
Efficient and Invariant Regularisation with

Application to Computer Graphics

A thesis submitted to the School of Information Technology and Electrical Engineering,

the University of Queensland, for the degree of Doctor of Philosophy.

Christian James Walder, B.E. (elec) Hons. January 2008

Supervisors: Brian Lovell, Bernhard Schölkopf, Olivier Chapelle
Examiners: Stéphane Canu, Hans-Peter Seidel

ii

Except where acknowledged in the
customary manner, the material
presented in this thesis is to the best
of my knowledge original and has not
been submitted in whole or part for a
degree in any university.

Signed:

Dated:

iii

iv

Acknowledgements

This thesis and the time spent developing it have benefited from the sup-
port of many kind and inspirational people. First I would like to thank my
advisory team: Brian Lovell, Olivier Chapelle and Bernhard Schölkopf. I
received help on many levels, including concrete scientific input, strategic
direction and inspiration, and the freedom to pursue my own interests.

The initial time I spent at the beautiful University of Queensland St Lucia
campus was a pleasure. It is crucial to be excited about ones PhD topic, and
for me this excitement was mainly sparked by the people at the University
of Queensland. In particular I would like to give praise to my fellow students
at the time: David Mackinnon, Ben Appleton, Emanuel Zelniker, Richard
Davis, Simon Clode, Carlos Leung, Nianjun Liu, Shaokang Chen and Stefan
Lehmann, as well as the more senior Peter Kootsookos, Vaughan Clarkson
and Kurt Kubik.

Continuing chronologically, I am indebted to Brian and Kurt for helping
to arrange what turned out to be a life changing visit to the Fachhochschule
für Technik in Stuttgart, where Michael Hahn helped me to find my feet and
also to get some first lecturing experience.

A quantum leap in my knowledge and understanding occurred when Bern-
hard Schölkopf kindly allowed me to make a lengthy visit to his group at
the Max Planck Institute in Tübingen. The people in the group, as well as
the constant stream of strong visitors who pass through it, help to create a
stimulating atmosphere in which one cannot help but absorb ideas, practi-
cally by osmosis. Those responsible are too numerous to mention so I ask
to be excused for merely drawing particular attention to Jan Eichhorn, Flo-
rian Steinke, Arthur Gretton, Wolf Kienzle, Kwang In Kim, Matthias Hein,
Valentin Schwamberger (thanks for the LATEX help!), Jakob Macke, Mingrui
Wu, Cheng Soon Ong, Thomas Navin Lal, Carl Rasmussen, Matthias Seeger
and Gunnar Rätsch.

The late Charles Bennett can take most of the credit for my funding,
thanks to the bequest left by him to the University of Queensland, who then
passed some of it on to me. I also thank the University of Queensland for an
additional and generous scholarship which allowed me to travel to Germany.
Research is highly valued and very well funded in Germany. The Deutsche

v

Akademischer Austausch Dienst kindly funded my stay for the first year or
so in Germany. The Max Planck Society subsequently funded my last half
a year or so, and also covered various work related trips — including my
attendence of the 2004 Machine Learning Summer School on Berder Island.
Finally, in the context of this paragraph it would be negligent to omit my
generous and supportive parents who — in addition to their unconditional
love and support — also provided me with timely aid of a more tangible
nature.

vi

Abstract

This thesis develops the theory and practise of reproducing kernel methods.
Many functional inverse problems which arise in, for example, machine learn-
ing and computer graphics, have been treated with practical success using
methods based on a reproducing kernel Hilbert space perspective. This per-
spective is often theoretically convenient, in that many functional analysis
problems reduce to linear algebra problems in these spaces. Somewhat more
complex is the case of conditionally positive definite kernels, and we provide
an introduction to both cases, deriving in a particularly elementary manner
some key results for the conditionally positive definite case.

A common complaint of the practitioner is the long running time of these
kernel based algorithms. We provide novel ways of alleviating these prob-
lems by essentially using a non-standard function basis which yields compu-
tational advantages. That said, by doing so we must also forego the afore-
mentioned theoretical conveniences, and hence need some additional analysis
which we provide in order to make the approach practicable. We demon-
strate that the method leads to state of the art performance on the problem
of surface reconstruction from points.

We also provide some analysis of kernels invariant to transformations such
as translation and dilation, and show that this indicates the value of learn-
ing algorithms which use conditionally positive definite kernels. Correspond-
ingly, we provide a few approaches for making such algorithms practicable.
We do this either by modifying the kernel, or directly solving problems with
conditionally positive definite kernels, which had previously only been solved
with positive definite kernels. We demonstrate the advantage of this ap-
proach, in particular by attaining state of the art classification performance
with only one free parameter.

vii

viii

Contents

1 Introduction 1

2 Background Theory 5
2.1 Ill Posed Problems . 6

2.1.1 Solving a Linear System 6
2.1.2 Linear (-in-the-parameters) Models 9

2.2 Kernel Methods . 10
2.2.1 Reproducing Kernel Hilbert Spaces 11
2.2.2 Some Kernel Based Algorithms 14
2.2.3 Kernels and Regularisation Operators 19
2.2.4 Conditionally Positive Definite Kernels 24

3 Fast Approximation Methods 29
3.1 Decoupling Regulariser and Function Basis 30

3.1.1 Restricting the Set of Available Functions 31
3.1.2 Computing the Regularisation Matrix 32
3.1.3 Interpretation as a Gaussian Process 40
3.1.4 Construction of the Function Basis 41

3.2 Fast Multipole Method . 43
3.2.1 The Basic Idea — Unipole Expansion 44
3.2.2 Space Subdivision and the Multipole Expansion . . . 44
3.2.3 Improvements . 46

3.3 Comparing the Two . 47

4 Implicit Surface Reconstruction 51
4.1 Background . 51

4.1.1 Surface Reconstruction 51
4.1.2 Data Acquisition . 52
4.1.3 Implicit Surfaces . 53
4.1.4 Implicit Surface Reconstruction 54
4.1.5 Overview of the Rest of the Chapter 57

4.2 An SVM-like Method . 58
4.2.1 Experiments and Discussion 60

ix

4.3 Direct Incorporation of Normal Vectors 60
4.3.1 Experiments and Discussion 65

4.4 Reconstructing Surfaces without using Normals 70
4.4.1 Related Work . 73
4.4.2 Algorithm . 74
4.4.3 Experiments and Discussion 79

5 Kernels Invariant to Transformations 85
5.1 Transformation Scaled Spaces and Tikhonov Regularisation . 86
5.2 Transformation Scaled Reproducing Kernel Hilbert Spaces . 87
5.3 Thin-Plate Kernel . 89
5.4 Thin-Plate Spline s.v.m. 92

5.4.1 Optimising an s.v.m. with c.p.d. Kernel 92
5.4.2 Constraining the solution 93
5.4.3 p.d. Kernels from c.p.d. Kernels 94
5.4.4 Experiments . 98

A Formulae and Notation 101
A.1 Notation and Abbreviations 101
A.2 Useful Algebra . 103
A.3 Fourier Transforms . 103
A.4 Gaussian Random Variable 104

B Mathematical Addenda 107
B.1 Proof of Lemma 3.1.2 . 107

B.1.1 Eigendecomposition Based Approach 107
B.1.2 Sketch of the Fourier Transform Based Approach . . 110

B.2 Additional Proofs for Chapter 5 111

C Implementation Details 113
C.1 Thin-plate regularisation of the B3-spline 113
C.2 Support Vector Machine with c.p.d. Kernel 113

x

Chapter 1

Introduction

This thesis is most generally concerned with the regularised solution of
functional inverse problems — the estimation of a function based on some
observational data. Here regularisation refers to the controlling of the com-
plexity of the solution, in order to obtain what in everyday language might
be referred to as a smoother or in some sense simpler solution. Regularisa-
tion is not a new concept — one could well interpret the act of a physicist
proposing a mathematical model of nature as an example of it. In this case,
the physicist might prefer, say, polynomials of the lowest possible order,
provided that they are flexible enough to explain the data at hand.

One example scenario in which regularisation is often benificial is that of
regression — the problem of inferring from a set of pairs (xi, yi) ∈ R

d ×R a
function which describes the underlying relationship. In this thesis we will
consider two slightly different settings:

1. Supervised learning — in this case the yi are binary class labels rather
than real numbers. For example, the xi could represent data pertaining
to a particular patient and the yi whether that patient responded well
to a certain medication.

2. Surface fitting, in which we are not provided with the yi’s, but only
the xi’s. Here we wish to infer a function, the zero level set of which
approximates well the xi. This is useful in computer graphics problems
in which one wishes to reconstruct a surface from a set of point samples.

It is always necessary to make assumptions in order to deal with such
problems. The methodology of Bayesian inference is particularly lucid in
this respect — after we have observed an event E the probability of our
hypothesis H being true is given by

p(H) =
p(E|H)p(H)

p(E)
, (1.1)

2 Introduction

which already assumes that we know the a priori probability of our hy-
pothesis, p(H). In the present thesis will be inferring functions, and so the
hypothesis H will correspond to the choice of a particular function, and p(H)
will implement the regularisation we have already referred to, by taking on a
smaller value for less smooth functions. In this functional estimation setting,
p(H) is a what we shall refer to as a regularisation functional.

Kernel methods have arisen as a powerful tool for such problems. It
turns out that choosing regularisation functionals related to the reproducing
kernel Hilbert space (r.k.h.s.) norm of the function is often convenient. In
many cases it allows seemingly difficult functional analysis problems to be
converted into simple finite dimensional linear algebra problems. Moreover,
these norms often lead to sensible priors distributions over functions, as
evidenced by good practical performance on a wide range of problems. This
thesis is heavily rooted in the study of kernel methods.

In one of the main components the thesis we derive efficient approxima-
tions to kernel methods. This addresses the common complaint that kernel
based algorithms are computationally expensive — typically leading to cu-
bic time complexity in the number of data points. On the other hand such
methods tend to scale comparably well with the dimensionality of the space
of interest. To facilitate application to computer graphics problems involv-
ing many points in few dimensions, we propose alternatives which behave
somewhat conversely to the computational complexity just described.

Additionally, we consider the invariance of kernel methods to such trans-
formation groups as rotation and dilation. In some problems it is reasonable
to assume that a particular function is no more or less likely than, say, a
rotated copy of it. We provide some basic analysis into the nature of ker-
nel methods which lead to these properties. We then focus on a specific
combination of invariances not previously considered in machine learning
algorithms, namely algorithms which are at once rotation, translation and
dilation invariant. Such algorithms have useful practical properties, not the
least of which being that one may often dispense with certain degrees of
freedom which would otherwise be manifested as so-called free parameters
of the algorithm.

How to read this Thesis

Writing a thesis inevitably involves a trade off between being fully compre-
hensibile to the relatively uninitiated, and succinct enough to avoid boring
more advanced readers. In an attempt at compromise we have tried to avoid
excess verbiage, while providing pointers to further reading where appropri-
ate. As usual these pointers come in the form of the references to the relevant
publications. Italicised keywords also provide starting points for exploration

Chapter 1 3

Chapter 1

Appendix A (notation)

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Figure 1.1: Chapter dependencies.

into broader areas.
We now provide a minimal overview of the material contained in each

Chapter. A diagram of the dependencies between chapters is given in Figure 1.1.
Before proceeding, we would like to note that it may be wise of the reader
to peruse the mathematical notation listed in section A.1 before reading
the subsequent chapters. The abbreviations on the other hand will be
(re)introduced the first time they are used in each new chapter.

Chapter 2

Here we provide a semi-formal introduction to the concept of ill-posedness,
taking the solution of a linear system as an example. Next we consider posi-
tive definite (p.d.) kernel methods, in particular giving three ways of arriving
at the algorithm known as kernel ridge regression (k.r.r.), and providing a
novel generalisation of the representer theorem 2.2.7. We then turn to meth-
ods based on conditionally positive definite (c.p.d.) kernels, providing what
we believe to be a particularly simple way of understanding the main ideas.
The chapter culminates with a novel elementary proof of the representer
theorem for the c.p.d. case, theorem 2.2.7.

Chapter 3

We develop ways of approximating kernel methods when the number of
points is large and the dimensionality relatively low. In particular we show
in example 3.1.4 how to analytically compute the thin-plate spline norm on
a multi-scale compactly supported function basis. We also give expressions
more useful for higher dimensional machine learning problems — that is,
the inner product between two Gaussian functions of arbitrary dilation, in
the r.k.h.s. of another arbitrary Gaussian kernel, as per theorem 3.1.2. This
allows the best approximation of a normal Gaussian kernel based algorithm
to be made within the span of a multi-scale Gaussian function basis.

4 Introduction

Chapter 4

This Chapter applies the fast approximation scheme of the previous chap-
ter to the problem of implicit surface reconstruction. We provide three al-
gorithms. The first is a simple generalisation of the support vector ma-
chine (s.v.m.) which takes surface points as well as additional labelled inte-
rior/exterior points as input. The second is a state of the art method which
uses surface point/normal pairs as input. The third method requires only a
sampling of the surface, which as it turns out makes the problem significantly
more difficult.

Chapter 5

Here we begin by discussing the notion of transformation invariance, and
providing in theorem 5.2.1 the necessary and sufficient conditions for a p.d.
kernel to enjoy such invariances. We show that there exist no p.d. kernels
(but rather only c.p.d. ones) which are translation, rotation and dilation in-
variant. We demonstrate that the thin-plate spline enjoys these invariances,
and set about applying it in one setting where it has not already been applied,
namely the s.v.m. classifier. We provide two main options for doing this. The
first is to construct p.d. kernels from c.p.d. ones using theorem 5.4.2. The
second is Algorithm C.1, which solves the s.v.m. optimisation problem for
the c.p.d. case. This second option leads to a classification algorithm with
only one regularisation parameter which as we demonstrate, performs as well
on a real problems as the widely used Gaussian kernel method, which has
an additional length scale parameter.

Chapter 2

Background Theory

This introductory chapter consists of mostly non original material, with the
few exceptions noted in the text. Our main goals in this chapter are to

1. Make the remainder of the thesis reasonably self contained by providing
the necessary background theory on the solution of ill-posed problems,
kernel methods and implicit surface reconstruction.

2. Provide a common framework in which to understand the theory and
algorithms which we present later on — in particular we will moti-
vate Tikhonov regularisation probabilistically as a maximum a posteri-
ori (m.a.p.) estimate.

The beginning of the chapter also aims to provide some background on
and motivation for the study of machine learning, which we touched on in
the introduction. Although difficult to define in general, the component of
the machine learning field with which we are mainly concerned is that of
inductive inference based on observational data. The idea is most easily
conveyed by an example, and so it is worth reiterating now in greater detail
the one we gave in the introductory chapter.

