Ai +gI 1B C) :

M5 — 7|g|73/562¢/5Bi7

M — |g|2/562w/5 (6—21/; + g ATAT + |g|_102) :
M5 — _|g|—3/5e2w/5c,

M5 — |g|73/5e2¢/5,

(A7)

where g;; is the internal 3-dimensional ITA string frame metric, A; is the 1-form, B;; is the 2-form
and Cjji, is the 3-form. The 2- and 3-form appear as B = 1¢* B, and C = %eﬁkcﬁk where

€% = 41 is the alternating symbol, i.e. a tensor density.

A.3 Including the Roman’s mass

As discussed in [T920], the Roman’s mass of ITA SUGRA appears like a deformation of the differ-
ential structure of ExFT and EGG, similar to a gauging of lower-dimensional gauged SUGRAs.

In particular, the generalised Lie derivative (Z.I]) now takes the form
1_.
LV = LV 4 2 VI e (A.8)

where £(%) is the undeformed generalised Lie derivative 1)) and Z%° satisfies Zl*¢l = 0 and
encodes the deformation of the generalised Lie derivative. For the Roman’s mass m, the only

non-vanishing component of Z¢ is

Z8%54 =m. (A.9)

The deformation Z%¢ generates an SL(5) transformation and thus can easily be worked out
for the generalised Lie derivative acting in another representation. In particular, to describe

AdS7 vacua, we require the massive generalised Lie derivative acting in the 5 which is
1
LeB® = LB — 272" B cpcaey - (A.10)

The differential operators d of (ZII) are also modified. Their deformations by Z¢ can be

determined by requiring them to be covariant under the deformed generalised Lie derivative
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(A.g)). In fact, the d operator appearing in the differential conditions remains unmodified
dc, = d¢,, (A.11)

where d© is the unmodified d : T' (R3) — I' (R2) given in (ZI)).

B SO(5,5) EXFT conventions and ExFT/IIB dictionary

B.1 Embedding IIB into SO(5,5) ExFT

To connect the SO(5,5) ExFT with IIB SUGRA we decompose SO(5,5) — SL(4) x SL(2)g x
SL(2) 4, where SL(2)g corresponds to S-duality while SL(2) 4 is an accidental symmetry in the
decomposition relevant to six dimensions and which will be broken by the IIB solution to the
section condition [53L[67]. For our purposes, we will need the decomposition of the 16 and 10

representations of SO(5,5) which is

16 — (4,2,1)® (4,1,2) ,

(B.1)
10 — (1,2,2)® (1,1,6) .
Thus, a generalised vector field becomes
A]\/I — (AU’i, Aai) , (BQ)

where we use i = 1,...,4 for the SL(4) spatial indices, « = 1,2 as SL(2) g indices and U,V = +, —

for the SL(2) 4 indices. We identify these components with spacetime tensors as follows

. . 1 o o
APt =V, AT = §fjklw<3>a‘kl, A% = wmy) i (B-3)

where V' is a spacetime tensor, wy, are spacetime p-forms, « is as before a fundamental SL(2)s
index and €“*! is the 4-dimensional alternating symbol, i.e. tensor density.

Similarly, a tensor in the 10 decomposes as B/ = (BY*, B%) which contain the spacetime
tensors

EDVE Ry P
BH =wp®, BT = ke Mowigr,  BY = 3¢ I W (B.4)

where w(,y are p-forms and a = 1,2 is an SL(2)s index.

Furthermore, with these conventions the SO(5,5) invariant metric is given by

€aBE 0
Ny = ( ﬁOUV ) : (B.5)

€ijkl
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with inverse
apf UV
g [€77€ 0
ne = ( 0 6ijkl> . (B.6)

We employ the following summation convention over the 10 indices
1 .
BlIBQJnIJ = BlIBQI = BlU’aBg U,a + 581U82ij . (B.7)

The identity matrix in the 10 takes the following form due to the summation convention (B

888y 0
of =Y : B.8

where 85 = L (g6 — olo¥).

Finally, the (WI)MN-matrices are given by

(Yar)V" 75 = V20606 6,
('Yij)Vk W= 2y/2¢VW gkt

17

(i) 170 = —V2eme
and the (1) M y-matrices are

(av)vi 7 = V2eapevvi
(Vid)y x wi = V2evwein (B.10)
(7i5) 5 Pl= 72\/555[657.

