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Abstract

Surrogate-based optimization of distillation columns using an iterative Kriging approach is investigated. To avoid sub-
optimal local minima the focus lies on deterministic global optimization. The determination of optimal setups and oper-
ating conditions for ideal and non-ideal distillation columns, leading to mixed-integer nonlinear programming (MINLP)
problems, serve as case studies. To cope with output multiplicities of the model an implicit surrogate formulation is

proposed.
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T temperature

TAC total annualized cost
\% vapor flow rate
X reference input set

1. Introduction

Rigorous optimization of distillation columns is of ma-
jor interest in the chemical process industry due to its high
economical impact. Due to the presence of discrete and
continuous decision variables this leads to mixed-integer
nonlinear programs (MINLP). Standard local optimization
or stochastic optimization approaches can not guarantee
that the optimum found by the optimizer is a global op-
timum. Alternatively, deterministic global optimization
based on convex relaxations within a branch and bound
framework is an interesting approach for solving such prob-
lems, e.g. see the textbook by Locatelli and Schoen (2013)
for an introduction. However, computation times are of-
ten prohibitively large when using general purpose global
optimization software (Nallasivam et al., 2016).

Exploiting problem-specific properties enables signif-
icant reductions of the computational effort, which was
demonstrated in (Ballerstein et al., 2015) for binary ideal
distillation and extended in (Mertens et al., 2018) to mul-
ticomponent mixtures. The monotonicity of concentration
variables in distillation columns was exploited to systemat-
ically reduce the search space of the problem using specific
model reformulations. However, in general, an extension
to non-ideal mixtures is not possible (Kefler et al., 2019).

Different solution approaches were recently proposed
for the case that a suitable method for deterministic global
optimization of the original model is not available. Nalla-
sivam et al. (2016) presented an algorithm for calculating
minimum energy requirements for thermally coupled dis-
tillation column configurations. The algorithm is based
on a shortcut model which is only valid for ideal mix-
tures under minimum reflux conditions. Quirante et al.
(2015) suggested to use surrogate models based on Krig-
ing interpolation for optimization of distillation columns
to reduce computational complexity. The main emphasis
here was on local optimization but it was also suggested
to use Kriging models to reduce computational complexity
in deterministic global optimization. Ibrahim et al. (2018)
used an artificial neural network in combination with a
support vector machine for the optimization of a crude oil
distillation unit. The resulting MINLP was solved using a
genetic algorithm. Eason and Biegler (2016) presented a
hybrid approach for process optimization, where computa-
tionally expensive parts of a process are replaced by Krig-
ing models. A novel trust region optimization approach
was used to solve their NLP problems. As the choice of
the right surrogate model is non-trivial a novel error metric

(a) without output multiplici- (b) with output multiplicities
ties

Figure 1: Sketches of response surfaces. The input set is shaded, the
output is colored.

approach for the selection of the best surrogate was pre-
sented by Audet et al. (2018). Kieslich et al. (2018) used
an iterative surrogate optimization approach with poly-
nomial surrogates, employing a multi-start local search in
each iteration. Thorough literature reviews on surrogate
based modeling (Bhosekar and Ierapetritou, 2018; Saman
et al., 2012) and surrogate assisted optimization (Boukou-
vala et al., 2016; Forrester and Keane, 2009) can be found
in various fields of engineering.

The difficulties in solving the original model formu-
lation can be traced back to computationally expensive
correlations. In this work, surrogate models are used
to describe these expensive correlations and the resulting
models are solved to global optimality. By an iterative ap-
proach, the surrogate is further refined and the solution is
adapted in order to be feasible for the original model. This
method is an extension to the algorithm presented in the
paper (Kebler et al., 2019). Prior results are extended by
formalizing the algorithm and by dealing with more com-
plex case studies. One of the considered mixtures results
in a setting with multiple possible product compositions
for the same column specifications. Such output multi-
plicities are given implicitly as the solution set of a highly
nonlinear equation system. Standard Kriging approaches
are able to deal with smooth, continuous response sur-
faces without output multiplicities, like depicted in Figure
la. The figure shows the response surface to the input set
[0,1] x [0,1]. However, they are not able to cover prob-
lems where output multiplicities may occur and behave
poorly for systems with discontinuities or nonlinear trends
(Stephenson et al., 2004). One example of such a response
surface with output multiplicities is depicted in Figure 1b.
Hence, implicit surrogate models are investigated and used
for those cases.

The outline of the paper is as follows. The general con-
cept of Kriging interpolation is briefly explained in Section
2. Section 3 defines the considered optimization problems.
The method employed in this work to solve the optimiza-
tion problems and its algorithmic implementation is de-
scribed in Section 4. Section 5 includes two case studies.
The first case study consists of two parts. In the first part,
a globally optimal reference solution for an ideal multicom-



ponent distillation process is calculated with the methods
described by Mertens et al. (2018). It is demonstrated that
the new surrogate-based approach finds a solution close to
a global optimum. In the second part, the thermodynam-
ics of the distillation process are assumed to be non-ideal
and the surrogate-based approach is used to calculate an
optimal solution. By comparing the ideal and non-ideal
optimization results it is shown that the process behaves
only moderately non-ideally in the region of interest. In
the second case study a highly non-ideal multicomponent
distillation process is considered, which does not admit an
explicit Kriging formulation because of steady-state mul-
tiplicities. It is optimized using the surrogate-based ap-
proach with implicit Kernel interpolation.