Let’s say that a particular drug can have either a negative or a positive
effect on those who take it, depending on their genetic makeup. We would
like to determine whether the drug is likely to have a beneficial effect on a
new patient. A machine learning approach to this problem would involve
first measuring and recording information about the genetic makeup of all of
those patients who have previously been administered with the drug, along
with whether or not it was benificial in each case. Then, machine learning
tools can be applied to determine the likelihood of success on a new patient,
given similar measurements of his or her genetic information, along with all
of the historical data. Clearly machine learning is closely related to the field
of statistics. The name comes from the fact that one aims to create machines
which can automate the scientific method, and hence achieve what would be
referred to by some as learning.

6 Background Theory

2.1 Ill Posed Problems

The machine learning field is often concerned with ill-posed problems —
problems that are not well-posed [TA77]. We shall improve on this statement
directly, but for clarity we begin with the loose but widely used

Definition 2.1.1. A well posed problem is one for which

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data in some reasonable
topology.

The study of ill-posed problems may seem unworthy of attention — after
all it is not even clear what it could mean to “solve” them. Nonetheless,
since the present thesis is largely concerned with such problems, we begin
by motivating their study.

One clear motivation is the fact that any task which aims to model the
physical world is inherently ill-posed — every phenomenon can be explained
by more than one model. Given that this is the case, how can we prefer
a particular one? Naturally one can only give such a preference according
to some criterion, for example simplicity or usefulness. This necessity for
making prior assumptions is an unavoidable property of inference tasks in
general, which manifests itself in the idea of Occam’s razor [RG01], and the
work of Popper for example, who prefers scientific theories which are more
easily falsified by counter evidence [Pop68]. As we mentioned in chapter 1,
this is also well summarised by (1.1).

So, although we began by indicating that machine learning is often con-
cerned with the study of ill-posed problems, it is already apparent that this
is a category into which all of the physical sciences fall. It is therefore more
precise to say that machine learning is the study of automated methods of
dealing with such problems. Roughly speaking, the physical sciences pro-
pose solutions to ill-posed problems whereas machine learning studies the
act of doing so. It is merely in this sense that machine learning has been
referred to as the science of sciences by Vladimir Vapnik. Next, we become
more specific about how one may go about dealing with an ill-posed problem,
beginning with a simple example.

2.1.1 Solving a Linear System

The material in this section not only provides a concrete illustration of the
concept of ill-posedness, but will also eventually lead us to the kernel methods
which are central to this thesis. Consider the problem of finding w such that

Xw = y (2.1)

Chapter 2 7

where X ∈ R
m×n and w,y are vectors of appropriate dimension. In general

this is an ill-posed problem. Depending on the nature of X and y, this
problem may have infinitely many solutions, a unique one, or none at all.
Let us consider the first possibility, which can occur if X is square and
singular, e.g.

X =

(
1 1
1 1

)

,y =

(
0
0

)

. (2.2)

In this case (2.1) is satisfied for all w ∈
{(

w
−w

)

: w ∈ R

}

, demonstrating

the ill-posedness of the problem. As a first step in dealing with this ill-
posedness, we begin by constructing a problem which for the X and w of
(2.2) yields a unique solution which satisfies (2.1). In particular, we take the
minimum-norm solution

arg min
w∈{v:Xv=y}

‖w‖
Rn , (2.3)

which which can be easily calculated by imposing stationarity, and in the
case of our example is equal to the zero vector. Now consider the more
problematic case m > n, so that in general no solution exists. It may be
natural to choose the least squares solution

arg min
w∈Rn

‖Xw − y‖
Rm =

(
X⊤X

)−1
X⊤y, (2.4)

since if a unique solution to the original problem exists then it is given by
(2.4), and if not then Xw is at least close to y in some sense. Of course, if
infinitely many solutions to (2.4) exist then we could construct a well posed
problem to find one by using e.g. a similar minimum-norm approach as we
applied to (2.1).

In the case where, for a given X and y, no solution to (2.1) exists (such a
situation could arise in practice due to e.g. measurement noise), then (2.4)
can be interpreted probabilistically. Supposing that the elements of y are
independent and identically distributed (i.i.d.) according to

[y]i | [X]i,: ,w ∼ N ([X]i,: w, σ
2
y), (2.5)

then

p(y|X,w) =
m∏

i=1

p([y]i | [X]i,: ,w) ∝ exp
(
−σ−2

y ‖Xw − y‖2
Rm

)
, (2.6)

so that all we can make is the awkward statement that, loosely speaking,
(2.4) chooses the w, given which, given X and given (2.5), y is most likely.
This is typically referred to as the maximum likelihood solution. However

8 Background Theory

short of resorting to improper distributions1, we cannot make a more natural
statement such as given some assumptions (2.4) chooses the most likely w.

To make such a statement we can instead employ Bayes’ rule, and choose
as our solution the maximum a posteriori (m.a.p.) estimate

wMAP = arg max
w

p(w|X,y) (2.7)

= arg max
w

p(y|X,w)p(w|X)

p(y|X)

= arg max
w

p(y|X,w)p(w|X),

and if we choose the a priori distribution

p(w|X) = N (0,Σw) (2.8)

then we have

wMAP = arg max
w

p(w|X)
m∏

i=1

p([y]i | [X]i,: ,w)

= arg max
w

exp
(
−w⊤Σ−1

w w − σ−2
y ‖Xw − y‖2

Rm

)

= arg min
w

(
w⊤

(
σ2
yΣ

−1
w

)
w + ‖Xw − y‖2

Rm

)
(2.9)

=
(
X⊤X + σ2

yΣ
−1
w

)−1
X⊤y. (2.10)

Note the similarity between (2.10) and (2.4). The solution (2.10) is clearly
unique since although X⊤X is possibly only positive semi-definite, σ2

yΣ
−1
w

is necessarily strictly positive definite. Now we have two interpretations of
wMAP:

1. (cf. (2.9)) it balances between minimising the squared error and keeping
the term w⊤

(
σ2
yΣ

−1
w

)
w small. This is a regularisation perspective in

which we refer to w⊤
(
σ2
yΣ

−1
w

)
w as the regulariser.

2. (cf. (2.7)) it is the m.a.p. estimate of w under the given noise model
(2.5) and a priori distribution (2.8) on w. This is a probabilistic view
in which we refer to the distribution on w given by (2.8) as a prior

Both views are equivalent in the sense that they lead to the same estimate
of w. Let us now return to the original thread of our argument. We said
that modelling the physical world is an ill-posed problem and that individual
models can be preferred only according to some criterion chosen a priori, not
in any absolute sense. This final example of the m.a.p. estimate demonstrates
this, the criterion which led to wMAP being

1To be precise, we can interpret the maximum likelihood solution as an m.a.p. estimate only if the
prior distribution (i.e. the p(w) which arises shortly in the text) is constant. But constant functions on
R

n are not integrable and hence not proper probability distributions.

Chapter 2 9

• The prior (2.8) that we placed on w.

• The chosen noise model (2.5).

• The decision to take the m.a.p. estimate.

At this point it may not be obvious what solving a linear system has to
do with modelling the physical world (i.e. modelling relationships between
observed data). We now proceed to make this more clear.

2.1.2 Linear (-in-the-parameters) Models

As it will be useful later on, let us introduce the following vague

Definition 2.1.2. Given a set D = {(x1, y1) , . . . , (xm, ym)} ⊂ X × Y , the
task of inferring a function f : X → Y which should in some sense explain
well the relationship between the xi and yi shall be referred to as the re-
gression problem. If we enforce f(xi) = yi for all i = 1 . . .m then we
refer to f as an interpolant, otherwise (i.e. if errors are allowed) as an
approximant.

For example, an engineer has repeatedly measured various quantities from
an electric circuit (represented as a vector in R

m), along with a correspond-
ing output voltage (represented as a number in R), and wishes to infer a
relationship between them which will aid in using the circuit.

If the engineer guesses that the unknown function f is a linear one but
that the measurements are corrupted with Gaussian noise, i.e.

f(x) = x⊤w + ǫ,

where ǫ ∼ N (0, σ2
y), then it is easy to see that we have returned to the

scenario of the previous section but with [y]i = yi and [X]:,i = x⊤
i . As we

have seen, the engineer cannot avoid imposing some prior distribution on w

in order to make an probabilistically reasonable estimate of it based on the
measured (xi, yi) pairs.

A linear model is rather restrictive however, and one may often prefer to
consider a more complex model. A strikingly elegant way of doing this is to
project the vectors xi non-linearly into another space, and then apply the
linear model as before, so that

f(x) = φ(x)⊤w + ǫ,

where φ : R
m → R

p and w ∈ R
p. The analysis in the previous section can

now be repeated but with [Φ]:,i , φ(xi)
⊤ in place of X to yield

wMAP =
(
Φ⊤Φ + σ2

yΣ
−1
w

)−1
Φ⊤y.

10 Background Theory

Now, with a little algebra — the matrix inversion lemma (A.1) being useful
— one can derive an expression for the mean of the posterior distribution at
a test point t. Since the posterior is Gaussian this corresponds to the m.a.p.
estimate, and is given by

E[f(t)] = φ(t)⊤wMAP

= φ(t)⊤ΣwΦ⊤
(
ΦΣwΦ⊤ + σ2

yI
)−1

y.

Which is an interesting expression since the required matrix inversion is of
size n × n, irrespective of the dimension of the feature space p. Moreover,
since φ only appears in the form of e.g. φ(x)Σwφ(x′)⊤, if we have access to
a kernel or covariance function

kφ,Σw(x,x′) , φ(x)⊤Σwφ(x′) (2.11)

then the mapping φ need never be computed explicitly, and the overall com-
putational costs will typically be independent of the dimensionality p of the
feature space.

The kernel function which we have arrived at is useful for a variety of
algorithms. A similar motivation for using such functions is the manoeuvre
often referred to as the kernel trick (see e.g. [SS02]) — the fact that if a
computation on a set {xi} can be carried out using only the scalar products
x⊤
i xj, then it can also be carried rather easily on the set {φ(xi)}, provided

that we have some function k(xi,xj) , φ(xi)
⊤φ(xj). This is obviously

identical to (2.11) but with Σw = I. The fact that numerous important
algorithms such as principal components analysis and the support vector
machine (s.v.m.) fall into this category has led to a great deal of interest in
kernel based algorithms.

2.2 Kernel Methods

At the end of the last section we saw that given some mapping φ : R
m → R

p

and a function kφ(x,x
′) , φ(x)⊤φ(x′), we can evaluate the m.a.p. estimate

of a linear model f(x) = φ(x)⊤w (under certain Gaussian assumptions),
regardless of the dimensionality p of the feature space, which may even be
infinite. We now take a different path to this conclusion, which is based on
Tikhonov regularisation in an reproducing kernel Hilbert space (r.k.h.s.) To
motivate this new path consider the following

Definition 2.2.1. We refer to finding the minimiser of the sum of a norm
along with some other (data dependent) terms, i.e.

f ∗ = arg min
f∈F
‖f‖2F + c(f) (2.12)

Chapter 2 11

as the Tikhonov regularised variant of the related problem

arg min
f∈F

c(f).

We note that there is a simple probabilistic motivation for Tikhonov regu-
larisation — if c(f) is the negative log-likelihood of some some observational
data D given f , and ‖f‖2F is the negative log-likelihood of f , i.e.

p(f) = exp
(
−‖f‖2F

)

and

p(D|f) = exp
(
−‖c(f)‖2F

)
,

then

arg min
f∈F
‖f‖2F + c(f) = arg max

f∈F
exp

(
−‖f‖2F

)
exp (−c(f))

= arg max
f∈F

p(f)p(D|f)

= arg max
f∈F

p(f)p(D|f)

p(D)

= arg max
f

p(f |D)

is the m.a.p. estimate of f given D. Of course for this interpretation to
be possible it is necessary that both p(f) and p(D|f) are probability dis-
tributions, and as such need to satisfy some technical requirements such as
integrability. We shall see that for problems of the form (2.12), taking F to
be an r.k.h.s. is a convenient choice, and in many cases (i.e. for many loss
functions c) leads to tractable algorithms for computing f ∗. Our analysis
of r.k.h.s.’s will culminate in a theorem (namely theorem 2.2.7), which is
directly related to the above motivating example of Tikhonov regularisation.

2.2.1 Reproducing Kernel Hilbert Spaces

We now provide a basic overview of what are for our purposes the key aspects
of the r.k.h.s. structure. For further details we recommend e.g. [SS02, HB04,
Wen04].

Definition 2.2.2. Let X be a non-empty set. A function k : X × X → R

is positive definite (positive definite (p.d.)) (respectively positive semi-
definite or positive semi-definite (p.s.d.)) if for all m ∈ N, all pairwise
distinct sets {x1, . . . ,xm} ⊆ X and all α ∈ R

m \ 0, the expression

m∑

i=1

m∑

j=1

αiαjk(xi, sj)

is positive (non-negative).

12 Background Theory

Definition 2.2.3. Let F be a Hilbert space of functions f : X → R. A
function k : X × X → R is the reproducing kernel (r.k.) for F if

1. k(·,x) ∈ F for all x ∈ X .

2. f(x) = 〈f, k(·,x)〉F for all f ∈ F and x ∈ X .

Clearly the r.k. is unique — if we let both k1 and k2 be r.k.’s then

〈f, k1(·,x)− k2(·,x)〉F = f(x)− f(x) = 0,

and if we put f = k1(·,x)− k2(·,x) then we have ‖k1(·,x)− k2(·,x)‖F = 0
and that k1 = k2. We now give a simple characterisation of a Hilbert space
of functions with an r.k. — that is, an r.k.h.s. For the proof of this theorem
we first need the following closely related

Theorem 2.2.4 (Riesz Representation Theorem). Let H be a Hilbert space
and t : H → C be linear and continuous. There exists some g ∈ H such that
for all f ∈ H,

t(f) = 〈f, g〉H .
For a proof, see e.g. [Wen04]. Using this result it is easy to prove the

following

Theorem 2.2.5. If H is a Hilbert space of functions f : X → R then the
following statements are equivalent,

1. The point evaluation functionals are continuous.

2. H has an r.k.

Proof. Suppose that (1) is true. By Riesz’ representation theorem we find
that for every x ∈ X there exists a kx ∈ H such that δx(f) = 〈f, kx〉H for all

f ∈ H, and therefore k(x,y) , kx(y) is the r.k. in H. Now suppose (2) is
true so that k is the r.k.Then δx = 〈·, k(·,x)〉H, and since the inner product
is continuous, so is δx.

There is a one-to-one correspondence between r.k.h.s.’s and p.d. kernel
functions. More formally, we have

Theorem 2.2.6. To every r.k.h.s. there corresponds a p.d. r.k. and con-
versely given a p.d. kernel k on X ×X we can construct a unique r.k.h.s. of
real-valued functions on X with k as its r.k..