With the above decomposition, the “extended derivatives” are given by
O = (Ou,is Oa") (B.11)
with only 04 ; # 0. This corresponds to the IIB solution of the section condition ([2.2])
MN oy ®@oN =0, (B.12)

(71)

which we use.
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B.2 IIB parameterisation of the generalised metric

Here we give the IIB parameterisation of the SO(5,5) generalised metric in the 16 and 10

representations. The generalised metric in the 16 is given by
— 1 T S
Myiyj=ePgij+ e (0(24) 9ij + 7 Cika BECys 8 ”grt)
1 — T Q . . @
— 3¢ 320w (9ir Ciia B + (i > §)) + €2 Cipa Cjiy g™ H™

. 1 .
My _j=e 2 (0(4) 9ij — §Cika5kl glj) ,

B (B.13)
M_i_j=e"gy,
. , 1 . 4

Myio? =e™3? (C(4) gir 5F o — 5 ity B Gim B a) — ' 2Cikrg" H

M_i o0 = e gy B7*,,

Maigl = Mg Hog 1 e 326, g5 gy
Here g;; is the internal 4-d Einstein-frame metric, Cryy = 3;¢7*Cjjp is the dual of the fully
internal 4-form, C;; , denotes the SL(2)-dual of R-R 2-forms and 8%, = %eijklckla is its dual.

Throughout we dualise with €% = +1, the four-dimensional alternating symbol, i.e. the tensor

density. H,gp is the SL(2) matrix parameterised by the axio-dilaton 7 = e¥ + i Co,

2
Hop = —— ('Tl ReT) . (B.14)

Im7 \Rer 1

All our SL(2)s indices are raised/lowered by the SL(2) invariant €45 = €*? = +1 in a North-

west/Southeast convention. The e,s’s are normalised as

€an€?Y =68 (B.15)
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The generalised metric in the 10 is given by

1 1

Miatp = - (62 + 0(24)) Hu.p + T * (C’<2>a A C(Q)V) * (0(2)ﬂ A 0(2)5) Jiel
C (& . .

+ 2(2) (Hai’)’ * (C(Q)ﬁ N 0(2)5) 676 + (O( <~ ﬁ)) + 5 C(Q)ij @ C(?)kl B gzkg]l ,

Cw
(&4

1

M—a—ﬂ = g af s (B16)

T 1 o o
My = - <C(4)Haﬁ t5* (C2ya ANC(2)") Hw) BI728 4 e g% g1t Clapa

. 1 .
Mo = ~Hap 877

1
M_;,_a -8 = Haﬂ + % * (0(2)a AN 0(2)7) HVﬂ s

MY kl _ e (gzkg_]l _gzlg]k) + gﬁ”aﬁleHaﬂ )

B.3 IIB parameterisation of the ExFT tensor hierarchy

To complete the embedding of type IIB supergravity into exceptional field theory, one needs to
embed the supergravity fields with legs along both the internal and external directions. These are
encoded into the the ExFT tensor hierarchy fields A,,, B,,., . . . The map between supergravity and
ExFT fields can be obtained by comparing how both transform under gauge transformations or
by comparing their corresponding field strengths. We summarise the findings in the next section
B3I and give details of the derivations in sections [B.3.2] - [B.3.4

B.3.1 Summary of IIB parameterisation

The 10-dimensional ITB metric is given by
dsty = gi; Dy' Dy’ + gudatda” (B.17)

where g;; is the internal four-dimensional metric as computed from the generalised metric (B.I3),

(B16) and

Dyi =dy' + (24, dy?)dz" (B.18)

are the Kaluza-Klein covariantised derivatives of the internal coordinates with A#i the Kaluza-

Klein vector field. The “external” metric g, is related to the ExFT metric G, by
Guv = G| Gime| T4, (B.19)

where |gin:| denotes the determinant of the internal metric g;;.
For the remainder of this appendix, we will follow the conventions of [68] and denote the
10-dimensional type IIB supergravity gauge fields by a hat, i.e. C’(Q)a and CA’(ZL), unlike in the

main part of this paper. We will reserve the unhatted objects for later purposes in this appendix.
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Under the splitting of the 10 dimensions into six external and four internal directions, we write
them as

N 1= _ ~ _ ~ ~
C(Q)a = §Cw,o‘d$“ Ndx” 4+ Cun®dat A Dy" + =Cpp“Dy™ A Dy™, (B.20)