2. Surrogate models

Input-output or response surface models can be used
to approximate rigorous process models, trading computa-
tional efficiency for accuracy. Numerous approaches such
as artificial neural networks, e.g. (Nentwich and Engell,
2016), support vector machines, e.g. (Bennett and Camp-
bell, 2000), polynomial chaos expansions, e.g. (Zhang and
Sahinidis, 2013), and more advanced approaches like the
ALAMO toolbox (Cozad et al., 2014) for an automated
learning of algebraic models for optimization are used in
many fields of engineering. In this work Kriging and Ker-
nel interpolation are used, the former gained much interest
in chemical engineering over the last years due to its inher-
ent statistics. Note that the other approaches mentioned
above may also be utilized instead of Kriging and Kernel
Interpolation to generate the surrogate models used in this
work.

2.1. Kriging Interpolation

Let f : R™ — R? be the vector-valued function to
be approximated. The corresponding Kriging interpola-
tion f : R™ — R% is of the form f(x) := q(x) + z(z).
In general, g(x) is a vector-valued polynomial that is fit-
ted to the original function f(x). Function z(x) is also
vector-valued and designed to approximate the remaining
difference between g(x) and f(x). In this work, ordinary
Kriging is applied, which means that the polynomial g(x)
is chosen to be equal to a constant vector €. As noted
by Papalambros and Wilde (2000), this restriction does
not impair the accuracy of the resulting Kriging model for
smooth functions significantly, as most of its information
is contained in z(x).

The construction of z(«) is derived in the following. It
uses the evaluation of function f(x) at a certain number
of reference points T € R™, k = 1,..., N. The function
value of z(x) is then given by the weigthed sum of the
difference between g(x) and f(x) at all these reference
points, i.e.

(@) = (f (@) - &) wi(a),

k=1

with a vector-valued weight function w(x) = (wq(x),. ..
depending on the distance between = and Z*. This leads
to the following form of the Kriging interpolation:

T

(@) -8

The weights are calculated using a parameterized function
c:R™ x R™ — R and a correlation matrix R € RVXV as

w(xz) =R : . (2)

The choice of ¢ is non-trivial and crucial for the accuracy
of the final surrogate model. As the best choice is usu-
ally unknown a priori, a parameterized function is chosen
and the parameters are optimized to generate the surro-
gate model. One frequently used function is of the form
(Caballero and Grossmann, 2008)

Pz‘) .

For ' = x? the function equals 1, the parameter vector
0 € R™ dictates how fast the function tends to zero for
x! # x? and the parameter vector p € R™ dictates how
smooth the function is.

The interpolation matrix F' € R¥¥ is defined as

m
(&%) = exp (— S bl - a7
=1

F=(f")—¢... . f@")-¢ R, (3)

to obtain the final equation for the Kriging interpolation:
c(x, zh)

flx)=¢+F : : (4)
c(xz, zV)

Kriging models interpolate the original function, i.e. the
approximation given by the surrogate equals the original
function values at each reference point,

F(@") = f(3")

In order to achieve this, the weight w(x) in Equation (1)
is set to be the kth unit vector for reference point k,

forall ke{l,...,N}.

w (:Ek) =e, forall ke{l,...,N},
or equivalently
w' (&'
w' (3_32
: =1
w’ (&)

;wn(z))



By Equation (2), this, for instance, holds, if
c(zt, z!) c(zV,z!)
R—| 1 NG
LaN)y .. @V, zN)
To save time during the execution of the interpolation of

Equation (4), the interpolation matrix F' is calculated of-
fline using Equations (3) and (5), that yield

(f(@') - ¢)

—1

(T

T

FR'= :
_ T
(f(@Y)-¢)

The parameter vectors 8, p and € have to be calculated
during the so-called fitting process. Following Quirante
et al. (2015) the fitting is done by maximizing the loga-
rithmic likelihood function, i.e. minimizing the negative
logarithmic likelihood function

min{—log(L) | p; € [0,1.99],6; > 0},
log (L) = —N/2 (log (¢?) + log (27))
—1/2log (|| R]|)
1 (20%) (¥ (@) 1)

"R (Y@ -1¢"),

where
o?=1/N(Y(z)—1¢") R (Y (z) - 1£"),
and the output matrix Y € RV*? is defined as
Fr (=)
Y@=
Fr(@")
In this paper the parameter vector £ is set to be the mean
of the output, i.e.
N

(=5 21@).

j=1

2.2. Kernel Interpolation

Calculating statistical properties of Kriging interpola-
tion requires knowledge of the correct covariance function
c. If the chosen correlation ¢ does not have the proper-
ties of a covariance, the method presented above is called
Kernel interpolation. As noted by Scheuerer et al. (2013)
Kernel interpolation is mathematically equivalent to Krig-
ing interpolation, but allows more general correlation func-
tions.

For the implicit surrogate formulations used in the sec-
ond case study presented in this work a linear correlation
function is employed, therefore it will be called Kernel in-
terpolation. The kernel function used for fitting the sur-
rogate model is

c(xt, x?) = 10H1 - |w11 —x?.
i=1

The interpolation itself remains the same.