Proof. Let x1, . . .xm ⊆ X and α1, . . . αm ⊆ R be arbitrary. Defining f =
∑m

i=1 αik(·,xi) and using the reproducing property we have that

0 ≤ ‖f‖2 =
m∑

i=1

m∑

j=1

αiαjk(xi,xj)

and therefore k is p.d. The proof of the converse part is merely technical,
and a simple proof can be found in [Wah90].

Chapter 2 13

The representer theorem, widely celebrated within the machine learning
community, says that the function minimising an r.k.h.s. norm along with
some penalties associated with the function value at various points (as in
kernel ridge regression (kernel ridge regression (k.r.r.)) for example) is a
sum of kernel functions at those points (we have in fact already observed
this phenomenon, cf. Equation (2.11) and the surrounding comments).

The theorem as we present it is a novel generalisation of [SHS01] (using
the same proof idea) with equivalence if we choose all Li to be identity
operators. Note however that the case of general linear operators was in
fact dealt with already in [Wah90] (which merely states the earlier result
in [KW71]) – but only for the case of a specific loss function c. Hence the
following theorem, which was originally stated in [WSC06], combines the
two frameworks:

Theorem 2.2.7 (Representer theorem). Denote by X a non-empty set, by
k an r.k. with r.k.h.s. H, by Ω a strictly monotonic increasing real-valued
function on [0,∞), by c : R

m → R∪ {∞} an arbitrary cost function, and by
L1, . . . Lm a set of linear operators H → H. Each minimiser f ∈ H of the
regularised risk functional

c((L1f)(x1), . . . (Lmf)(xm)) + Ω(||f ||2H) (2.13)

admits the form

f =
m∑

i=1

αiL
∗
i kxi

, (2.14)

where kx , k(·,x) and L∗
i denotes the adjoint of Li.

Proof. Decompose f into

f =
m∑

i=1

αiL
∗
i kxi

+ f⊥

with αi ∈ R and 〈f⊥, L∗
i kxi
〉H = 0, for each i = 1 . . .m. Due to the repro-

ducing property we can write, for j = 1 . . .m,

(Ljf)(xj) = 〈(Ljf), k(·,xj)〉H

=
m∑

i=1

αi〈LjL∗
i kxi

, k(·,xj)〉H + 〈(Ljf⊥), k(·,xj)〉H

=
m∑

i=1

αi〈LjL∗
i kxi

, k(·,xj)〉H.

14 Background Theory

Thus, the first term in (2.13) is independent of f⊥. Moreover, it is clear due
to orthogonality that if f⊥ 6= 0 then

Ω





∥
∥
∥
∥
∥

m∑

i=1

αiL
∗
i kxi

+ f⊥

∥
∥
∥
∥
∥

2

H



 > Ω





∥
∥
∥
∥
∥

m∑

i=1

αiL
∗
i kxi

∥
∥
∥
∥
∥

2

H



 ,

so that for any fixed αi ∈ R, Equation 2.13 is minimised when f⊥ = 0.

Let us mention in passing a possibly more intuitive but certainly less
general and less rigorous way of seeing the above result, as mentioned in
[Cha07]. Consider the functional

O(f) =
1

2
〈f, f〉H +

∑

i

ci (f(xi)) .

If O is differentiable in f (in the sense of the functional or Gâteaux derivative
from functional analysis [RS80]) then we have at its minimum the station-
arity condition

0 =
∂

∂f
O(f) = f +

∂

∂f

∑

i

ci (f(xi))

= f +
∑

i

c′i (f(xi))
∂

∂f
〈f, k(·,xi)〉H

= f +
∑

i

c′i (f(xi)) k(·,xi), (2.15)

and therefore f = −∑i c
′
i (f(xi)) k(·,xi), which is a similar result to the

representer theorem. It is also interesting to note that vanishing derivatives
c′i lead to sparse solutions in the sense that many of the basis functions
k(·,xi) have a multiplicative coefficient of zero — this is the case with the
s.v.m. for example (see 2.2.2). We now give an example of how convenient
the r.k.h.s. structure can be in combination with the representer theorem.

2.2.2 Some Kernel Based Algorithms

Now that we have seen how convenient and powerful the r.k.h.s. structure
is, it should come as no surprise that there exist several widely used kernel
based algorithms. This is indeed the case, and [SS02] provides many such
examples. We provide details on just three of these: kernel ridge regression,
Gaussian processes and the support vector machine.

Chapter 2 15

Kernel Ridge Regression

Given an r.k.h.s. of functions H : Ω → R with r.k. k, and a set of points
(x1, y1) , . . . , (xm, ym) ⊂ Ω × R, the algorithm known as kernel ridge re-
gression (k.r.r.) solves for the function f ∗ , arg minf∈HO[f] where the
functional O (the objective) is given by

O[f] = σ2
y ‖f‖2H +

m∑

i=1

(f(xi)− yi)2 . (2.16)

To solve for f ∗ in closed form, we can use the representer theorem to write
f ∗ =

∑m
i=1 α

∗
i k(·,xi), and then the reproducing property to solve for

α∗ = arg min
α∈Rm

α⊤Kα + ‖Kα− y‖2

=
(
K + σ2

yI
)−1

y (2.17)

where we have defined [K]i,j = k(xi,xj). Note that if we choose k(xi,xj) =

kφ,Σw(xi,xj) (cf. (2.11)), then f ∗ is identical to the m.a.p. estimate of the
linear-in-the-parameters model we derived subsection 2.1.2. One might say
that the reason we can solve for f ∗ so easily is the fact that we can use the
representer theorem to switch from a problem in H to one in R

m.

We now present another means of solving (2.16), which we believe is not
only interesting in its own right, but also instructive2. The method is a
very direct way of essentially ploughing through from (2.16) to a closed form
expression for f ∗. We begin by defining

Tn : H → R

f → 〈f, k(·,xn)〉H ,
as well as

T : H → R
m

f → [T1f, T2f, . . . Tmf]⊤ ,

so that we can write

O[f] = ||Tf − y||2
Rm + σ2

y||f ||2H
= 〈Tf − y, T f − y〉

Rm + σ2
y 〈f, f〉H

= 〈f, T ∗Tf〉H + ||y||2
Rm − 2 〈f, T ∗y〉H + σ2

y 〈f, f〉H ,
2This part draws heavily on personal communication with Cheng Soon Ong, as well as the lectures by

Stepháne Canu at the Machine Learning Summer School, Berder Island 2004.

16 Background Theory

and due to convexity we have the following stationarity relation for f ∗:

∂

∂f
|f=f∗O[f] = 0

2T ∗Tf ∗ − 2T ∗y + σ2
y2f

∗ = 0

f ∗ = (T ∗T + σ2
yIH)−1T ∗y. (2.18)

To characterise the adjoint T ∗ as well as TT ∗ and T ∗T we begin by rear-
ranging

< Tf,α >Rm =
m∑

n=1

αn 〈f, k(·,xn)〉H

=

〈

f,
m∑

n=1

αnk(·,xn)
〉

H

= 〈f, T ∗α〉H ,

so that we can write

T ∗ : R
m → H

α→
m∑

n=1

αnk(·,xn),

as well as

T ∗T : H → H
f → T ∗ [T1f, T2f, . . . Tmf]⊤

→
m∑

n=1

f(xn)k(·,xn),

and finally

TT ∗ : R
m → R

m

α→ T
m∑

n=1

αnk(·,xn)

→ Kα,

(recall that [K]i,j = k(xi,xj)). Now, to deal with the inversions in H (cf.

(2.18)) we have, similarly to the matrix inversion lemma,

(T ∗T + σ2
yIH)−1 = IH/σ

2
y − T ∗(IRm + TT ∗/σ2

y)
−1T/σ4

y .

To verify this for the generally infinite dimensional case let us assume that

Chapter 2 17

the required inverses exist so that we can compute directly

(T ∗T + σ2
yIH)(IH/σ

2
y − T ∗(IRm + TT ∗/σ2

y)
−1T/σ4

y) = (2.19)

IH + T ∗T/σ2
y

︸ ︷︷ ︸

X

−T ∗(IRm + TT ∗/σ2
y)

−1T/σ2
y

︸ ︷︷ ︸

Y

−T ∗TT ∗(IRm + TT ∗/σ2
y)

−1T/σ4
y

︸ ︷︷ ︸

Z

but

X = T ∗(IRm + TT ∗/σ2
y)(IRm + TT ∗/σ2

y)
−1T/σ2

y

= T ∗(IRm + TT ∗/σ2
y)

−1T/σ2
y + T ∗TT ∗(IRm + TT ∗/σ2

y)
−1T/σ4

y

= Y + Z

so the right hand side of (2.19) is indeed just IH, the identity operator in H,
and we can indeed write

f ∗ = (IH/σ
2
y − T ∗(IRm + TT ∗/σ2

y)
−1T/σ4

y)T
∗y

= T ∗(y/σ2
y − (IRm + TT ∗/σ2

y)
−1TT ∗y/σ4

y)

,
m∑

n=1

αnk(·,xn).

where, putting K = TT ∗, one may verify with a little algebra that

α = y/σ2
y − (IRm +K/σ2

y)
−1Ky/σ4

y

= (K + σ2
yIRm)−1y,

is identical to the α∗ we had before.

Gaussian Processes

We have already arrived at k.r.r. from the perspective of

1. An m.a.p. estimate of a linear-in-the-parameters model (cf. subsection 2.1.2).

2. A Tikhonov regularised least squares solution (cf. 2.2.2).

We now briefly mention one last way of looking at it — this time from the
perspective of a Gaussian process (g.p.) For further details on g.p.’s, we
recommend e.g. [Mac98, RW06].

The key idea is placing a zero mean Gaussian process prior on f , which
states that for any x1, . . . ,xm ∈ Ω, the vector fx , (f(x1), . . . , f(xm))⊤ is
multivariate Gaussian according to

fx ∼ N (0, Kxx) ,

where [Kxx]i,j , k(xi,xj). The function k : Ω × Ω → R is known in the
g.p. literature as the covariance function, and defines the prior distribution

18 Background Theory

over functions. Next we place a zero-mean i.i.d. Gaussian noise model on
the observed value yz at z, i.e.

yz|f ∼ N (f(z), σ2
y).

Altogether the joint distribution between the vector of observations

yx , (yx1
, . . . , yxm)⊤

and the value of the function at some test point t is therefore distributed
according to

(
yx

f(t)

)

∼ N
(

0,

((
Kxx + σ2

yI
)

kxt
k⊤
xt ktt

))

,

where [kxt]i , k(xi, t) and ktt = k(t, t). Now employing (A.1) and (A.7) we
have for the posterior

f(t)|yx ∼ N
(

k⊤
xt

(
Kxx + σ2

yI
)−1

yx, k(t, t)− k⊤
xt

(
Kxx + σ2

yI
)−1

kxt

)

,

and it is clear by comparison with (2.17) that the mean of the posterior is
identical to the k.r.r. solution.

Support Vector Machines

The detailed discussion of k.r.r. which we have just presented serves well to
illustrate the concepts behind kernel based algorithms. Let us now men-
tion the s.v.m. — a now standard algorithm for supervised learning, said to
have resulted from statistical learning theory research [Vap95]. The s.v.m.
is in fact very similar to logistic regression, a classical statistical technique
[DHS00]. Given a labelled classification data set (x1, y1), . . . , (xm, ym) ⊂ Ω×
{1,−1}, the s.v.m. algorithm assigns to query point x the label sign(fsvm(x)),
where

fsvm = arg min
f∈H

λ ‖f‖2H +
m∑

i=1

max(0, yif(xi)− 1)p. (2.20)

Where typically p ∈ {1, 2}, although the choice p = 1 often leads to modest
computational advantages [SS02]. Regardless of the value of p however, the
s.v.m. has the attractive property that the solution will often be sparse in
the sense that many of the coefficients αi in the expansion (2.14) vanish.
The reason for this is the fact that the functional derivatives in f of the
terms max(0, yif(xi)− 1) vanish for yif(xi) ≥ 1. The fact that this results
in sparsity can immediately be seen from (2.15).

The parameter λ controls the regularisation in the s.v.m.Note that the
function fsvm can be interpreted as a m.a.p. estimate in a manner similar to
the discussion at the beginning of section 2.2 — for details see [Sol00].

Chapter 2 19

2.2.3 Kernels and Regularisation Operators

We have already said that the functional (2.16) minimised in k.r.r. can be
understood intuitively as trading between the goodness of fit to the data
as measured by

∑m
i=1 (f(xi)− yi)2, and the complexity of the function as

measured by the norm ‖f‖2H — but what do we mean by complexity? One
way of gaining more insight is to begin by assuming that we can write

‖f‖2H = 〈ψf, ψf〉L2
, (2.21)

for some regularisation operator ψ : H → L2 and some suitable space L2 of
functions — the idea is to then analyse and interpret the form of ψ. The
present Section clarifies the connection between ψ and the r.k. k of H. Key
to this analysis is the concept of a Green’s function, which we now briefly
introduce.

Green’s Functions

Presently we provide a minimal introduction to the concept of a Green’s
function — for a more comprehensive account see e.g. [Roa70]. Consider the
problem of solving for f ∈ F the equation

Pf = u

where P : F → F and u ∈ F are given. This operator inversion problem
can be arbitrarily difficult to solve. One way of attempting to find a solution
is to guess that

f = P−1u

where P−1 is informal notation for the operator satisfying P−1Pf = f for
all f ∈ F . Now, if P is a differential operator, a natural guess for P−1 is an
integral operator. Thus we assume a general integral transformation with
kernel g, as defined by

(
P−1u

)
(x) =

∫

x∈Ω

g(x,y)u(y)dy,

where g : Ω × Ω → R is referred to as the Green’s function (after George
Green) associated with the operator P . According to our definition of P−1,
we can write

(
PP−1u

)
(x) = u(x) =

∫

y∈Ω

Pg(x,y)u(y)dy , 〈Pg(x, ·), u〉F , (2.22)

where we have defined along the way the scalar product on F . If we now
assume that there lies in H a function δ satisfying

u(·) = 〈δ(· − x), u〉F

20 Background Theory

for all u — as is the case when F = L2(R
d) for example, whereupon δ is the

Dirac function — we can read off from (2.22) the more familiar definition of
the Green’s function g of P , i.e.

Pg(x,y) = δ(x− y).

A great deal of work has been done to solve equations of the above form,
usually with the aim of solving differential equations which model physical
systems (see e.g. [Roa70]). It turns out that some of this work can aid in
the understanding of kernel methods, due to the connection we make clear
in the following section.