N~

and, analogously, for CA'(;l). The fields C,, %, Cun®, ... are the components of the KK-redefined
form-fields C,,, (0)*, Cp(1y®, ... defined in ([B:39). The barred fields that are totally internal,
i.e. Ci2)® and C4), are embedded into ExFT through the generalised metric (BI3), (BI6). The

rest can be read off from the ExFT tensor hierarchy fields as (see (B.53)

Ay = (Au)(v) )
Coy® = (A )®,
Cov @ = V2 (Bin) () + 1)y (A1) (B.21)

1 - .
Cu@ = (Au)@) + 5€sCu) NCio”,

_ 1 o
Cuv (2 = —V2(Buw) @) + U0y (A @) + 5€a8Ci 0" Cr)”

where (Au)w), (Aw))®, -y (Buw)©®, ... are components of the tensor hierarchy fields A,
and By,. The fields C’Wp (1) and C’Wpa (0) involve further fields of the tensor hierarchy. However,
they can also be determined (up to gauge transformations) from 6’(4), Cu (3) and C‘,“, (2) through
the self-duality condition of the 10-dimensional four-form.

In addition to the dictionaries between tensor hierarchy and supergravity gauge fields, one
can also embed the supergravity field strengths F(g)”‘ and F(g) into the ExFT field strengths. As
in the case of gauge fields, we write the 10-dimensional field strengths as

ﬁna:lﬁ o‘dz“/\dz”/\dszr17
®" = gy >

1- . . 1 - ~ ~ ~
+ EF#mn”‘d:c“ A Dy™ N Dy™ + ganpo‘Dym A Dy™ A DyP |

wom S dxt A dx” A Dym
(B.22)

and analogous for F(S)- The barred F fields are the components of the form-fields (B:45). Since
the internal space is four-dimensional, the only 10-dimensional field strength with a totally
internal part is F(g)o‘, given by

Fi5)* = dC»)*, (B.23)

with C'(g)”‘ the internal part of the 10-dimensional two-form, which is embedded into the ExFT
through the generalised metric. Since all ExFT field strength have at least two external indices,

the components of the 10-dimensional field strengths with one external leg can only be obtained
directly from the gauge fields. These are (see (B.50) and (B.54)

n « KK~ « ~ a

Fu@)® =D, " C® =dCm)”,

n KK A s 1 ~ arpm p_ 1 A  a A B (B.24)
Fu@) =Dy " Cay) —dCu ) = 5€apC)” A" — 5€asCum” A"
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The rest of the components can be read off from the field strengths of the ExF'T tensor hierarchy

fields as (see (B.60Q))

F,ul/ = (‘F,ul/>('u) )
Fuw)® = (Fu) ) + 17, Ci2)%,
F,ul/p (0)04 = \/5 (HHVP)(O)a ) (B25)

_ _ _ 1 _ _
o 3) = (Fun) () + €apFru )™ A Ci)” + ur,, Cay + 7€a8C2)" A 17, C2)”
Fuvp(2) = —V2(Huwp) @) + €apFup 9" Cr)”

where F),,, is the field strength of the KK gauge field A, (see (B.40)) and (Fuw) () - - - » (Huwp) )
are the components of the ExFT field strengths F,,, and #,,, defined in (23] and (7).

As for the gauge fields, the components F; y and Fuupa&(o) can be obtained from the 10-

prpo,(1
dimensional self-duality condition for F(g).
B.3.2 Tensor hierarchy of SO(5,5) Exceptional Field Theory

The tensor hierarchy of SO(5,5) ExFT containts the fields A, By, Cuvp, - . - as listed in equation
@I4). As discussed in section [B] taking the type IIB solution to the section constraint [531[67]

these decompose into

Ap = Ap) A" + Aus) s
pr = B,ul/ (0)a + B,uv (2) + B,ul/ (4)04 ) (B26)

Cuvp = Cuup(l) + Cuvp n+ Chuvp (3) o
The gauge variations of A, and B,,, are given by

§A, =D,A—dE,,

(B.27)
5[5'#” = QD[HEV] +AA ]:#V — ‘A[H A\ 5./4”] — d@lw ,

where A € 16, £, € 10 and ©,,, € 16 are generalised gauge parameters, the derivative D,, is
defined as
D, =0.—La,, (B.28)

and F,,, is the field strength of A, defined in (2.3]).
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Gauge variations and field strength of A,

In the type IIB solution of the section constraint, the variation J.4,, decomposes as