3. Definition of the Optimization Problems

The original optimization problems dealt with in this
work are mixed integer nonlinear programming (MINLP)
problems of the following form:

min  J(&),

s.t. h(Z) =0,
g(x) <0, (OP)
reG, GCR",
,€Z, ZCZ, foralliel,

where J(&) is the objective function, k(&) are the equal-
ity constraints, such as mass balances, and g(Z) are the
inequality constraints, such as purity requirements. Vari-
ables z; with ¢ € I have to fulfill integrality restrictions.

For the applications considered in the computational
study, the variables Z; can be interpreted as either model
input or designated model output. Hence, the variable
vector & is divided into two parts denoted by x (input)
and y (output), i.e. & = (x,y). Note that, depending on
the problem, different choices of & and y out of & may be
possible.

In a next step, an approximation of Problem (OP) is
constructed by reorganizing the prior equality constraints
h(&). Computationally expensive correlations between x
and y are treated as a black-box and replaced by a surro-
gate function iz(w, y), while remaining equality constraints
are captured by h(x,y) = 0. Furthermore, the variables
x are assumed to be bounded and scaled onto the interval
[0,1] in order to fit the black-box model.

The resulting approximation problem is given by

min  J(x),
s.t. h(x,y) =0,
h(z,y) =0,
g(x,y) <0, (AP)
xesS, SClo1m,
;€ Z, foralliel,

ye K, KCR.

For this work, it is assumed that all functions are con-
tinuous and that there exists a feasible solution to both
Problems (OP) and (AP).

In the following sections, an algorithm is described and
applied that iteratively solves Problem (AP) in order to
find good approximate solutions for Problem (OP). In
each iteration, the feasible set is adapted and the quality
of the surrogate function h(x,7) is enhanced.

Two separate cases are considered. The first case deals
with the so-called ezplicit model, for which the computa-
tionally expensive correlation between input « and output
y can be described explicitly by a function y := f(x). Re-
placing f(x) by a surrogate function f(z) as described in
Section 2 gives rise to the constraint function

h(z,y) == f(x) —y
for Problem (AP).



The second case deals with the so-called implicit model
that is used when output multiplicities, i.e. multiple solu-
tions y for the same input @, occur. These solutions are
given implicitly by an equation f(x,y) = 0. In this case,
a surrogate function f (z,y) is used to derive the contraint
function

h($7y) = f<w7y>
for Problem (AP).

To the best of the authors’ knowledge, capturing out-
put multiplicities of real processes with Kriging or Kernel
interpolation, as in the latter case, is not yet discussed in
the literature.

4. Algorithmic Implementation

The algorithm used in this work is implemented into an
automatic framework in Matlab and calls GAMS/BARON
(Tawarmalani and Sahinidis, 2005) as a global subsolver.
The algorithm is displayed as pseudo-code in Algorithm
1 and is described in more detail, next. For the sake of
simplicity the presentation of the algorithm is restricted
to the explicit model in this section. The adaptation for
the implicit model is mentioned in Section 5.

Algorithm 1 Optimization Algorithm (stated for the ex-
plicit model)

1: Input: Optimization problem (OP). Desired number
of reference points N.

2: Quput: solution vector x°Pt

set initial sampling region S = [0, 1]™ (corresponds to

the initial domain for Problem (AP))

w

4: set reference input set X = {0,1}™ (all vertices of S)

5: set relative improvement € = 1

6: set iteration counter i =0

7: repeat

8: calculate i =i +1

9: use MATLAB function HALTONSET(N, S) to gen-
erate reference inputs &',..., "

10: forallz ¢ (XNS)u{z!,...,2"} do

11: evaluate f(T)

12: use MATLAB/FMINCON to solve maximum likeli-
hood for optimal Kriging parameters

13: generate surrogate function f and resulting Prob-
lem (AP)

14: if exist(z°P') then

15: set optcr = toly

16: call GAMS/BARON to solve (AP) for zoPh
with initial value &y = x°P*

17: else

18: set opter = tolq

19: call GAMS/BARON to solve (AP) for z°Ph

without initial value a°Pt-

Note that the number N and the choice of reference
points & may greatly influence the accuracy of the surro-

20: use MATLAB function FMINCON to solve (OP) for

x°PH? with initial value g = Z°PH?
21: if exist(z°P"?) then
22: add z°P*? to sampling set X = X U {x°Ph}
23: if exist(x°P") then
24: if J(z°P%?) < J(x°P') then
25: calculate e = |1 — J(x°P"") /J((x°P")]
26: set new best known solution z°P' =
wopt,i
27: define new sampling region S (contract-

ing the domain for Problem (AP) with 1/(2 - 4), cen-
tered around z°P?)

28: else
29: set new best known solution Pt = g°Pt*
30: else
31: add z°P"" to sampling set X = X U {Z°P"'}
32: until iteration ¢ == iterym., or € < reltol
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Figure 2: Difference between Halton squence (orange triangles) and
random set (blue dots).(For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the
article.)

gate function f(x). For a given number N a Halton se-
quence (Kocis and Whiten, 1997) is used as a space filling
approach to generate the sampling points. This prevents
clustering of reference points in unimportant regions of the
search space S. For a limited number of samples clustering
in unimportant regions increases the chance that the surro-
gate model does not represent the search space .S correctly,
because certain important features are not captured.