Kernels are Green’s Functions

Following [Wah90, GJP93, SS02], we combine the reproducing property with
our previous definition of the regularisation operator ψ to attain

f(x) = 〈k(·,x), f〉H = 〈ψk(·,x), ψf〉L2
= 〈ψ∗ψk(·,x), f〉H ,

and so by comparison with (2.22), k is the Green’s function of ψ∗ψ in H.
It is important to note that the regularisation operator ψ is not uniquely
determined by the kernel function, as we demonstrate in the following

Example 2.2.8 Regularisation operator of the linear kernel
Consider the linear kernel on R

d×R
d defined by k(x,y) = x⊤y. The r.k.h.s.

H of this kernel is given by

H =
{
w⊤·,∀w ∈ R

d
}
.

If we define
〈
w⊤

1 ·,w⊤
2 ·
〉

H
= w⊤

1 w2, (2.23)

then it follows that the regularisation operator

ψ1 : H → H
f → ψ1f = f

satisfies 〈ψ1k(·,x), ψ1f〉H = f(x) as required. there exists a similarly defined
identity regularisation operator for any r.k.h.s. By varying the space which
the operator maps to however, we can attain more insightful results. Hence
consider the following alternative operator

ψ2 : H → R
d

f → ψ2f = ∇f.

Chapter 2 21

This is also a valid choice, since if we let g = w⊤· we have

〈ψ2k(·,x), ψ2g〉H = 〈x,w〉
Rd

= w⊤x

= g(x),

as required. Moreover this choice leads to the insight that using the r.k.h.s. of
the linear kernel in a Tikhonov regularised setting is equivalent to penalising
the gradient on the space of linear functions.

Translation Invariant Kernels

Let’s now consider a more specific class of kernels, namely the translation
invariant ones that can be written

k(x,y) , φ(y − x).

Such kernels are particularly amenable to analysis from a regularisation per-
spective [SS02]. As we shall see, the Fourier transform is a useful tool for
analysing translation invariant regularation operators. By first using (2.21)
along with the reproducing property, then the translation invariance of the
L2 inner product, and finally our definition of convolution (see A.1), we may
write

φ(y − x) = 〈ψφ(· − x), ψφ(· − y)〉L2

= 〈ψ∗ψφ(·+ y − x), φ(·)〉L2

= [ψ∗ψφ(·)⊗ φ(·)] (y − x),

and now taking Fourier transforms and using (A.3) we have

Fr [φ(r)] (ω) = Fr [ψ∗ψφ(r)⊗ φ(r)] (ω). (2.24)

Now, it turns out that every translation invariant operator ψ which is bounded
and linear can be expressed as a Fourier multiplier [Hör60], hence we may
write

Fy [ψ∗ψφ(y)⊗ φ(y)] (ω) = Ψ2(ω) (Fy [φ(y)] (ω))2 . (2.25)

Where we have used the sloppy notation Ψ2(ω) = Fx [ψ∗ψδ(x)] (ω). Indeed,
for operators that are a linear combination of differential operators this can
be seen directly from the Fourier transform identity

Fx

[

∂

∂ [x]j
f(x)

]

(ω) =
(

2π [ω]j ı
)

Fx [f(x)] (ω).

The expression (2.25) leads a concise expression relating translation invariant
regularisation operators to the kernels they induce, i.e.

Fy [φ(y)] (ω) = Ψ(ω)−2.

22 Background Theory

In summary, we have assumed that the kernel is a reproducing one and
translation invariant, that the regulariser is a Fourier multiplier, and used the
Fourier transform as a tool for deconvolution. To summarise in mathematical
terms, we can write

〈ψf, ψφ(· − x)〉L2
= [ψf ⊗ ψφ] (x)

= F−1
ω

[
Fx [f(x)] (ω)Ψ2(ω)Φ(ω)

]
(x)

= f(x),

which succinctly demonstrates the basic notions.

Gaussian Kernel

The Gaussian is probably the most widely used p.d. kernel within the do-
main of machine learning, often prescribed as a reasonable “default choice”
[HCL03]. The kernel is given by

k(x,y) = exp
(
‖x− y‖2 /(2σ2)

)
. (2.26)

One way of interpreting the regularisation properties of this kernel function
is to derive the operator ψ∗ψ of which it is the Green’s function. To this end
we apply our previous analysis of translation invariant kernels, in a manner
which turns out to be rather similar to the procedure outlined in [YG89].

The φ we defined previously is in this case given by φ(y) = exp(−‖y‖2

2σ2), and
so from (A.8) we have

Φ(ω) , Fx [φ(x)] (ω) = Fy

[

exp

(

−‖y‖2
2σ2

)]

(ω) = σd exp

(

−‖ω‖2 σ2

2

)

.

Now, using the series
exp(x) =

∞∑

n=0

xn

n!
,

as well as

‖ω‖2 =
−1

(2π)2

d∑

p=1

(
2πωp

√
−1
)2

we can therefore derive that

Ψ2(ω) = Φ(ω)−1 = σ−d exp

(

‖ω‖2 σ2

2

)

(2.27)

= σ−d

∞∑

n=0

(

‖ω‖2 σ2

2

)n

/n!

= σ−d

∞∑

n=0

(

−∑d
p=1 (2πıωp)

2 σ2

8π2

)n

/n!

Chapter 2 23

Note that (2.27) already provides a very intuitive interpretation of the regu-
lariser induced by the Gaussian kernel, i.e. as a Fourier domain filter which
attenuates high frequencies. To get an explicit expression for ψ∗ψ, we use
(A.4) and (2.25) along with the above expression to get

ψ∗ψf(x) = σ−d

∞∑

n=0

(

− σ2

8π2

d∑

p=1

∂2
[x]p

)n

f(x)

n!

= σ−d

∞∑

n=0

(

− σ2

8π2

)n
(∇2nf) (x)

n!
,

where ∇2n is the Laplacian raised to the n-th power, as implicitly defined
by the above expressions.

Thin-plate Spline

Another widely used regularisation operator ψ — well studied in [Wah90] —
is defined implicitly by the expression

〈ψf, ψf〉L2
=

d∑

i1=1

· · ·
d∑

im=1

∫

x∈Rd

(
∂

∂ [x]i1
· · · ∂

∂ [x]im
f(x)

)2

dµ(x) (2.28)

This is them-th order thin-plate spline regulariser in R
d — so named because

for the case m = d = 2, it can be regarded as an approximation of the
bending energy of a thin metal plate which occupies the manifold in R

3

given by
{

([x]1 , [x]2 , f(x))⊤ : x ∈ R
2
}

. In practice the above function norm

is typically utilised as a regulariser with m = 2 in two and three dimensions,
whereas in four dimensions m = 3 is more common.

It is easy to see that in the notation of the previous expression this regu-
lariser corresponds to the Fourier domain multiplier

Ψ2(ω) = (2π)2 (−1)m ‖ω‖2m .
It turns out that, because the thin-plate spline regularisation operator ψ
has a non-empty null-space, the corresponding kernel function is only con-
ditionally positive define (conditionally positive definite (c.p.d.)). We define
and discuss the c.p.d. case in the following sub-section, for now note that,
ignoring a multiplicative constant, the thin-plate kernel is given by [Duc77]

k(x,y) =

{

(−1)m−(d−2)/2 ‖x− y‖2m−d log(‖x− y‖) if d ∈ 2N,

(−1)m−(d−1)/2 ‖x− y‖2m−d if d ∈ (2N− 1),

(2.29)
which is c.p.d. with respect to πm−1(R

d), the set of d-variate polynomials of
degree at most m− 1.

24 Background Theory

2.2.4 Conditionally Positive Definite Kernels

In the last Section we alluded to c.p.d. kernel functions – these are given by
the following

Definition 2.2.9. A continuous function φ : X × X → R is conditionally
positive definite with respect to (w.r.t.) the linear space of functions P
if, for all m ∈ N, all {xi}i=1...m ⊂ X , and all α ∈ R

m \ {0} satisfying
∑m

j=1 αjp(xj) = 0 for all p ∈ P, the following holds

m∑

j,k=1

αjαkφ(xj,xk) > 0. (2.30)

Due to the positivity condition (2.30) — as opposed one of non negativity
— we are referring to c.p.d. rather than conditionally positive semi-definite
kernels. The c.p.d. case is more technical than the p.d. case. We provide a
minimalistic discussion here — for more details we recommend e.g. [Wen04].
To avoid confusion, let us note in passing that while the above definition
is quite standard (see e.g. [Wen04, Wah90]), many authors in the machine
learning community use a definition of c.p.d. kernels which corresponds to
our definition when P = {1} (e.g. [SS02]) or when P is taken to be the space
of polynomials of some fixed maximum degree (e.g. [SSM98]). Let us now
adopt the notation P⊥(x1, . . . ,xm) for the set

{

α ∈ R
m :

m∑

i=1

αip(xi) = 0 for all p ∈ P
}

.

The c.p.d. kernels of Definition 2.2.9 naturally define a Hilbert space of
functions as per

Definition 2.2.10. Let φ : X × X → R be a c.p.d. kernel w.r.t. P . We
define Fφ (X) to be the Hilbert space of functions which is the completion
of the set

{
m∑

j=1

αjφ(·,xj) : m ∈ N,x1, ..,xm ∈ X ,α ∈ P⊥(x1, ..,xm)

}

,

which due to the definition of φ we may endow with the inner product
〈

m∑

j=1

αjφ(·,xj),
n∑

k=1

βkφ(·,yk)
〉

Fφ(X)

=
m∑

j=1

n∑

k=1

αjβkφ(xj,yk). (2.31)

Note that φ is not the r.k. of Fφ (X) — in general φ(x, ·) does not even lie
in Fφ (X). In [Wen04] (Chapter 10, Native Spaces), a space is constructed

Chapter 2 25

related to Fφ (X) but which does have an r.k., but this is out of the present
scope. It does follow immediately from the definition however that

〈

f,

m∑

j=1

αjφ(·,xj)
〉

Fφ(X)

=
m∑

j=1

αjf(xj). (2.32)

For the remainder of this Section we develop a c.p.d. analog of the representer
theorem. We begin with

Lemma 2.2.11. Let φ : X ×X → R be a c.p.d. kernel w.r.t. P and p1, . . . pr
a basis for P. For any {(x1, y1), . . . (xm, ym)} ⊂ X × R, there exists an s =
sFφ(X) + sP where sFφ(X) =

∑m
j=1 αjφ(·,xj) ∈ Fφ (X) and sP =

∑r
k=1 βkpk ∈

P , such that s(xi) = yi, i = 1 . . .m.

A simple and elementary proof (which shows (5.14) is solvable when λ =
0), is given in section B.2. Note that although such an interpolating function
s always exists, it need not be unique. The distinguishing property of the
interpolating function is that the norm of the part which lies in Fφ (X) is
minimum.

Definition 2.2.12. Let φ : X ×X → R be a c.p.d. kernel w.r.t. P . We use
the notation Pφ(P) to denote the projection Fφ (X)⊕ P → Fφ (X).

Note that Fφ (X) ⊕ Pφ(P) is a direct sum since p =
∑m

j=1 βiφ(zj, ·) ∈
P ∩ Fφ (X) implies

‖p‖2Fφ(X) = 〈p, p〉Fφ(X) =
m∑

i=1

n∑

j=1

βiβjφ(zi,zj) =
m∑

j=1

βjp(zj) = 0.

For the remainder of this Section we shall develop a c.p.d. analog of
theorem 2.2.7, the representer theorem. This is slightly more involved than
the p.d. case. As a first step consider the following

Lemma 2.2.13. Let f =
∑m

j=1 αjφ(·,xj) ∈ Fφ (X). For all g ∈ Fφ (X)
satisfying

f(xj) = g(xj), j = 1 . . .m, (2.33)

‖f‖Fφ(X) ≤ ‖g‖Fφ(X).

26 Background Theory

Proof. Due to (2.32), (2.33) and the Cauchy-Schwarz inequality, we have

‖f‖2Fφ(X) = 〈f, f − g + g〉Fφ(X)

= 〈f, f − g〉Fφ(X) + 〈f, g〉Fφ(X)

=
m∑

j=1

αj(f − g)(xj) + 〈f, g〉Fφ(X)

= 〈f, g〉Fφ(X)

≤ ‖f‖Fφ(X) ‖g‖Fφ(X)

At first it seems that one could derive a representer theorem directly from
the above lemma. This is not the case however since the constraint that the
coefficients α of functions of the form

m∑

j=1

αjφ(·,xj)

lie in P⊥(x1, . . . ,xm) means that we cannot choose the coefficients to satisfy
the constraints

f(xi) = yi, i = 1 . . .m,

for arbitrary values y1, . . . ym. Instead we must consider the space Fφ (X)⊕P,
as indicated by the following lemma — our proof of which seems to be novel
and particularly elementary.

Lemma 2.2.14. Denote by φ : X × X → R a c.p.d. kernel w.r.t. P and
by p1, . . . pr a basis for P. Consider an arbitrary function s = sFφ(X) +
sP with sFφ(X) =

∑m
j=1 αjφ(·,xj) ∈ Fφ (X) and sP =

∑r
k=1 βkpk ∈ P.

‖Pφ(P)s‖Fφ(X) ≤ ‖Pφ(P)f‖Fφ(X) holds for all f ∈ Fφ (X)⊕ P satisfying

f(xi) = s(xi), i = 1 . . .m. (2.34)

Proof. Let f be an arbitrary element of Fφ (X)⊕ P. We can always write

f =
m∑

j=1

(αi + αi)φ(·,xj) +
n∑

l=1

blφ(·,zl) +
r∑

k=1

ckpk.

If we define3 [Px]i,j = pj(xi), [Pz]i,j = pj(zi), [Φxx]i,j = φ(xi,xj), [Φxz]i,j =

φ(xi,zj), and [Φzx]i,j = φ(zi,xj), then the condition (2.34) can hence be
written

Pxβ = Φxxα + Φxzb + Pxc, (2.35)

3Square brackets w/ subscripts denote matrix elements, and colons denote entire rows or columns.

Chapter 2 27

and the definition of Fφ (X) requires that e.g. α ∈ P⊥(x1, . . . ,xm), hence
implying the constraints

P⊤
x α = 0 and P⊤

x (α + α) + P⊤
z b = 0. (2.36)

The inequality to be demonstrated is then

L , α⊤Φxxα ≤
(

α + α

b

)⊤(
Φxx Φxz

Φzx Φzz

)

︸ ︷︷ ︸

,Φ

(
α + α

b

)

, R. (2.37)

By expanding

R = α⊤Φxxα
︸ ︷︷ ︸

=L

+

(
α

b

)⊤

Φ

(
α

b

)

︸ ︷︷ ︸

,∆1

+ 2

(
α

0

)⊤

Φ

(
α

b

)

︸ ︷︷ ︸

,∆2

,

it follows from (2.36) that P⊤
x α + P⊤

z β = 0, and since Φ is c.p.d. w.r.t.
(
P⊤
x P⊤

z

)
that ∆1 ≥ 0. But (2.35) and (2.36) imply that L ≤ R, since

∆2 = α⊤Φxxα + α⊤Φxzb = α⊤Px
︸ ︷︷ ︸

=0

(β − c)−α⊤Φxzb + α⊤Φxzb = 0.