KK
0Auw) = Dy " Ay,
o KK o o — o
04, = Dy A + Lo,y A = 45407, (B.29)
KK a =
§Au3) = DAy + Lay Aus) — capdAuy® Ay’ + dZ, (2,

where now L is the usual Lie derivatives, the derivative fo K is defined as

DfK =9, — La (B.30)

w(v)?

and the fields éu ()" and éu (2) are

B = V2Eu 0" + ta Au () (B31)

B = V2Eu(2) — thw Au )

with 2, (0)® and =, (3) being the zero- and two- form components of the gauge parameter Z,.
The field strength F,,,,, defined in (2.1]), decomposes as

(Fur)w) = 201,40 (v) = [Ap 0)> Av ()]

(Fuw (1)) = 2D{ A (1) + dByy (0)* (B.32)

KK >, el
(Fuv) ) = 2D( Ay 3) — dBuuy (2) — €ap A (™ A dAy (1)
where, analogously to (B:31)), the fields E#U (0" and B;w (2) are defined as

By ) = V2B 0" + tay, o A ()"

. (B.33)
By (2) = V2B (2) — tap 0y A 3) »

with By, )® and By, (2) components of B, .
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Gauge variations and field strength of B,

The fields B, )* and B

v (2) transform under gauge variations as

5B,uv(0 = \/5(5[)’”1,)(0 “+ Lt?A[u(v A vl (1 )a LA @ 6A

=2D%E0)" + Lag B 0% + tFu)a) A(l) :
5Bul/ (2) = \/_(58#’/)(0) - L‘SA[u (v) AV] (3) T tAL (v)5A”] (3)
1 i N
KK o
= 2D (~u1< 2) ~ 5y (1) AA(U) + €apd A )20 )7 + Lagy Buw 2
1 o = 1 . 5
= 5€sh)* N B 0)” = UFu)wAE) — Feas(Fu) ) AA@)” +dOu ),

(B.34)

where the field @ (1) is a redefinition of the one-form part of ©,,. Finally, the field strengths
of the fields BW (0" and B y can be obtained from the field strength #,,, (without tilde),
defined in ([271), as

pv (2

r7 a — (e KK 5 « «
Hyp )" = V2 (Hywp) )" = 3D By 0 = 31(F ) Aol (1)
Hyvp2) = V2 (Hpuwp)(2) (B.35)
KK a KK )
= 3D, Byl 2) + 3R Apl @) + €ap Al (™ A DS AL 1)
+3¢ap dAy 1) Bup) 00" + dChup 1y
where éul/p (1) 1s again some redefinition of the one-form part of C'Wp.

B.3.3 KK decompositon of type IIB supergravity

The bosonic field content of type IIB supergravity is given by a metric field §, an axio-dilaton
field H, a SL(2)-doublet of two-form fields é(i)a and a four-form field C(zl)- The sub-index (p)
indicates that the object is a p-form from the 10-dimensional point of view. The gauge variations
of C’(Q)a and a CA’(ZL) are
0Cup™ = d/\(i)o‘ ,
) . 1« s (B.36)
50[“9,5[7 = d/\(g) + ieaﬁA(i) A F(g) ,
and their field strengths
Fg)" =dCg)",
1 s (B.37)
F(5 = dC(4 Eaﬁc /\ dC(é)

Next we split the 10-dimensional space into a six-dimensional external and a four-dimensional

internal spaces. Throughout the rest of this section, we will use the field redefinitions of [6§].
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Our conventions for the coordinates are: x” are the ten dimensional coordinates, z* are the
external ones and y™ the internal, with 4 =1,...,10, p =1,...,6 and n = 1, ..., 4. The two-forms
fields C'(Q)O‘ decomposes under this splitting as
G ® = 2Co®da A da”
1 A 1.
= §Cw,o‘d$“ Adx” + Cun“da? N dy™ + §Cmno‘dym A dy™ (B.38)
14 R

50#,, (0)ad$“ Adx¥ + dxt N C'# (1)a + C(g)a s

where now the subscript (p) indicates that the object is a p-form from the point of view of the
internal space. The four-form C'( i) decomposes in an analogous way. Next, in a standard Kaluza-
Klein manner, we redefine these form-fields by projecting the 10-dimensional curved indices into
six-dimensional ones using the projector Puﬂ = e#“eaﬂ, where a are the external flat indices and

a

ep” is the 10-dimensional metric vielbein in a frame where it is upper-triangular. We obtain