Figure 2 illustrates the difference between a space fill-
ing approach and a purely random approach in two dimen-
sions. The orange triangles represent the points chosen
using a Halton sequence, whereas the blue dots are chosen
randomly. Clustering of the blue dots can be observed in
multiple places, e.g. in the upper right corner.

This work deals with mixed-integer problems, thus in-
teger variables as well as continuous variables have to be
chosen for each Z*. A Halton set C is generated for the
domain of continuous variables and another Halton set D
is generated for the domain of the discrete variables, where
the single entries are rounded to the nearest discrete value.
The reference set X then comprises each combination of



discrete and continuous coordinates X = C' x D, e.g. for 10
samples in the continuous domain and 12 samples in the
integer domain there are a total of 10 - 12 = 120 reference
points Z. In order to prevent Kriging from extrapolating
beyond the given samples, the corners of the sampling re-
gion are always included in X, i.e. the number of reference
points N is at least 2™. Therefore a rather large number
of reference points is needed, but it is made sure that each
hypersurface defined by a set of integer variables is ap-
proximated equally well. Furthermore, it was found that
this approach leads to smoother hypersurfaces, which is
preferable as this leads to fewer local minima being found,
reducing the computational effort during global optimiza-
tion.

After the sampling is done, the original function f(x)
is evaluated at each Z* to generate the output matrix Y.
The reference points and the outputs are scaled such that
they lie in the interval [0,1]. With the scaled Y and &
the Kriging parameters p and @ are calculated, as well as
the mean of the outputs € and the interpolation matrix
F. The parameters are then written into a file readable
by GAMS.

In each iteration %, a globally optimal solution Z°P%* of
the Surrogate Problem (AP) is obtained by applying the
deterministic global optimization software GAMS/BARON.
Note that surrogate problem and the Original Problem (OP)
may not have the same feasible set. Mismatch between the
surrogate model and the original model leads to the possi-
bility of Z°P** being suboptimal or infeasible for the orig-
inal model. Therefore, the original model is subsequently
solved using a local optimization method with Z°P%¢ as a
starting point to obtain a solution x°P%* that is feasible
and locally optimal for the original problem.

If a feasible x°P%? is found, it is checked whether the
objective function J (wOPt’i) has a smaller value than the
currently best known solution £°P*. If the value is smaller,
the point is saved as the new best, known solution. Fur-
thermore, °P%* will be added to the set of reference points
X.

Table 1: Chemical species

No. Name

Dimethylformamide
Decane

Dodecane

Dodecene
Tridecanal

U W N =

to reduce its error tolerance. Hence, the limit on the de-
sired optimality gap (opter) is also reduced after the first
iteration.

The entire procedure is repeated until either the itera-
tion count ¢ reaches a predefined limit or the relative im-
provement of the successive feasible solution drops below
a given threshold.

In this work the parameters of Algorithm 1 are set as
follows. The highest allowable iteration count iteryx = 5,
the improvement threshold ¢ = 0.02 and the parameters
for the relative optimality gap are set to tol; = 0.1 and
tols = 0.01.

All Kriging models constructed through our computa-
tions are implemented as MINLPs and solved using the
GAMS 24.6.1 framework with the deterministic global op-
timization software BARON 15.9.22.; Cplex 12.6.3 is used
as a LP/MIP subsolver and CONOPT 3.17A is utilized
as a NLP subsolver. The calculations are carried out on
a Linux PC with 3.40 GHz Intel Core i7-6700 CPU and
16 GB memory.

5. Case Studies

This section is divided into two parts. The first part
deals with the optimization of a distillation column which
is moderately non-ideal in the region of interest. In this
part two settings are considered. In the first setting, the
non-ideal thermodynamic properties are approximated by
an ideal model that is solved by the optimization Algo-

To save computation time, £°P* is given to GAMS/BARON rithm 1. A globally optimal reference solution is calcu-

as a starting point, i.e. GAMS/BARON has a valid upper
bound after the first iteration. An initially available upper
bound usually accelerates convergence for global optimiza-
tion by allowing to cut off additional search regions. For
the compensation of differences between the models, Mat-
lab and GAMS, an additional optimization step within
the neighborhood of z°P' (£5% in the continuous vari-
ables) is conducted to find a valid starting point for the
GAMS/BARON model.

As proposed by Caballero and Grossmann (2008), the
search space S is contracted around the optimal solution
x°P' and a corresponding new sampling set is generated in
each iteration, i.e. the sampling region S gets successively
smaller and is centered around x°P%. In general, this strat-
egy leads to a better approximation of the original prob-
lem. With an increase of the approximation quality, it
is also more rewarding for the global optimization solver

lated to validate the proposed Algorithm 1 in terms of
the approximation quality (see Section 5.1.1). In the sec-
ond setting, the thermodynamic properties are modeled as
non-ideal and Algorithm 1 is applied to obtain an approx-
imate solution (see Section 5.1.2).

In the second part the distillation of a highly non-ideal
mixture is investigated, where, due to steady-state multi-
plicities, the use of implicit surrogate models is necessary
(see Section 5.2).