Using these results it is now easy to prove an analog of the representer
theorem for the p.d. case.

Theorem 2.2.15 (Representer theorem for the c.p.d. case). Denote by φ :
X × X → R a c.p.d. kernel w.r.t. P, by Ω a strictly monotonic increasing
real-valued function on [0,∞), and by c : R

m → R ∪ {∞} an arbitrary cost
function. There exists a minimiser over Fφ (X)⊕ P of

W (f) , c (f(x1), . . . , f(xm)) + Ω
(

‖Pφ(P)f‖2Fφ(X)

)

(2.38)

which admits the form
∑m

i=1 αiφ(·,xi) + p, where p ∈ P.

Proof. Let f be a minimiser of W. Let s =
∑m

i=1 αiφ(·,xi)+p satisfy s(xi) =
f(xi), i = 1 . . .m. By lemma 2.2.11 we know that such an s exists. But by
lemma 2.2.14 ‖Pφ(P)s‖2Fφ(X) ≥ ‖Pφ(P)f‖2Fφ(X). As a result, W (s) ≤ W (f)

and s is a minimizer of W with the correct form.

28

Chapter 3

Fast Approximation Methods

In the previous chapter we saw how Tikhonov regularisation can be used to
deal with ill-posed problems, and we motivated the regularised solution as
an maximum a posteriori (m.a.p.) estimate. We also saw that for Tikhonov
regularised function estimation problems, if we assume that the function lies
in an reproducing kernel Hilbert space (r.k.h.s.), then we can invoke the
representer theorem and conveniently work in the span of kernel functions
at the given data points (cf. (2.14)).

It is already clear that the representer theorem is indispensable if we seek
the globally optimal function the from a high or even infinite dimensional
r.k.h.s. H. Moreover, if the dimension of the input space d is large in com-
parison to the number of training points m, then it is convenient that the
computational complexity is chiefly dependent on the latter. While this may
often be the case in machine learning problems, it is rarely the case in sur-
face estimation problems we consider in chapter 4. In those problems one
typically has d . 5 but m up to the order of 107. But if we naively apply e.g.
kernel ridge regression (k.r.r.) with a fully supported kernel function, then
we will suffer a cubic time complexity in m due to the requisite matrix inver-
sion (cf. (2.17)). We are therefore forced to either seek a different approach,
or resort to approximations.

In subsection 4.1.1 we will see that kernel methods based on fully sup-
ported kernels have highly attractive properties. Motivated by all of this,
in the present chapter we concern ourselves with methods of approximating
such kernel methods which scale well in m, if not so well in d. The main part
of the chapter is section 3.1, where we develop a new method based on com-
pactly supported basis functions. For the sake of comparison we then discuss
the well known fast multipole method (f.m.m.) approach in section 3.2.

30 Fast Approximation Methods

3.1 Decoupling Regulariser and Function Basis

As we saw in chapter 2, the solution to the Tikhonov regularisation problem
in an r.k.h.s. H with reproducing kernel (r.k.) k, where the data dependent
term (i.e. the c in (2.12)) depends on f(x1), . . . f(xm), always takes the form

f =
m∑

i=1

αik(·,xi). (3.1)

This is convenient since the norm of the function — one of the terms min-
imised in the Tikhonov regularisation setting — has the form

‖f‖2H = 〈f, f〉H =

〈
m∑

i=1

αik(·,xi),
m∑

j=1

αjk(·,xj)
〉

H

=
m∑

i,j=1

αiαjk(xi,xj),

where the last step is due to the reproducing property. In the following, we
shall depart from the function basis implied by (3.1). Instead we opt for an
ad-hoc basis not related to k or H, but rather chosen for its computational
advantages. By doing so we will also be forced to depart from the convenience
of the above expression for the norm. Nonetheless, as we shall demonstrate
it is possible to do this and it does lead to useful approximations.

Before proceeding we would like to address the natural question of why
we do not simply use a kernel function with compact support — after all
this would allow similar computational advantages without requiring that
we abandon the convenience of the above expression for the function norm.
At the very end of chapter 2 we gave a brief survey to support the claim
that compactly supported kernels and local processing methods in general
have undesirable properties — presently we give an intuitive explanation as
to why this is.

Compactly Supported Kernels

The main problem with compactly supported kernels (and any kernel —
such as the Gaussian — which converges to a constant value as the two
input points become further apart) is that the corresponding regularisers
are somewhat poor for geometrical problems. Such regularisers draw the
function towards some nominal constant as one moves away from the data,
thereby implementing the non-intuitive behaviour of regularising the con-
stant function and making interpolation impossible.

Moreover, since the support of the kernel function must be comparable
to the size of the smallest details one wishes to capture from the data, in-
terpolation is impossible on scales larger than that. To overcome this one
may try fitting the function with basis functions of large support, to interpo-
late unsampled regions, followed by fitting to the residual errors with basis

Chapter 3 31

functions of diminishing support, to capture smaller details. A number of
authors have proposed this — for a representative example see e.g. [OBS03].
The final result is a final function that is the sum of the various intermedi-
ate functions, say f =

∑n
i=1 gi. Since regularisation is done on each scale

separately however, the overall regulariser is, roughly speaking, something
like the expression

∑n
i=1 ||gi||2Hi

. Unless the individual Hi are orthogonal,
this is not a sensible regulariser — one simple example demonstrating this
being the case g1 + g2 = 0, since even this arguably simplest of functions
corresponds to (supposed) regularisation term ||g1||2H1

+ ||g2||2H2
that could

be arbitrarily large.

3.1.1 Restricting the Set of Available Functions

Let us now begin with the main thread of the present chapter. Pivotal in
our strategy will be the use of compactly supported basis functions whose
width and density are selected adaptively to the complexity of the function
we wish to estimate. Thus, we propose forcing our estimated function f to
take the form:

f(·) =

p
∑

k=1

πkfk(·), (3.2)

where the individual basis functions are

fk(·) = φr(|| · −vk||/sk),

for some compactly supported function φr : R
+ → R with support [0, 1).

The vk and sk can be interpreted as the basis function centres and dilations
(or scales), respectively.

We wish to minimise a Tikhonov regularised risk function (e.g. the k.r.r.
objective given by (2.12)) within the span of (3.2). The key to doing this
is to note that as we discussed in subsection 2.2.3, the regulariser (function
norm) can be written as ‖f‖2H = 〈ψf, ψf〉L2

. The point of the approximation
can be seen by first substituting (3.2) into the k.r.r. objective (2.16), leading
to

O[f] = σ2
y ‖f‖2H +

m∑

i=1

(f(xi)− yi)2

= σ2
y

〈
p
∑

j=1

πjfj,

p
∑

k=1

πkfk

〉

H

+
m∑

i=1

(
p
∑

k=1

πkfk(xi)− yi
)2

= σ2
yπ

⊤Fψπ + ‖Fxπ − y‖2
Rm (3.3)

32 Fast Approximation Methods

where [Fx]i,k , fk(xi), and

[Fψ]k,k′ , 〈fk, fk′〉H
= 〈ψfk, ψfk′〉L2

where ψ is the regularisation operator associated withH as per subsection 2.2.3.
The optimal coefficients π∗ are implied by stationarity:

1

2

∂

∂π
O[f] = 0 = σ2

yFψπ
⊤ + F⊤

x

(
Fxπ

⊤ − y
)

→ π∗ =
(
σ2
yFψ + F⊤

x Fx
)−1

F⊤
x y. (3.4)

It is easy to see that both Fψ and F⊤
x Fx have the same sparsity pattern —

the j, k-th element can only be non-zero if the fj and fk have overlapping
support, i.e.

‖vj − vk‖ ≤ sj + sk. (3.5)

The coefficients that we need to determine are therefore given by a sparse
p-dimensional positive semi-definite linear system, which can be constructed
efficiently by simple code that takes advantage of software libraries for fast
nearest neighbour type searches (see e.g. [MPL00]). To actually solve the
system we can use one of the several standard and widely available conjugate
gradient type algorithms [GV96].

In the later subsection 3.1.4 we present an algorithm — effective for im-
plicit surface reconstruction — which constructs the function basis (i.e. the
(vj, sj) pairs). Presently we turn to the computation of Fψ.

3.1.2 Computing the Regularisation Matrix

We now come to the crucial point of computing Fψ, which can be thought of
as the regulariser in (3.2). To build the sparse matrix Fψ, a fast range search
library (e.g. [MPL00]) can be used to identify the non-zero entries (i.e. those
satisfying (3.5)). The next step is evaluating the terms

〈ψfj(·), ψfk(·)〉L2
,

preferably with a closed form expression. We now provide two approaches
for doing this. The first is a Fourier domain method, and the second a more
direct method which is better suited to evaluation by numerical methods.

Fourier Domain Method

Let us begin by defining the function

φ : R
d → R

x→ φ(x) = φr(‖x‖).

Chapter 3 33

As we mentioned in subsection 2.2.3 (cf. (2.25) and surrounding comments),
many regularisers ψ are Fourier multipliers, i.e. they admit the form

Fy [ψφ(y)] (ω) = Ψ(ω)Fy [φ(y)] (ω). (3.6)

For these regularisers, the Fourier domain is very convenient in deriving
expressions for Fψ — the term we require is given by

〈ψfj(·), ψfk(·)〉L2
= 〈ψφ((· − vj)/sj), ψφ((· − vk)/sk)〉L2

= 〈ψφ(·/sj), ψφ((· − vk + vj)/sk)〉L2

= [ψφ(·/sj)⊗ ψφ(·/sk)] (vj − vk)

= F−1
ω [Fx [ψφ(x/sj)] (ω)Fx [ψφ(x/sk)] (ω)] (vj − vk)

= F−1
ω

[
Ψ(ω)2(sjsk)

dΦ(sjω)Φ(skω)
]
(vj − vk) (3.7)

where Φ(ω) , Fx [φ(x)] (ω). Assuming that Ψ(ω) is radially symmetric,
then all of the required Fourier and inverse Fourier transforms above are also
radially symmetric — and the above expression may be solved in closed form
using (A.2) along with a table of integrals or a computer algebra package.

Example 3.1.1 Gaussian Basis / Gaussian Regulariser
The regulariser in Fourier multiplier form which corresponds to the Gaussian
kernel with scale parameter σ is given by

Ψ(ω) = σ−d/2 exp
(
‖ω‖2 σ2/4

)

(cf. (2.27) and surrounding comments). If we take a Gaussian basis

φr = exp(−(·)2/2) (3.8)

(this is clearly not compactly supported — we consider it in this example
because it makes the mathematics easier), then the Fourier transform

Φ(ω) = exp
(
−‖ω‖2 /2

)
,

is also Gaussian, as is the regularisation term. If we assume the condition

σ2 < s2
j + s2

k, j = 1 . . . p, k = 1 . . . p,

or equivalently that

sj > σ/
√

2, j = 1 . . . p, (3.9)

then the required Fourier transforms exist and we have from (3.7) and the

34 Fast Approximation Methods

Fourier transform dilation lemma (A.6) that

〈ψfj(·), ψfk(·)〉L2
=
(sjsk
σ

)d

F−1
ω

[

exp

(

‖ω‖2
(
σ2 − s2

j − s2
k

)

2

)]

(vj − vk)

=
(sjsk
σ

)d (
s2
j + s2

k − σ2
)−d/2

exp

(

‖vj − vk‖2
2
(
σ2 − s2

j − s2
k

)

)

.

(3.10)

Note that

• For sj = sk = σ (3.10) reduces to a Gaussian with parameter σ.

• For sj = σ it reduces to a Gaussian with scale parameter sk, evaluated
at vk, as required by the reproducing property.

• The condition (3.9) is no restriction, since basis functions violating this
condition do not have a finite r.k.h.s. norm.

Figure 3.2 provides a visual depiction of the relationship between the scale
parameter of a Gaussian function and its norm in the r.k.h.s. of a Gaussian
kernel. We demonstrate the use of (3.10) as a regulariser in Figure 3.1. Use
of the expression in constructing sparse kernel machines using a multi-scale
Gaussian basis is the subject of ongoing experimental work.

The above example is neatly summarised by the following

Lemma 3.1.2. Let

g(x,y,σ) , |2πdiag (σ)|− 1
2 exp

(

−1

2
(x− y)⊤ diag (σ)−1 (x− y)

)

, (3.11)

where x,y and σ ∈ R
d, and let H be the r.k.h.s. with reproducing kernel

g(·, ·,σ). If the conditions σi >
1
2
σ and σj >

1
2
σ are satisfied component-

wise, then

〈g(·,vi,σi), g(·,vj,σj)〉H = g(vi,vj,σi + σj − σ). (3.12)

If either condition is not satisfied, then the corresponding function on the
left hand side is not in H.

Which we prove directly in Appendices B.1.1 and B.1.2. It is interesting
to compare this with the following famous result.

Theorem 3.1.3. [Aro50] The function f belongs to the r.k.h.s. H with r.k.
k if and only if there exists an ǫ > 0 such that

Rǫ(x,y) = k(x,y)− ǫf(x)f(y),

is positive definite (p.d.), in which case

‖f‖2H = inf {1/ǫ : Rǫ is p.d.} .

Chapter 3 35

In particular, applying the above theorem 3.1.3 to the result of theorem
3.1.2 allows us to make the following statement. If σ1 > σ/

√
2, the function

Rǫ(x,y) given in this case by

exp
(
−‖x− y‖2 /(2σ2)

)
− ǫ exp

(
−
(
‖x− v1‖2 + ‖y − v1‖2

)
/(2σ2

1)
)

is p.d. for all v1 ∈ R
d and all

ǫ ≤ 1/ ‖f1‖2H =

(
σ2

1

σ

)−d
(
2σ2

1 − σ2
)d/2

.

The case of Gaussian regulariser/Gaussian basis is probably the easiest
one to handle from a mathematical point of view, due to the fact that the
Fourier transform of the Gaussian is itself Gaussian, as is the product of two
Gaussians. It turns out that the same analysis can be done in closed form
for e.g. the exponential kernel

k(x,y) = exp (−a ‖x− y‖) ,

but the resulting expressions are messier, so we won’t bother with them
here. Although the case which we will now move onto is messier still, it is of
interest due to its practical value.

Example 3.1.4 B3-spline Basis / Thin-Plate Regulariser
For our numerical work with implicit surfaces we chose for φr the B3-spline
function (see Figure 3.3)

φr(r) =
4∑

n=0

(−1)n

d!