C»* = C»)®,
Co® =Cum® —1a,C”,

Crv0)® = Ch ()* + 2LA[,LCA'V] W = ta,a,Cin®,
Ciay =Clay (B.39)
Cr@) =Cu —ta,Cy,

Cuv ) = Cw 2) +204,Co) 3) = 14,04, Clay

where A, is the KK gauge field, with field strength

Fp =20, A, — [Au, A (B.40)

“w

For computational purposes it is worth noticing that the 10-dimensional two-forms (B.38)) can

now be written as

~ 1= _ ~ _ ~ ~
Cg)™ = 50w da* Nda” + Cun®da? A Dy" + 5o Dy™ A Dy, (B.41)

N~

with
Dy" = dy™ + (ta, dy™) dz* (B.42)

and analogously for any other 10-dimensional form. Furthemore, because of the Chern-Simons

term in the five-form field strength, the four-form needs some extra redefinitions (see for instance
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[68169]), namely

_ 1 _ o _
Cay=Cy»  Cu =Cug ~ 5¢a8Cu)* N Ci»y”,

B 1 B B (B.43)
Cuv (2 = O 2) = 5€aCiuw 0" Cr)”
For completeness, we also define

C*=Co% G =C)®  Cuw©®=Cuwn” (B.44)

Analogous definitions apply also for the field strengths. In particular, now,

Figy* = Fiz)*,
Fu)® =Fu" — @,

(B.45)

Fu@ =Fu,

Fuv(3) = Fuv 3) + 2ea, By )

where we recall that there is no internal five-form because the internal space is four-dimensional.

Furthermore,
Fa)*=F»®, F.o"=FLho®  Fuo®=F.o®—wr.00%
Fuvp " = Fup©®s  Fuwy=Fuw,

, (B.46)
Fuv(3) = Fuv 3) = €apFu ) A Ci2)” = 18, Cray + 7€a8C2)" A 17, C)” s

F Fuvp(2) = €apFup 0)“Ca)”

wvp(2) =

where F),,, is the KK field strenght (B40).

Gauge variations and field strength of CA’(Q)”‘

Following the above redefinitions, the fields coming from the decomposition of CA’(Q)O‘ transform

under the gauge transformations (B.36) as
60(2)a = d}\(l)a ;
0Cu)* = DA™ = dAu () (B.47)

a KK a a
0Cuw )" = 2D, M) +tru A
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where F,, is the KK field strength (B.40) and the derivative DX is, as above, defined as

KK
D" =0,—La,.
Analogous to the gauge fields, the A-parameters are defined as

A0 =20 =An)*,

[e3%

>~

Au©@ =A@ =A@ —ra A

After redefinitions, the field strengths coming from F(g)a become

Fg)* = dCi»)”,
@ KK [e% «@
Fu@® =D, " C® —dCun)”,

«@ KK «@ «@
Fuw )™ =2Dp," Cyy)™ +dCu )%

a KK « a
Fuvp @ = 3Dy, Cup) ) = 3tr,, Cop (1) -

Gauge variations and field strength of 0(4)

The redefined fields coming from CA’(ZL) transform under gauge transformations as

1
0C() = dA) + 5apA)* A Fia)”

KK [e%
5C,(3) = DS Ng) — dAu ) + €apA)® AdC 1),

1
KK a
0Cu (2) = 2D, (Au] @ + 5€asr0)* A Cy ) ) + AN (1) + LR AB)

2

where the new M-fields are defined, analogous to the gauge fields, as

>l

1 By o
A@) =A@ — easrn)” A C)”

>l

Au(2) =
_ 1<, 8
A (1) = A (1) ~ 5€aBAD) " Cw ()5
together with

5‘(3) )

A3)

>

Au@) = Au(@) — LA @)
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1
+ €A\ A Fu (1) = 20 0)dCy) (1) + dCpuy 0)* AN A1)

A ]
w@ — 3¢5 (A0" A Cu)” + M0 C?)

M (1) = M (1) + 20, A0 (2) = 4,00, A3) -

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)



After redefinitions, the field strengths coming from F) become

Fyua) = Dy " Clay = dClu ) = 5€asC)" N Fun” + 5€asCi)™ N dCpu )
Fo3) = 2D{," Cy (3) + dCpuu (2) — €apClu () N dC,) (1)
KK
F:U'VP(Q) == SD[# C dC

wp (1) = 3tF, Cpl (3) — 3€apdCluy
—3€aﬂC[u<1> ADFECy )"

(B.54)
0" A Co 1)’

Summary of variations
Combining the results above together with diffeomorphism variations along a vector x in the
internal space one finally obtains