5.1. Ezplicit Surrogate Model

The process considered is a novel hydroformylation pro-
cess of dodecene to tridecanal using a thermomorphic sol-
vent system as described by Schiéfer et al. (2012). A flowchart
of the process is given in Figure 3. In a previous work
by Kefler et al. (2017) the simultaneous rigorous global
optimization of the reactor and the catalyst recycling was
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Figure 3: Process flowchart, the shaded separation is investigated in
this work.

already presented. Global optimization of the product sep-
aration, shaded in Figure 3, is considered in this work.

The five components of the mixture are given in Ta-
ble 1. Note that n- and iso- species of components have
similar volatilities and are therefore treated as single com-
ponents in this model. Tridecanal is the high-boiler of the
mixture and it gathers at the bottom of the distillation col-
umn. The distillation column is assumed to be operated at
60 mbar at the top with a linear pressure drop of 30 mbar
along the column, i.e. vacuum distillation is employed.

The column model is implemented in Matlab as a dy-
namic model. The steady state solution for each refer-
ence point & is obtained using dynamic simulation with
odelbs. The model assumes: Thermodynamic equilibrium
between the vapor and the liquid phase, constant molar
overflow, a single feed and a total condenser.

The degrees of freedom include the vapor flow rate
V € [18,50] mol/s, the bottom product flow rate B €
[1.233,4.133] mol/s, and the number of stages in the rec-
tifying and stripping sections I, Is € [1,15], respectively.
The feed stream is assumed to be F' = 24.233 mol/s, with a

Table 2: Values and units for cost function parameters

Parameter Value Unit

K1 22824 s/mol - §/a
Ko 2556.2 $/a

K3 7.2 1

K4 0.81 1

K5 0.525 1

Ke 163.5543 $/a

K7 0.8 1

Ks 0.97 1

K9 0.725 1

stances are considered. They differ in the desired recovery
rate 7 of tridecanal in the bottom product of (a) 95% and
(b) 99%.

The sampling points are chosen as described in Sec-
tion 4. The number of sampling points in the initial opti-
mization step is 47 in the continuous variables and 25 in
the integer variables, i.e. a total number of 1175 sampling
points is used for both case studies. Note that, as with
every surrogate model, the choice of the sampling points
itself and the number of sampling points are tuning param-
eters. The number of samples in each dimension has to be
chosen depending on how complex the hypersurfaces are.
In the present case the number was determined heuristi-
cally as it yielded a good coverage of the response surface.
For different applications these numbers should be reeval-
uated, as they reflect a trade-off between the accuracy and
the speed of the algorithm.

5.1.1. Ideal Distillation
In this setting the phase behavior is described using

constant relative volatilities «; , with o = [51.35,27,8.43, 7.7, 1].

feed composition zfeea = [0.0634, 0.7014, 0.1533, 0.005, 0.0769The order of the components is the same as in Table 1.

A simplified cost function with lumped parameters based
on the cost model of McBride and Sundmacher (2015) is
used. The diameter of the column is assumed to be equal
for the rectifying and the stripping section, fixed estimates
for the density p, the vaporization enthalpy Ahy,p, and the
molar mass M from simulation data are used as simplifi-
cations to the original cost function. The total annualized
cost (T'AC) is calculated as

TAC = k1 -V + kg - (leot + K3)"™ - (V)75
+ k6 (leot — k7)™ - (V)™ $a™ !,

and takes the investment costs (length l., and diameter

of the column) as well as the operating costs (cooling water
at the condenser and vapor at the reboiler) into account.
The parameters k are specific to the mixture and can be
found in Table 2.

Note that the separation of tridecanal from the other
components is rather simple. Thus, a high purity of tride-
canal in the bottom product xs g > 0.995 is imposed.
In both, the ideal and the non-ideal setting, two test in-

Table 3 shows the optimization results for test instance
(a) for each iteration. On the left side of the table the de-
sign variables and the computation times are stated, fol-
lowed by the outputs of the Kriging models. The right side
of the table shows the output of the original model using
the design variables. Instances marked with an asterisk
are solutions obtained via local optimization. The values
given in the “time” column are the times needed in sec-
onds for running the proposed Algorithm. They are listed
separately for every single iteration.

The row labeled by “reference” shows a reference solu-
tion obtained by rigorous global optimization of the corre-
sponding ideal distillation column model. As shown in a
previous work by Mertens et al. (2018) these models can
be solved to global optimality in a short amount of time
using model reformulations and a problem specific bound
tightening strategy. These methods are implemented in a
SCIP 5.0 framework (Gleixner et al., 2017) and used to
solve the rigorous column model to global optimality.

The solution obtained in the first iteration is nearly



18 % more expensive than the reference solution, but also
overfulfills the desired specifications. The outputs of the
Kriging model and the Matlab model are identical, mean-
ing that the Kriging model is accurate in the region of the
solution. The following local optimization reduces the cost
significantly and brings the outputs to the desired speci-
fications. In the second iteration the cost is reduced by
2.39 %, thus a third iteration is done. The solutions of the
second and third iteration are identical and the algorithm
terminates. In the end, the Kriging algorithm yielded a so-
lution which is 2.38 % more expensive than the reference
solution.

Table 4 shows the results for test case (b) and is struc-
tured in the same way as Table 3. Again, the solution
of the first iteration is much more expensive than the ref-
erence solution with +14.13 % annual costs and the con-
secutive local optimization lowers this gap significantly by
approximately 10 percentage points. In the second iter-
ation the cost is further lowered. As the third iteration
yields the same solution as the second, the algorithm is
terminated. The final solution is only 0.68 % more expen-
sive than the reference solution.