(
n

d+ 1

)(

r +

(
d+ 1

2
− n

))d

+

, (3.13)

although this choice is rather inconsequential as we ensure that the regu-
lariser is unrelated to the function basis — any smooth compactly supported
basis function could be used. In order to achieve the same interpolating prop-
erties as the thin-plate spline, we choose the thin-plate regulariser for ψ (see
(2.28)). The easiest way to determine the corresponding Fourier multiplier
Ψ(ω) is to write out for the implicit form

〈ψf(· − r), ψg(·)〉L2

=

"
dX

i1=1

· · ·
dX

im=1

„
∂

∂xi1

· · ·
∂

∂xim

f(·)

«

⊗

„
∂

∂xi1

· · ·
∂

∂xim

g(·)

«#

(r)

= F−1
ω

"
dX

i1=1

· · ·

dX

im=1

Fx

»„
∂

∂xi1

· · ·
∂

∂xim

f(x)

«–

(ω)Fx

»„
∂

∂xi1

· · ·
∂

∂xim

g(x)

«–

(ω)

#

(r)

= F−1
ω

"
dX

i1=1

· · ·
dX

im=1

(2πıωi1)
2 · · · (2πıωim

)2 Fx [f(x)] (ω)Fx [g(x)] (ω)

#

(r)

= F−1
ω

ˆ
(2πı ‖ω‖)2m Fx [f(x)] (ω)Fx [g(x)] (ω)

˜
(r),

36 Fast Approximation Methods

Figure 3.1: For p = 30 (top-left) and p = 50 (top-right), we take 50 random noisy samples
of a sinc function, denoted by black dots. The blue line is the k.r.r.approximation based on
these samples, using the σ = 0.2 Gaussian kernel (cf. (2.26)), call it k, and noise parameter
σy = 0.1 (cf. (2.16)). The dashed-red line is the minimiser of the k.r.r.objective within the span
of a randomly constructed multi-scale Gaussian function basis of p individual basis functions
(cf. (3.3) and Example 3.1.1) such that f =

Pp
j=1

πj exp((· − vj)
2/(2s2j)) — the (vj , sj) pairs are

denoted as black crosses on the top row. Depicted on the bottom left are the constituent αik(·, xi)
terms from the k.r.r.solution

P50

i=1
αik(·, xi) taken from the top-right plot. The bottom-right plot

similarly shows the constituent πj exp((· − vj)
2/(2s2j)) terms from the top-right plot. Naturally

the p = 50 approximation is closer to the exact solution. The large coefficients πj (evident in the
bottom-right plot) are allowed due to the cancellation effects but would not be allowed under
a weight decay scheme. Zooming in on the top row reveals that the approximations tend to
oscillate about the optimal solution.

Chapter 3 37

Figure 3.2: A family of unit norm Gaussians. Let H be the r.k.h.s. with r.k. k(x,y) =

exp(−‖x − y‖2

R
/2). Each curve above depicts a function of the form f(x) = c exp(−‖x‖2

R
/(2α2))

where c was chosen according to (3.10) such that ‖f‖H = 1, i.e. we put c = α−2d
`
2α2 − 1

´d/2

where d = 1. The red curve represents the α = 1 case, and hence corresponds to the largest c
value of the curves, namely c = 1.

from which we can read off

Ψ2(ω) = (2πı ‖ω‖)2m .

where Ψ2 is an informal notation for Fx [ψ∗ψδ(x)]. In this case we were
able to solve (3.7) only for the three dimensional case — fortunate as this
is probably the most useful case in computer graphics etc. The resulting
expression is rather unwieldy however so we only give an implementation of
it in the C language in section C.1, as well as a plot in Figure 3.3.

Direct Exploitation of Symmetry

The previous Fourier transform oriented approach will not always lead to
integrals which are known in closed form — for example in Example 3.1.4
we could not find a closed form expression for the four dimensional case.
As such we are forced to resort to numerical integration methods, for which
it can be useful to make the following simplifications which as we shall see
basically consist of writing out the limits of integration of the intersection of
two circles.

Firstly, since the basis functions fi are radial, and provided that the
regularisation operator ψ is translation invariant, then for any d ≥ 3 we
may use symmetry to reduce the problem to a two dimensional integral.

38 Fast Approximation Methods

Figure 3.3: One of the most useful achievements of the present thesis is probably the derivation
of closed form expressions for the above functions — the expression for the blue line is given in
section C.1. The green and dashed-red lines are φr(x/sj) and φr(x/sk) plotted against x, where
φr is the B3-spline of (3.13). The support parameter sk is, from top-left to bottom-right, 1, 5,
10 and 100, whereas sj fixed at 1. The blue lines denote the inner product 〈ψfj , ψfk〉L2

, where
ψ is the m = 2 thin-plate regularisation operator and fi = φr(‖· − vi‖R3 /si), as per Example
3.1.4. The blue lines are plotted as a function of the distance between the maxima of the two
basis functions in R

3, i.e. the horizontal axis denotes ‖vj − vk‖R3 .

Chapter 3 39

Assuming without loss of generality that

fi(·) = gr(‖·‖)
as well as

fj(·) = hr(‖· − d1‖)
where

d1 = (‖vi − vj‖ , 0, . . . , 0)⊤ ∈ R
d,

and then by symmetry we have

〈ψfi, ψfj〉L2
∝
∫ ∞

x1=−∞

∫ ∞

x2=−∞

xd−1
2 Q(x1, x2, d1)dx1dx2 , I

where

Q(x1, x2, d1) , (ψfi)
(∥
∥(x1, x2, 0 . . . , 0)⊤

∥
∥
)
(ψfj)

(∥
∥(x1 − d1, x2, 0 . . . , 0)⊤

∥
∥
)
.

Since the fi are smooth and compactly supported, the above integral can
be computed rather easily using standard numerical integration techniques.
Moreover we can take advantage of the known supports of fi and fj to
decompose the integral into a more manageable form. Assuming without
loss of generality that si, sj > 0 and si ≥ sj, two cases must be considered:

1. That the support of fi is a subset of that of fj.

2. That the two supports overlap only partly.

The first case occurs when d1 + sj ≥ si, whereupon we have

I =2

∫ xint

z=−sj

∫ xg

x2=0

xd−1
2 Q(x1, x2, d1)dx1dx2

+ 2

∫ si

x1=xint

∫ xf

x2=0

xd−1
2 Q(d1 − z, x2, d1)dx1dx2,

where we have defined

xint =
d2

1 + s2
i − s2

j

2r
,

xf =
√

s2
i − x2

1,

and

xg =
√

s2
j − (x1 − r)2.

The second case occurs when d1 + sj < si, in which case we have

I = 2

∫ r+sj

x1=r−sj

∫ xf

x2=0

xd−1
2 Q(x1, x2, d1)dx1dx2.

40 Fast Approximation Methods

3.1.3 Interpretation as a Gaussian Process

So far, we have motivated our approach as the minimiser of a Tikhonov reg-
ularised objective function within the span of some ad-hoc function basis. If
we consider these quantities to be log-likelihoods then we can take a proba-
bilistic view — in fact, using ideas from [QCR05] we now demonstrate that
the approximation we have developed is equivalent to inference in an exact
Gaussian process (g.p.) with a degenerate1 covariance function depending on
the choice of function basis.

Placing a multivariate Gaussian prior over the coefficients in (3.2), namely
π ∼ N (0, F−1

ψ), we see that f obeys a zero mean g.p. prior — writing
[fx]i = f(xi) and denoting expectations by E [·] we have for the covariance

E
[
fxf

⊤
x

]
= FxE

[
ππ⊤

]
F⊤
x

= FxF
−1
ψ F⊤

x

Now, assuming an independent and identically distributed (i.i.d.) Gaussian
noise model with variance σ2, defining [ft]j = fj(t) (don’t be confused by

the fact that ft and fx are do not have analogous meaning), and retaining
our previous definition of Fx, we can immediately write the joint distribution
between the observation at a test point t, that is yt ∼ N (f(t), σ2) and the
vector of observations at the xi, namely yx ∼ N (fx, σ

2I), which is

p(yx, yt) = N
(

0,

((
FxF

−1
ψ F⊤

x + σ2I
)

FxF
−1
ψ ft

f⊤
t F

−1
ψ Fx

(
f⊤
t F

−1
ψ ft + σ2I

)

))

.

The posterior distribution is therefore itself Gaussian,

p(yt|yx) ∼ N
(
µyt|yx ,Σyt|yx

)
.

Using (A.7) for the marginals of the multivariate Gaussian followed by the
Matrix inversion lemma (A.1) we can derive mean of the posterior

µyt|yx =
(
FxF

−1
ψ ft

)⊤ (
FxF

−1
ψ F⊤

x + σ2I
)−1

y

= f⊤
t

(
σ2Fψ + F⊤

x Fx
)−1

F⊤
x y.

By comparison with (3.4) we can see that the mean of the posterior distri-
bution is identical to the approximate regularised solution. For the corre-
sponding posterior variance we have

Σyt|yx =
(
f⊤
t F

−1
ψ ft + σ2

)
−
(
f⊤
t F

−1
ψ Fx

) (
FxF

−1
ψ Fx + σ2I

)−1 (
FxF

−1
ψ ft

)

= σ2f⊤
t

(
σ2Fψ + F⊤

x Fx
)−1

ft + σ2.

Chapter 3 41

Figure 3.4: An input data set taken from a light based depth scanner (blue) with the ba-
sis centres produced by Algorithm 3.1 (red) (basis function support decreasing from top-left to
bottom-right), and a rendering of the fit surface using the technique described in section 4.3
(which appears elongated due to the difference in image plane projection method). The param-
eters of Algorithm 3.1 were ǫ = 1/50, s = 1/5, t = 13/10 and r = 1/3.

3.1.4 Construction of the Function Basis

The success of the above scheme hinges on the ability to construct a good
function basis, i.e. one that

1. Spans a set of functions containing good solutions to e.g. the k.r.r.
system given by (2.16) (in particular having a support which covers a
given region of interest — here assumed to be the unit hyper-box).

2. Leads to fast solution of (3.4).

3. Can be constructed and evaluated quickly.

The construction of the function basis is rather problem dependent — we
now consider the implicit surface reconstruction problem of Definition 4.1.1.
To this end, we make use of some standard ideas for 3D point cloud simplifi-
cation [PGK02]. The main idea that we use is that the closer a set of points
within a given region is to being linear, the less information is required to
sufficiently describe the shape within that region. The way in which we ap-
ply this idea for the present task is described precisely by the pseudo-code
of Algorithm 3.1. The basic idea can be seen more easily in Figure 3.4 how-
ever, and the remainder of this sub Section could be safely skipped at first
reading.

Note that although Algorithm 3.1 is only intuitively justified, we will later
minimise a well justified objective function (e.g. (2.12)) within the span of
the resultant basis functions. The results of the overall algorithm therefore

1Degenerate in the sense that the corresponding r.k.h.s. is finite dimensional

42 Fast Approximation Methods

Algorithm 3.1: B = MakeBasis (X , ǫ, s, t, r)
input:
data X = {xi ∈ R

d}1≤i≤m (scaled to lie within the unit hyper-box)
curvature tolerance ǫ ∈ [0, 1]
initial basis support s ∈ R

+

basis support decrement ratio t > 1
basis grid width to basis support ratio r ∈ [0, 1]
output:
basis function (centre,support) pairs B = {(vk, sk) ∈ R

d × R
+}

X̃ ← X
B ← {(v, s) : v ∈ grid ({x : ‖x‖∞ ≤ 1} , rs)}
while X̃ 6= ∅ do

s← s/t
for all x ∈ X̃ do

if curvature({x′ ∈ X : ‖x′ − x‖
2

< s}) < (ǫ/d) then
B ← B ∪ {(v, s) : v ∈ grid ({x} , rs)}
X̃ ← X̃ \ x

end if
end for

end while

do not depend too strongly on the output of Algorithm 3.1, in the sense that
adding more basis functions can only make the overall solution better. The
algorithm makes use of two auxiliary functions, curvature and grid. The first
of these functions, curvature(X), used also in [PGK02], returns the ratio of
the smallest to the sum of all of the eigenvalues of the covariance matrix of
the set X = {xi ∈ R

d}1≤i≤p. If we define the covariance matrix as C = DD⊤

where
D =

[
x1 −X ,x2 −X , . . . ,xp −X

]
,

and X is the empirical mean of X , then letting the diagonal matrix Λ =
diag(λ1, λ2, . . . λd) and the ortho-normal matrix V be the solutions to the
eigen-system CV = ΛV , the function returns

curvature(X) =
mini∈1...d|λi|
∑d

j=1 |λj|
,

which is a real number in [0, 1/d] that is smaller for point sets that lie closer
to a linear manifold. The second function, grid(S, w) returns points from a
grid of spacing w immediately surrounding the set S ⊂ R

d, that is

grid(S, w) = dilation(S, w)
⋂{

wz : z ∈ Zd
}
,

where dilation(S, w) is the union of the set of hyper-spheres centered at all
elements of S (in other words, a dilation of S):

dilation(S, w) =

{

x ∈ R
d :

(

min
x′∈S
‖x− x′‖

)

≤ w

}

.

Chapter 3 43

3.2 Fast Multipole Method

We believe that the scheme presented in Section 3.1 is useful for a wide range
of problems, particularly in computer graphics. Specifically, it can be applied
to any problem involving large amounts of fairly low-dimensional data (say,
d . 4) in which it is necessary to estimate a regularised function that either
satisfies some set of constraints or minimises some cost function.

A very different and important approximation scheme based on the f.m.m.
[BG97] has been applied to the implicit surface reconstruction problem in
[CBC+01] however, so we now take the time to review this approach. The
f.m.m. is an elegant algorithm which, among other accolades, won its authors
the Steele prize for seminal contribution to research in 2001. It is useful for
the implicit surface reconstruction problem because it allows the k.r.r. so-
lution to be constructed and evaluated quickly, although it was originally
designed for solving n-body problems in computational physics. The algo-
rithm efficiently approximates to an arbitrary precision summations of the
form

s(x) =
m∑

i=1

αik(x,xi). (3.14)

Obviously this allows fast evaluation of a k.r.r. solution, but what about
constructing this solution? To do this it is necessary to solve the system

y = (K + σ−2I)α, (3.15)

(cf. (2.17)) for the coefficients vector α ∈ R
m. For large m, solving the

system directly is impossible due to the O(m3) time and O(m2) memory
requirements [GV96]. By employing a conjugate gradients (see e.g. [GV96])
type of iterative solver however, it is possible to obtain an approximate solu-
tion in a more efficient manner. This is because because such iterative solvers
require only matrix-vector products — which essentially involves computing
sums of precisely the form which the f.m.m. is designed to efficiently ap-
proximate. Indeed, the f.m.m. approximation allows one to evaluate such
summations to an arbitrary precision in time O(log(m)), or in some cases
O(1) — an improvement over the naive O(m). Thus, an approximate so-
lution of the system can be attained in time O(cm log(m)), where c is the
number of iterations required by the conjugate gradients solver. For the re-
mainder of the present chapter we provide a short introduction the f.m.m.
Our goal is not to provide a thorough understanding as this is beyond the
present scope — instead we aim to provide only those details necessary to
understand the relative pros and cons of the f.m.m. in comparison to the
fast scheme we developed in section 3.1 — for a more thorough exposition
we recommend [BG97] as a starting point.