6C(2)" = dA1)* + Ly C»)*,
0Cu

DA = dNu0)” + LnCuay

b
and

(B.55)
K « «
oC (0) —QD[M )\u](O) JrLFW)\(l) + L CMV(O) ,

1
(50(4 = d)\(g) + §6a5)\(1)a AN F(g) + L, C 4)
0C,(3) =

@) —

Ay (2) +eapAn)* N dC, 1) + LyClua)
50#,, (2 = QD{;K ()\l,] 2) + —ealg}\ A C

) T A (1) + LR, AB)
1 (e}
+5€as(A)* A Fuw ()" = 2A

[u(0)“dCy]

(B.56)
v (1)’6 + dc,ul/ (0 ¢
The KK gauge field A,, transforms as

/\)\(1)’6) +LXC#U 2) 5

6A, = DEK (B.57)
B.3.4 Dictionaries SO(5,5) ExFT - IIB supergravity
By comparing (B:29) and (B.34) with (B.55) and (B.56) we can identify
A=Adw), G =A)w"  Cuw©® = Buw o (B.58)
Cu=Ae)y Cuwe = —Buwe,
and analogously for the gauge parameters
=Aw, A% = A, A0 =Z0 0
X (v) (1) (;1) 1 (0) w (0) (B.59)
Ay =A@, A = Eue)-
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We can also establish dictionaries between field strenghts. Comparing (B:32)), (B.35)),(B50) and
(B.E4) we obtain

Fuow=Fw)w s Fon®=Fw)0®  Fup©@ = Huwp " (B.60)
Fuwe =Fw)es Fupe = —Huwp
C S? conventions
We describe the S? by three functions y,, u = 1,..., 3 satisfying
Yuy" =1, (C.1)
where we raise/lower u,v = 1,...,3 indices with d,,. In terms of these functions, the round
metric on S$? and its volume form are given by
2 u 1 u v w
dsge = dy,dy", volgs = 5 Cuvwy dy® N dy® . (C.2)
The Killing vectors of the round S? are given by
’Ui = gijeuvavaij ) (03)

where 4, = 1,2 denote a local coordinate basis and ¢* is the inverse metric of the round S2.
Alternatively, the Killing vectors can be defined as in [14].
We also make repeated use of the 1-forms that are Hodge dual to dy, with respect to the
round metric ([C2)
0u = *dyy = €yowy’dy® . (C.4)

These form a “dual span” of the T*(S5?) to the Killing vectors, i.e.
10,00 = Guv — Yu Yo - (C.5)
Note that the 1-forms dy,, 6, and Killing vectors v, satisfy
Yudy" = yu0" = y,v* =0. (C.6)

All the objects we introduced above transform naturally under the SU(2)z symmetry gener-
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ated by the Killing vector fields.

L’Uu Vy = —Eypw v 5
Lvuyv = —€uow yw )
Lvudyv = —€uvw dyw )

Lvuov = 761““”9“1

D Dictionary between AdSgz conventions

Upon imposing the Cauchy-Riemann equations (.42]) and identifying the holomorphic functions
as in (T44)), we find the following match between our objects and those of [41].
_ 3w’ -

1 1,
== — A = D D.1
r=39, |dk| 15 55 D (D.1)

where, as in [50],
210G|?
K*G

Here, to differentiate our x from the objects denoted by the same symbols in [4I] we denoted

D=1+

(D.2)

theirs by an underline: k.
Our SL(2) doublet of 2-forms, C(2)*, are related to the complex 2-form, C(y), of [41] by

C(g) = —0(2)1 +’iC(2)2. (D.3)

Similarly, our axio-dilaton, H®? is mapped to the complex scalar B of [41] via

o L4 (Hi2)® + (Hzo)?

B = .
1+ (Hig + i Hag)?

(D.4)

We can similarly match our minimal consistent truncation with that found in [50]. To differ-
entiate between our scalar field X, gauge fields A4, A*, two-form fields By and those of [50], we
will denote the objects of [50] by an underline, i.e. X, A? A* B. We use the same notation for
the field strengths, i.e. our objects are F(Q)A, F(2)4 and F(g) and those of [50] are E(Q)A, E(2)4
and E ). The map is now given by

2
X—x', =24 aiopt pop.
7 3 (D.5)
b A 5 A b4 _ 4 2 0
Foy® = 5L, Foy" = Ey)~, Figy = E3y,
and our function A is related to D of [50] by
- 3k'G ___,
A=——X""D D.
128 — (D-6)
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