For both test instances, the proposed optimization al-
gorithm generates a solution which lies in a close neigh-
borhood to a global optimum of the rigorous distillation
column model. The deviation is given by 2.4 % for test
instance (a) and by 0.7 % for test instance (b). Regarding
the computation times, the proposed method takes 943
seconds for all three iterations of instance (a) and 1259
seconds for all three iterations of instance (b). However,
this case study is not meant to compare the computation
times but to show the suitability of the Kriging approach
in terms of the quality of the solution.

5.1.2. Non-ideal Distillation

In the non-ideal case study the vapor liquid equilibrium
is described with an ideal gas phase and a non-ideal liquid
phase. The gas phase is described by Dalton’s law Py, =
Y - P and the non-ideal liquid phase is modeled using an
extended Raoult’s law Pyap, = X -y - Py,,, where x and Y
are the liquid and vapor mole fractions, respectively. For
the calculation of the vapor pressures the vapor pressure
correlation

loglo(P\;kap) =a; +a- T71
+az - logo(T) +ay - T +as - T?

is used, with parameters a; taken from McBride and Sund-
macher (2015), temperature 7" in K and Pj,, in mmHg.
To model non-ideal phase behavior in the activity coef-
ficients + different thermodynamic models can be used,
such as UNIQUAC or Wilson (Poling et al., 2000). In this
work a modified UNIFAC (Dortmund) model (Weidlich
and Gmehling, 1987) with parameters from McBride and
Sundmacher (2015) is used.

Figure 4 shows the non-ideal VLE as well as the VLE

with v = 1, i.e. the ideal VLE, for the two binary mix-
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Table 4: Computation results ideal model, 99 % recovery.

Left side: Surrogate model / GAMS results - right side: Matlab model

‘ X5,B

r

X5,B
1

time
1228

ls TAC

L

B

Iteration

0.9950
0.9900
0.9897
0.9900
0.9900
0.9900
0.9900

1.0000
0.9950

0.9950
0.9950
0.9950

| 0.9950

0.9950

782383(+14.13%)

8
8
5
5
5
5
4

1.854 26.299 4
1.854 23.689 4
1.854 23.689 4
1.854 23.713 4
1.854 23.713 4
1.854 23.713 4
1.854 24.149 3

)
) 21

(

(
690175(+0.68%)
690175(40.68%)
690175(40.68%)

712698
685507

1*

+3.97%
+0.59%

0.9950 | 0.9946

1

689538

2*

0.9950

1

10

Reference

08— DMF-Decane
’ —— Dodecane-DMF
0.6 -
—
0.4+
0.2
0
0 0.02 0.04 0.06 0.08 0.1

Figure 4: Binary phase equilibria for the mixtures DMF-Decane
(blue) and Dodecane-DMF (orange). The solid lines show the non-
ideal VLE, the dashed lines the ideal (v = 1) VLE. (For interpre-
tation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

tures DMF-Decane and Dodecane-DMF. In previous works
dealing with the hydroformylation process the column was
assumed to be ideal (Steimel et al., 2013) and modeled us-
ing shortcut methods (McBride and Sundmacher, 2015;
McBride et al., 2017). This case study aims at validating
the previous works and demonstrating the power of the
presented approach.

Algorithm 1 is applied to obtain a solution to this prob-
lem, which, based on the computational results from Sec-
tion 5.1.1, is expected to lie in the neighborhood of a glob-
ally optimal solution.

The results for test instance (a) in the non-ideal set-
ting can be found in Table 5. Due to the more complex
topology of the problem as a result of the non-ideal phase
equilibrium, the optimization of the first iteration takes
more time than in the ideal case. The local optimization
step is able to find a solution which exactly fulfills the de-
sired specifications and is able to reduce the cost by 7 %.
In the second iteration the cost is not reduced any further,
thus the algorithm terminates.

The results for test instance (b) in the non-ideal setting
can be found in Table 6. Like in the ideal setting, the time
needed to solve this problem is much higher than for test
instance (a), because the feasible region is smaller, i.e. the
specification is stricter. The local refinement generates a
solution exactly on the specifications. In the second itera-
tion a solution is generated, which is slightly (0.25 %) more
expensive than the first solution. Therefore the algorithm
terminates.

It turns out that the results in the ideal and the non-
ideal setting are very similar. The ideal optimal solutions
are a little bit more expensive, i.e. more conservative.

5.2. Implicit Surrogate Model

An implicit surrogate formulation for systems with out-
put multiplicities as in Figure 1b is proposed in this work.
Instead of building an explicit surrogate f(x) ~ y the new
surrogate is postulated as f(x,y) ~ 0. It is well known



Table 6: Computation results non-ideal model, 99 % recovery.