44 Fast Approximation Methods

3.2.1 The Basic Idea — Unipole Expansion

Assume that we can expand k in the form

k(x,y) =
r∑

q=1

φq(x)ψq(y) +Rr(x,y)

where Rr is a series remainder term which tends to zero for ‖x− y‖2 →∞
or for r →∞. In the f.m.m. literature this is known as a far-field expansion
of k about the source y. We can then rewrite (3.14) in the form

s(x) =
m∑

i=1

αik(x,xi)

=
m∑

i=1

αi

r∑

q=1

φq(x)ψq(xi) +
m∑

i=1

αiRr(x,xi)

=
r∑

q=1

φq(x)
m∑

i=1

αiψq(xi)

︸ ︷︷ ︸

,βq

+
m∑

i=1

αiRr(x,xi). (3.16)

Hence, by precomputing each the βq at a cost of O(mr), the approximation

s̃(x) =
r∑

q=1

βqφq(x)

can be computed in O(r) time. Moreover we have the error bound

|s(x)− s̃(x)| ≤ ‖α‖1 max
i=1...m

|Rr(x,xi)| ,

which is small if x is sufficiently far from the sources xi. This is known as a
unipole expansion of k for the given set of sources xi. The unipole expansion
leads to an efficient approximation when x is sufficiently far from the sources
for the expansion to be truncated at a level r ≪ m while still retaining an
acceptable bound on the error.

For the case of k.r.r. however, we need to evaluate (3.14) at each of the
xi, which in the context of the f.m.m. means that the evaluation points
will typically be close to some of the centres, requiring a more elaborate
approach. This involves a space subdivision scheme which is the subject of
the next section.

3.2.2 Space Subdivision and the Multipole Expansion

To obtain the best efficiency/accuracy trade-off, the unipole scheme needs to
be applied in an adaptive manner — if a subset of the sources are far from

Chapter 3 45

[0, 1]

[0, 1/2)

[0, 1/4)

[0, 1/8) [1/8, 1/4)

[1/4, 1/2)

[1/4, 3/8) [3/8, 1/2)

[1/2, 1]

[1/2, 3/4)

[1/2, 5/8) [5/8, 3/4)

[3/4, 1]

[3/4, 7/8) [7/8, 1]

Figure 3.5: A binary tree structure induced by a uniform subdivision of the unit interval — in
the parlance of the f.m.m.each node of the tree represents one panel.

the evaluation point, they can be replaced by a unipole expansion. Nearer
points need to be grouped into smaller sets if they are to be replaced by
unipole expansions, and some very near points must be evaluated in the
direct manner.

Typically this is done by defining a hierarchical subdivision of the space
and for each subdivision pre-computing the unipole expansion for those
sources lying within it. A simple example is given in Figure 3.5, which
depicts a uniform subdivision of the unit interval. Let us refer to the nodes
of the tree as panels. With each panel T we associate the part of s due to
the sources in T by writing with a somewhat sloppy notation

sT (x) =
∑

xi∈T

αik(x,xi).

The truncated far-field approximation of sT is denoted by s̃T . Given such a
tree, the cost of pre-computing the far-field expansions for all of the panels
directly is O(rm log(m)), but we shall improve on this in the next section.

Let us now present a simple approximation scheme which takes advantage
of the space subdivision, based on the idea of well-seperatedness. We say
that a point is well-separated from a panel T if it has a distance to T of
at least diam(T), and that a panel U is well separated from T if all of the
points in U are well separated from T . Now, to evaluate the approximation
at a point x, we take the leaf-node panel Tx which contains x, as well as
all of the spatial (leaf node) neighbours of Tx, and compute the exact terms
sT for each of these panels, summing the results. Then, only if a panel is
well-separated from Tx do we use its far-field approximation. The procedure
is explained more succinctly by Algorithm 3.2.

For example, applying Algorithm 3.2 to the subdivision of Figure 3.5, for

46 Fast Approximation Methods

Algorithm 3.2:
s̃(x) = EvaluateFMM(x, T)
input:
evaluation point x

panel T
output:
f.m.m.approximation s̃(x)

if T is well separated from x then
return s̃T (x)

else
if T is a leaf then

return sT (x)
else

call EvaluateFMM with x and each of the children of T
return the sum of the results

end if
end if

an evaluation point x ∈ [3/8, 1/2) leads to the approximation

s̃(x) =s[3/8,1/2)(x) + s[1/4,3/8)(x) + s[1/2,5/8)(x)

+ s̃[0,1/8)(x) + s̃[1/8,1/4)(x) + s̃[5/8,3/4)(x) + s̃[3/4,1](x).

Let’s now estimate the computational time complexity of Algorithm 3.2.
If we choose the number of levels m of the binary space subdivision to be
≈ log2(m) then each leaf panel contains O(1) sources. Since we need evaluate
only three such leaf nodes by the direct method the total cost for the direct
part is O(1). For the far-field part, we need evaluate at most 3 panels of each
level of the tree — otherwise the panels would be well separated at the next
level down the tree. The cost for the far-field part is therefore O(r log(m)),
where r is the number of terms in the truncated series. Since r dictates
the precision of the approximation, we can say that for a fixed precision the
complexity is O(log(m)).

Algorithm 3.2 is very simple, and although it does afford an order of
magnitude computational advantage in comparison with the direct method,
a number of improvements are possible, which we survey in the next section.

3.2.3 Improvements

Data Structure.

An obvious improvement can be made to the spatial data structure, which
should not be constructed uniformly. Instead the structure should refine
to finer subdivisions where there is more data, and the leaf nodes should
be shrunk to the minimum size which contains the corresponding sources.
Various structures such as bd-trees have been used — for a review see e.g.
[LMGY04].

Chapter 3 47

Tree Construction.

Rather than constructing the far-field coefficients for each of the panels in-
dividually this can be done in the following more efficient manner. First,
the far field expansions for the leaf nodes are constructed normally. Then,
for panels in subsequent levels of the tree the far-field expansions are con-
structed based only on the far-field expansions the child panels, along with
the sources within the panel itself. Obviously some more analytical results
(i.e. in addition to the forms of φ, ψ and Rr in (3.16)) are required for this.
The complexity of this new tree construction algorithm depends on the how
the far-field expansions are communicated to the parents, which introduces
a dependency on the dimension of the space d as well as the truncation order
r. Fixing d and r however, leads to a complexity of O(m) [BG97].

Efficient Evaluation.

If evaluation time is more important than the time required to construct the
tree, it is possible to sacrifice the latter for the former. In particular, for
each panel one may conglomerate the far-field terms of all well separated
panels into a single approximation valid only for the cell itself. This setup
procedure now costs O(m log(m)) — but remarkably the evaluation involves
the O(1) part for evaluating the near panels, and now only O(1) for all of
the far-field terms [BPT06]. This is the method which has been employed
to excellent effect in the FastRBFTM toolbox [CBC+01].

Dual Trees.

It is not necessary to treat each evaluation point separately. Savings may be
possible by constructing a tree-like spatial data structure for the evaluation
points and then treating groups of evaluation points at the same time. In the
context of f.m.m. this seems to be a new idea which has yet to be properly
tested and understood. For more information we refer the reader to [LGM06]
which, although lacking in theoretical insight and computational complexity
estimates, seems to be the only work available to date.

3.3 Comparing the Two

For the problem of solving large thin-plate spline k.r.r. problems, the in-
herent computational difficulty is due to the fact that, because the kernel
function does not decay with distance (cf. (2.29)), all points interact strongly
with one another. Both methods overcome this by local processing strate-
gies. The new method does this by constructing compactly supported basis
functions, and then transmitting the regularisation information in a domino

48 Fast Approximation Methods

like manner by way of the inner products which are non-zero for overlapping
basis functions only. The f.m.m. transforms the problem to a local one by
way of the method described in the last part of the previous section, entitled
Efficient Evaluation.

We now compare the f.m.m. to the method of section 3.1 (which we refer
to as the new method). A plus (minus) sign indicates a factor favourable for
the new method (the f.m.m.).

+ Compression

For the new method we need only store the basis centers (p points in R
d)

along with the coefficients π1, . . . πm and dilations s1, . . . , sm. In fact, only a
small number of unique dilations are produced by Algorithm 3.1, making the
storage cost for the s1, . . . , sm negligible. In contrast, the f.m.m. approach
retains all of the input points. In our experiments with implicit surfaces, the
number of basis functions p was typically considerably less than the number
of input points, leading to a compression of the data — see Table 4.1.

+ Functionals easy to apply

With the new method, various functionals can be applied to the function
(e.g. the gradient operator, as used heavily in section 4.3) with minimal
additional implementation effort. The non-trivial part is done by the range
search algorithm, for which many well developed software libraries exist.
Hence, evaluating (3.2) can be done efficiently by using a range search library
to identify the contributing basis functions, over which the summation is
computed directly. Modifying this to give the gradient of the function, for
example, is no more difficult than implementing the gradient computation
for a single basis function. In contrast, the f.m.m. method requires a far
greater additional effort.

+ Simplicity

The new method is both conceptually simpler and easier to implement. This
statement can be justified in various ways. First, we manage to explain the
new method fairly thoroughly in a little over ten pages in section 3.1. In con-
trast, explaining and deriving the necessary tools for the f.m.m. approach for
thin-plate splines in R

3 requires some forty odd pages in [BPT06], and that
only for a special case and without discussing preconditioning. Note that
in the f.m.m. approach to k.r.r. with the thin-plate spline, in addition to
the f.m.m. machinery itself it is necessary to employ preconditioning strate-
gies due to the notoriously ill-conditioned nature of the spline interpolation
equations, further adding to the overall complexity [MBC99]. Additional

Chapter 3 49

evidence of the difficulty of implementing the f.m.m. approach is that de-
spite its effectiveness, it currently only exists in the proprietary FastRBFTM

toolbox.

- Generality

The new method is specific to regularised interpolation problems, and is not
useful for computing sums of the form (3.14). Moreover, the effectiveness
of the scheme is somewhat limited by the capacity to derive closed form
expressions for the regulariser inner products (cf. Example 3.1.4). We say
somewhat, because in practice it is rather straightforward to construct a
numerical approximation for this integral and then cache the resulting val-
ues for later use. Such a caching scheme is effective for bases constructed
by Algorithm 3.1 for example, as there are only a finite number of unique
distances and dilations to consider.

- Error Bounds

A great feature of the f.m.m. is the ability for the user to specify the desired
accuracy. No such guarantee is made by the new method. For work on
interpreting the bound on the evaluation error provided by the f.m.m. when
coupled with the approximate solver of the k.r.r. linear system, see e.g. [SS03,
FWML06].

50

Chapter 4

Implicit Surface Reconstruction

In section 3.1 of the previous chapter, we developed an approximation to
kernel ridge regression (k.r.r.) which, in comparison to the naive method,
scales better with the number of data points, but worse with respect to the
input space dimension. As such the technique is especially well suited to
a wide range of computer graphics problems. In the present chapter we
consider one such problem — the one which motivated us to develop the
approximation method — namely that of implicit surface reconstruction.

The chapter begins with the necessary background to the problem in
section 4.1, and goes on to present three algorithms for solving the problem.
We summarise these three algorithms in subsection 4.1.5 before presenting
them individually in Sections 4.2 to 4.4.

4.1 Background

4.1.1 Surface Reconstruction

The problem of reconstructing (or inferring) a surface from a set of points
frequently arises in computer graphics. The problem as we will approach it
is stated more precisely in the following

Definition 4.1.1. The surface reconstruction problem consists of in-
ferring a co-dimension one1 manifoldM⊂ R

d from a finite sampling

S = {s1, . . . , sm ∈M} ,

given in the form of corresponding noisy observations x1, . . . ,xm. We say
that the problem is with normals if one is also given a set of vectors
n1, . . . ,nm ⊂ R

m, with the property that ni is the consistently oriented
normal vector ofM at si, observed with noise.

1i.e. a manifold of dimensionality one less than that of the space in which it lies.

52 Implicit Surface Reconstruction

The surface reconstruction problem poses various theoretical and practi-
cal problems. Obviously, the problem is ill-posed, necessitating the use of
prior knowledge (such as e.g. a prior distribution over manifolds M). The
noisiness of the input data varies greatly depending on how it was acquired
(see subsection 4.1.2), as does the distribution of the samples S. In partic-
ular, significant regions may be completely unsampled, necessitating what
the computer graphics community refers to as hole filling. Finally, in com-
puter graphics problems one is typically faced with a large number of samples
(currently, say, tens of millions), precluding the use of algorithms which scale
poorly in m.

4.1.2 Data Acquisition

Numerous methods of sampling physical surfaces are now available, which
we now briefly review in order to better understand the data they provide.
Before proceeding let us make a short note on the availability of normal
vectors.

Given a point cloud, it is usually possible to estimate the normal vector
of the scanned surface at a given point in an un-oriented manner (i.e. up
to a sign change), based on the local neighbourhood of points. Of course,
this requires that the sampling is sufficiently dense and free of noise for the
surface to vary smoothly between samples. As we shall see, given this un-
oriented normal vector, it is usually possible to take advantage of knowledge
of the scanning setup in order to orientate the normal vectors, e.g. such that
they all point outwards. In particular this poses no problem in computer
graphics scanning setups in which the manifold is sampled sufficiently densely
and with sufficiently low noise. For example, if a laser light is shined on
the subject, then the direction of the beam indicates the orientation of the
surface.

Passive Optical Scanning

The least expensive methods tend to be the passive optical ones, as they
usually only require one or more digital cameras. Perhaps the most common
approach is to mimic the human stereoscopic vision system. This can be
done with two cameras along with a correspondence finding algorithm which
attempts to locate points in both images that correspond to the same location
on the subject. Given such correspondences one may then solve for a 3D
location by the process of triangulation.

Less popular are silhouette based methods which typically photograph
the subject from various angles, and then determine the shape using some
space carving algorithm — naturally concave subjects are problematic for
this approach.

Chapter 4 53

Active Optical Scanning

Both normal and laser light can be used actively for scanning. One widespread
approach is to shine a laser onto the subject, take a picture from a different
angle, and then use the process of triangulation to solve for the location
being illuminated. This highly accurate method is popular for constructing
models of small (of the order of a few metres) objects.

Alternatively, time of flight methods scan the subject with a laser range
finder — a radar like device which determines the distance to the object
based on the round-trip time of a pulse of light. This method is less accurate
than the laser triangulation method, but has the advantage of allowing a
greater distance to the subject, and is particularly useful for e.g. aerially
scanning the Earth’s surface.