Left side: Surrogate model / GAMS results - right side: Matlab model

Iteration B 14 I lg TAC time X5,B r X5,B r
1 1.852 28.705 4 4 811677 60792 1 0.9937 0.9997 0.9934
1* 1.854 23.412 4 4 674449 0.9950 0.9900
2 1.855 23.081 2 4 650082 186 1 0.9955 0.9875 0.9830
2% 1.854 24.096 2 4 676158 0.9950 0.9900
Table 5: Computation results non-ideal model, 95 % recovery.
Left side: Surrogate model / GAMS results - right side: Matlab model
Iteration B |4 I lg TAC time X5.B r X5.B r
1 1.779 22.728 3 4 694306 1253 1 0.9500 0.9992 0.9538
1* 1.779 22.728 3 4 648854 0.9950 0.9500
2 1.779 22.728 3 4 646537 290 1 0.9500 0.9934 0.9532
2% 1.779 22.728 3 4 648854 0.9950 0.9500
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from bifurcation analysis (Seydel, 2009) that algebraic sys-
tems of this form are able to capture output multiplicities.

Although the single steps of Algorithm 1 remain the
same, i.e. sampling, fitting, global optimization and local
optimization, for each of these steps a different strategy
than in the explicit case is needed.

In this particular example the sampling is done using a
parameter continuation (Rheinboldt, 1986; Seydel, 2009).
After an initial sampling to generate different column de-
signs, i.e. vapor flow, length of the column and feed stage,
for each unique column design a parameter continuation
along the distillate product D is conducted.

Parameter continuation methods are used to approxi-
mate a solution of an underdetermined equation system of
the form

f(:li,y,W) =0, (6)

where w is a free parameter. In the present case w is set
to be the distillate flow rate D. Solutions of Equation
(6) are denoted as p. Starting from a known solution
) the free parameter gets shifted and the correspond-
ing other states, (**1) and y*+1) are calculated until a
predefined value of D is reached. To achieve this an iter-
ative predictor-corrector approach is used, which will be
discussed in the following. An illustration of the discussed
predictor-corrector approach can be found in Figure 5.

In the present work a so called tangent predictor (Seydel,
2009) is used. A tangent to the current solution p*) is
calculated by solving the linear algebraic system

£ (1 (40)) 0 =0

where F,, € R™+1Xm+2 g the Jacobian and z*) is the tan-
gent vector of the kth solution. In order to fix the length
and orientation of z(*) in Equation (7), the Jacobian needs
to be extended by a normalizing equation. One possible
choice is e;rz(k) = 1, which yields the following tangent

equation:
—1
z(k) = ( ) E€m+2.

Using the tangent it is possible to calculate a predicted
new solution 1) = pu®) 4+ 0 2% where o*) is the
step size of the current predictor step.

The predicted solution will lie in the neighborhood of
an actual solution, but it needs to be corrected, which is
why the corrector step is necessary. In this work the local
parameterization (Seydel, 2009) is used, where the solution
is parameterized along the locally most rapidly changing
state, denoted by index 1,

max (‘z(k)D = zi(k),

(7)

B (f (1)

€;

11

XMB,D

D in mol/s

Figure 5: Illustration of a predictor-corrector step of the used pa-
rameter continuation algorithm

and the parameterized system,

ﬂM)

F s = == 07
(p2,m) (mn
A (1 ) o =

is solved using the predicted solution f**1) as a start-
ing value for a Newton iteration to generate pu(**1). The
main tuning parameters of the presented parameter con-
tinuation algorithm are the step sizes of the predictor step
and the Newton iteration. If they are not chosen properly,
the algorithm may not be able to converge.

Using this parameter continuation approach, unstable
solution branches can also be calculated in contrast to the
dynamic simulation used in the previous section. Depend-
ing on the product specifications, the optimal solution may
lie in the unstable region and neglecting it would yield false
globally optimal solutions. Note that depending on the al-
gorithm and its parameterization, the parameter continu-
ation may generate more points than necessary for fitting
the surrogate model. In the present test cases a total num-
ber of 1145 sampling points is used.

The mixture investigated is the ternary mixture of toluol,
methanol and methylbutyrate presented by Dorn et al.
(1998). The mixture is highly non-ideal and has an azeotrope
between the heavy boiler toluol and the light boiler methanol.
A residue curve map including the azeotrope is shown in
Figure 6. The rigorous model is implemented in Matlab,
the activity coefficients of the mixture are calculated using
a Wilson model. Note, that due to the highly non-ideal
phase behavior an approximation of the process using con-
stant relative volatilities is not applicable.

The product specification is 91 % methanol in the dis-
tillate stream. This specification lies well above the azeotrope
shown in Figure 6, which lies at around 88 % methanol
in the distillate stream, but is still far from the highest
achievable purity. Therefore the space of valid solutions is
rather large.

See Figure 7 for illustrative continuation results. The
output multiplicities occur in all three plots. The first
two plots show the full hysteresis whereas in the third plot



M

Azeotrope

MB T

Figure 6: Residue curve map for the mixture methanol (M), methyl-
butyrate (MB) and toluol (T).

the multiplicities coincide. All relevant solutions lie in the
region after the right limit point in the bifurcation diagram
is passed. By exploiting this insight the sampling region
can be reduced by neglecting the first solution branch, i.e.
the region before the right limit point is encountered in the
direction of increasing D. Thereby the number of output
multiplicities reduces from 3 to 2.

Degrees of freedom, x, are the vapor flow rate V €
[2,13]mol/s, the head product flow rate D € [1.1,1.5]
mol/s and the number of stages in the rectifying and strip-
ping section I, Iy € [2,25]. The feed stream is assumed
to be F' = 1.8 mol/s, with a feed composition zfeeq =
[0.2806, 0.6566, 0.0628] of toluol, methanol and methylbu-
tyrate, respectively. Inputs of the surrogate model are the
degrees of freedom, x, as well as two mole fractions, y,
xmB,p and xT,p. The outputs of the surrogate model are
the mole fraction of the third component xy p and a logic
variable which equals zero if the solution is feasible.

For the sake of simplicity the cost function is the same
as in the above case studies.

The kernel function used for fitting the surrogate model
is

c(xt, x?) :1O~H17 |a:,1 fmﬂ

=1

It is chosen because preliminary investigations have shown
that it works well for the present case study.

To close the gap between the surrogate and the rigor-
ous model a problem specific line search algorithm is used
for the local optimization step, which is used to generate
an upper bound for global optimization of each surrogate.
Expert knowledge of the process yields the insight that
a change in the feed position as well as a change in the
vaporization rate have a strong influence on the achiev-
able product purity. If V' is increased the turning point is
shifted in the direction of decreasing D, which results in a
purer product stream. The same behavior can be achieved
by shifting the feed position in the direction of the bottom
of the column. Because shifting the feed position is more
cost efficient, this measure is the first thing the algorithm
tries. If there is no significant change in product purity
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anymore V is increased. If a setup yields a purer product
than specified, V' will be reduced until the specification is
reached. An illustration of the influence of the feed po-
sition and vaporization rate is shown in Figure 7. Note
that the dashed lines do not represent the envelope, but
only possible realizations of the column. The specifica-
tions used in this case study always give a cost optimal
solution in the turning point of the composition profiles
of Figure 7. This can be explained with the topology of
the bifurcation diagrams in Figure 7. Any increase in col-
umn length or vaporization rate corresponds to an increase
of operation or investment costs. This will shift the left
limit point of the bifurcation diagram to higher methanol
concentrations above specification. Therefore at the op-
timal solution the limit point and the specification have
to coincide. To calculate the turning point an underlying
parameter continuation has to be used during the local
optimization.

The results are presented in Table 7. In the first iter-
ation the surrogate solution and the solution of the local
optimization algorithm differ only slightly. The feed posi-
tion was shifted by one stage and the vaporization rate was
slightly increased to fulfill the purity requirement, thereby
making the column a little more expensive. In the second
iteration the generated surrogate model is already able to
capture the rigorous model quite well and there is only a
small deviation in the vaporization rate after the local op-
timization step is finished. Because the TAC was reduced
by 2.93% a third iteration is conducted, which yields the
same result as the second iteration and the algorithm ter-
minates.

6. Conclusion

In this work an approach for the global optimization of
distillation columns using explicit and implicit surrogate
models was proposed. For the global deterministic opti-
mization state of the art software is used, upper bounds
were generated with tailor made local optimization strate-
gies.

To prove the effectiveness of the presented approach,
two case studies were conducted. The first case study deals
with a five component distillation column and is split into
two test settings. In the first test setting ideal phase be-
havior is assumed. The results show that solutions ob-
tained by the new approach are close to the solutions
calculated with a rigorous global optimization approach
presented earlier by the authors. The second test setting
shows the applicability of the approach to an extended
problem with non-ideal phase behavior. Both test cases
allow the use of explicit surrogate models because both
yield unique stationary solutions.

The second case study deals with a highly non-ideal
three component distillation column and is used to show
the applicability of the approach under the presence of
steady state multiplicities. To cope with the steady state



Table 7: Computation results Toluol column.

Left side: GAMS result - right side: Matlab model

time XM,D | XD

671
306

TAC

D

Iteration

0.9

0.91

0.909
0.91

0.909
0.91

0.918

115263
132210
126495
128340
126497
128340

14
15
19
19
19
19

2.25
2.7
2.34

1.29
1.3
1.3

1.3

1*

0.91
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275

2.387
2.34

2*

0.91

4635
277

1.3
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Figure 7: Liquid mole fractions x of the three products at the top of
the column w.r.t. product stream D generated via parameter con-
tinuation. The continuous blue line shows one possible continuation
result, where the right black dot denotes the right limit point and
the left black dot denotes the left limit point. Red arrows show the
influence of V' and the feed position. If V' is increased or the feed po-
sition is shifted downwards along the column the solutions will follow
the red arrow pointing to the left, whereas if V' is lowered or the feed
position is shifted upwards along the column the solutions will follow
the red arrow pointing to the right. One example for each direction
is shown as a dashed line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version
of the article.)



multiplicities in this special case an implicit surrogate for-
mulation is necessary.

With the proposed methods global optimization of highly
non-ideal distillation processes becomes feasible within a
reasonable time. This is a promising approach if good ini-
tial values are not available or difficult to obtain. The
latter would be a necessary prerequisite for finding good
solutions with established local optimization strategies.
Furthermore, established local optimization strategies may
fail in the vicinity of bifurcation points, because the Jaco-
bian becomes singular.

Future work will be concerned with more advanced
sampling techniques and multi regional search approaches.
Furthermore a more generally suitable local optimization
technique for the implicit surrogate models and a compari-
son of the algorithm using different surrogate formulations,
e.g. the ALAMO approach, are also of interest.
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