Active systems also exist that use normal (non-laser) light. The princi-
ple is similar to the laser triangulation method, except that the scanning is
typically not done on a point by point basis. For example, one may project
a pseudo-random light pattern onto the subject and then apply image pro-
cessing and triangulation. This can be useful for scanning moving objects
such as a person’s face.

Mechanical Contact Scanning

Contact methods are also used, primarily in an industrial manufacturing
setting. The basic idea is very simple and involves placing contact elements
on the subject and measuring the location based on the displacement of the
contact element. This method tends to be very accurate but rather slow and
intrusive, and may damage the subject.

4.1.3 Implicit Surfaces

In order to solve the surface reconstruction problem, it is necessary to have a
surface representation. Although piecewise linear representations (i.e. trian-
gulated meshes) are very widely used, many other representations exist and
have their own particular advantages and disadvantages. We will be mainly
concerned with one particular representation, namely the implicit surface,
although various other representations exist — these include e.g. Bernstein-
Bézier representations within a Delaunay triangulated tessellation [BBX95],
as well as point based representations that analyse the point cloud directly
and locally as needed at rendering time [ABCO+01].

Before proceeding to discuss the implicit surface representation we would
like to point out that there exists a class of algorithms which are often
referred to as implicit or level-set methods but that are, contrary to the
definition we will give shortly, defined numerically on a grid rather than by
a continuous analytic function [Set98, WB98]. Although we will not concern

54 Implicit Surface Reconstruction

f(x) > 0

f(x) = 0

f(x) < 0

Figure 4.1: An implicit surface representation with embedding function f , of a curve in 2D.

ourselves further with these methods we do not wish to suggest that they
are not useful or interesting.

Implicit Surface Representation

Implicit surfaces (or simply implicits) are defined by way of a continuous
embedding function f : R

d → R. As depicted in Figure 4.1, the surface is
the zero level set of f , i.e.

f−1(0) =
{
x ∈ R

d : f(x) = 0
}
.

We shall assume that f−1(0) is of bounded, and we shall refer to the set

f−1(R−) =
{
x ∈ R

d : f(x) < 0
}

as being interior to the surface (we also assume that f−1(R−) also has finite
measure). The implicit surface representation has the useful properties that

• The surface is by construction water-tight, which is particularly useful
for the surface reconstruction problem.

• Pathological cases aside, sign(f(x)) indicates whether x is interior to
the surface.

• (∇f)(x) is the normal direction of the surface at x.

• Set operations between implicits (i.e. constructive solid geometry) are
convenient, e.g. max(f1, f2) implements the intersection operation.

Next we discuss ways of solving the surface reconstruction problem using
an implicit representation.

4.1.4 Implicit Surface Reconstruction

The implicit surface reconstruction problem is typically transformed into
a classical regression problem of the type readily solved by e.g. k.r.r. (see

Chapter 4 55

2.2.2) — the regressed function being the embedding function of the im-
plicit. These methods typically construct as an intermediate step a set
(x′

1, y1) , . . . , (x
′
n, yn) ⊂ R

d × R of (input, value) pairs (as input for the re-
gression algorithm) from the given set (x1,n1) , . . . , (xm,nm) ⊂ R

d × R
d

of (surface sample, surface normal) pairs. For example, given unit length
surface normal vectors, the FastRBFTM algorithm [CBC+01] (which we in-
troduce shortly) constructs a regression problem with the following set of
(input, value) pairs:

m⋃

i=1

{(xi, 0) , (xi + dni, yi+) , (xi − dni,−yi−)} ,

for some heuristically chosen scalar d. The targets yi+ and yi− are taken to
be the distance to the nearest data point. These manufactured off-surface
points may contradict one another however, and further heuristics are em-
ployed by FastRBFTM to detect and discard such cases.

It is possible however to use the normal vectors directly — indeed the
direct use of normal vectors in a fast approximation to k.r.r. is one of the
key contributions of the present thesis (see section 4.3). In any case, the
problem eventually boils down to solving a large regression type problem,
most commonly in R

3. We now survey the most important means of doing
this.

Partition of Unity

The idea here is to construct a set of local approximating functions and then
blend them together to obtain a global approximating function. To this end,
consider a bounded set Ω ⊂ R

d and a set of compactly supported functions
wi : R

d → R
+, i = 1 . . . q with the property

Ω ⊂
q
⋃

i=1

interior (Ωi)

where Ωi , supp(wi). We can define another set of functions

ϕi ,
wi

∑q
k=1wk

, i = 1 . . . q

which by construction have the property that

q
∑

i=1

ϕi(x) = 1 (4.1)

for all x ∈ Ω. The name partition of unity stems from this property (4.1).
Now, given a set of local approximating functions f1, . . . , fq such that fi

56 Implicit Surface Reconstruction

approximates the given data on Ωi, we can use the ϕi to blend them together
to produce an approximating function f on Ω given by

f =

q
∑

i=1

ϕifi.

This scheme has been successfully applied to the implicit surface problem
using e.g. weighted least squares polynomial fitting to construct the fi (see
e.g. [OBA+03, SOS04]). The method is perhaps the fastest and most scalable
to date, but is only applicable to benign (low noise, densely sampled) data
— we shall elaborate on these shortcomings directly in our comparison with
the kernel based approach.

Kernel Methods

The implicit surface methods closest to the main one developed in the
present thesis (see section 4.3) are those based on a Tikhonov regularisa-
tion framework within the reproducing kernel Hilbert space (r.k.h.s.) of a
fully-supported kernel function such as the thin-plate spline. This line of
research seems to have begun with the Variational Implicits proposed by
Turk and O’Brien in 1999 [TO99]. Such methods produce excellent results,
but in their basic form suffer from a cubic computational fitting cost in the
number of points. Their undisputed effectiveness has led researchers to look
for ways to overcome the computational problems, however. Presently, two
main options exist.

The first of these uses compactly supported kernel functions, leading to
fast algorithms that are easy to implement [MYC+01]. Unfortunately how-
ever, such a solution is suitable for benign data sets only. As noted in
[CBC+01], compactly supported kernels “yield surfaces with many undesir-
able artifacts in addition to the lack of extrapolation across holes”.

Kernel methods based on fully supported kernel functions seem to repre-
sent the state of the art in terms of their ability to handle noisy or missing
data. This conclusion is confirmed in one of the most important works on the
partition of unity approach [OBA+03], wherein it was noted that the “par-
tition of unity method is more sensitive to the quality of input data [than]
approximation and interpolation techniques based on globally-supported ra-
dial basis functions” — a conclusion corroborated by the results within a
different paper from the same group [OBS03].

The second means of overcoming the aforementioned computational prob-
lems does not suffer from the same problems as compactly supported ker-
nels, as demonstrated by the FastRBFTMalgorithm [CBC+01]. This method
uses the Fast Multipole Method (fast multipole method (f.m.m.)) [GR97]
(see section 3.2) to overcome the computational problems without having to

Chapter 4 57

abandon the fully supported kernel. The resulting method is non-trivial to
implement however and to date exists only in the proprietary FastRBFTM

package.
The main new method which we shall propose in section 4.3 — based on

the approximation scheme of section 3.1 — lies somewhere between local and
global processing. Although we use only locally supported basis functions,
the regulariser we employ is globally defined. It could be said that in doing
so we attempt to achieve the cliched best of both worlds: by applying them
in this manner compactly supported basis functions can lead to high quality
implicit surface reconstruction results, but with considerably less implement
than the f.m.m. based method. section 4.3 is an attempt to bring the reader
to the same conclusion.

4.1.5 Overview of the Rest of the Chapter

The remainder of the chapter presents three algorithms for the surface re-
construction problem as we defined it in subsection 4.1.1:

1. A simple starting point which generalises the support vector machine
(s.v.m.) classifier, such that some additional points (the surface points)
are constrained to lie near the zero level set of the continuous decision
function (section 4.2, based on our work in [WLK03]).

2. A state of the art method where we demonstrate the fast approximation
developed in section 3.1. The method is essentially k.r.r. with gradient
constraints for the surface normal vectors (section 4.3, based on our
work in [WSC06]).

3. An experimental idea which avoids the requirement for surface nor-
mal vectors at the cost of solving a more difficult problem — this is
k.r.r. with additional terms to e.g. push the function away from zero
(section 4.4, based on our work in [WCS05]).

The three methods can all be considered improvements on

arg min
f∈F

σ2 ‖f‖2H +
m∑

i=1

f(xi)
2

. . . which is fortunate as the solution to the above is trivially the zero func-
tion! Thus, one may view the methods as three different means of avoiding
this triviality. Note that we have denoted the hypothesis space of functions
by F rather than H since the present chapter is not always concerned with
r.k.h.s.’s — in particular we deviate in section 4.4.

For the remainder of the chapter we stick to the notation of Definition
4.1.1, i.e. x1,x2, . . .xm ⊂ R

d denote surface points and n1,n2, . . .nm ⊂ R
d

58 Implicit Surface Reconstruction

denote the corresponding surface normals which, in Sections 4.2 and 4.3, are
also assumed to be given.

4.2 An SVM-like Method

Let us assume that in addition to the given set of surface points, we have
a set {(zj, yj)}1≤j≤n of labelled off-surface points zj ∈ R

d with associated
labels yj ∈ {1,−1}, where zj is interior to the surface of interest if yj = 1,
and exterior if yj = −1. These off-surface point/label pairs can be taken as,
e.g.

(xi + dni, 1) , (xi − 1ni,−d) ,
for some heuristically chosen scalar d. For example, one may fix d to some
value sufficiently smaller that the smallest geometric detail of the target
manifold, and then discard those off-surface point/label pairs which violate
the constraint that

min
x∈{x1,...xm}

‖xi − x‖ < 0.9 d.

For further details see e.g. [SSB05, CBC+01].
Regardless of where it comes from, our proposed method of utilising this

information is to perform hard-margin s.v.m. classification of the zj with a
squared error penalty on the value of the function at the xi, i.e. we take the
limit λ→∞ of

fa = arg min
f∈H

σ2 ‖f‖2H +
m∑

i=1

f(xi)
2 + λ

n∑

j=1

max(0, yjf(zj)− 1)2 (4.2)

When we originally proposed this method, we suggested implementing the
optimisation based on the Lagrangian dual of the above problem [WLK03].
Presently we take a simpler path toward deriving a practicable problem
formulation. First, due to theorem 2.2.7 (the representer theorem), we have

fa(·) =
m∑

i=1

αik(·,xi) +
n∑

j=1

βjk(·,zj).

Now, due to the limit λ → ∞, we can rewrite fa as the solution to the
following problem, in which the last term of (4.2) has been rewritten as a
constraint

min
f∈H

σ2 ‖f‖2H +
m∑

i=1

f(xi)
2

subject to yif(zi) ≥ 1, i = 1 . . . n

Chapter 4 59

Figure 4.2: A rendering of fa (cf. (4.2)) where the xi are blue dots, the zj are pluses and
crosses for yj plus or minus one respectively, the colour represents the value of fa. The solid line
denotes the zero level, the dashed lines the ±1 levels. A gaussian kernel function was used, and
the parameter σ decreases from top-left to bottom-right.

which is just an (m+ n)-dimensional quadratic programme in α and β, i.e.

min
α∈Rm, β∈Rn

σ2

(
α

β

)⊤(
Kxx Kxz

Kzx Kzz

)(
α

β

)

+

∥
∥
∥
∥

(
Kxx

Kxz

)(
α

β

)∥
∥
∥
∥

2

Rm

subject to diag(y)
(
Kzx Kzz

)
(

α

β

)

≥ 1,

where [Kxz]i,j = k(xi,zj), etc. This problem can be solved by a variety of
quadratic programme solvers. Note that the advantages of switching to the
dual formulation as per [WLK03] are not especially compelling, as demon-
strated in more recent work on primal optimisation methods for the s.v.m.
[Cha07, KD05].

60 Implicit Surface Reconstruction

4.2.1 Experiments and Discussion

This is reasonable approach — in fact, the treatment of the off-surface points
could be construed as an improvement over the more typical regression based
methods (cf. subsection 4.1.1), in the sense that one need not assign regres-
sion target values. Moreover, those points for which the constraints are well
satisfied, i.e. the set {zj : |fa(zj)| > 1}, do not affect the solution and there-
fore do not impinge on the complexity of the function as measured by the
norm ‖f‖2H. Moreover, the absence of these points in the final solution makes
the resultant function quicker to evaluate.

The first main problem however, is that in its basic form the time com-
plexity of the algorithm is cubic in m — making it infeasible for realistic
problem sizes. Although this issue may be overcome by the approximation
scheme of section 3.1, we prefer to first correct the other main problem with
the method — namely the need to construct off-surface points. This is pre-
cisely what we focus on in section 4.3.

Before proceeding however, it is interesting to compare the algorithm with
the standard hard-margin s.v.m. classifier. In this perspective the surface
points can be considered training examples that an expert has labelled too
hard to classify. As we noted in [WLK03], an application for the algorithm as
a data classifier is e.g. in the domain of handwriting recognition, in which a
human could label some sample characters as being, say, either an eight or a
six. Although this may not seem an especially promising idea, surprisingly,
the algorithm has in fact since been used for a similar purpose. We are
referring here to the so-called UniverSVM in which the xi are points which
belong to neither of the two classes to be classified — for further details see
[WCS+06].

4.3 Direct Incorporation of Normal Vectors

As noted in subsection 4.1.2, most current geometrical scanning methods
yield surface normal vectors at each of the surface points. We already men-
tioned in subsection 4.1.1 however, that all of the presently available im-
plicit surface reconstruction methods based on Tikhonov regularisation in
an r.k.h.s. require off-surface points — as does the method we suggested in
the previous section 4.2.

Presently we remedy this by showing how one may incorporate normals
directly without having to move away from the powerful r.k.h.s. framework.
The method we propose is suggested by the fact that the normal direction
of the implicit surface is given by the gradient of the embedding function —
thus normal vectors can be incorporated by regression with gradient targets.

Chapter 4 61

(a) (b) (c)

Figure 4.3: (a) Rendered implicit surface model of Lucy, constructed from 14 million points with
normals. (b) A planar slice that cuts the nose — colour represents the value of the embedding
function and the black line its zero level. (c) A black dot at each of the 364,982 compactly
supported basis function centres which, along with the corresponding dilations and magnitudes,
define the implicit.

We therefore propose instead to solve for

fb , arg min
f∈H
‖f‖2H + σ−2

y

m∑

i=1

f (xi)
2 + σ−2

n

m∑

i=1

‖(∇f) (xi)− ni‖2Rd , (4.3)

which uses the given surface point/normal pairs (xi,ni) directly. As ought to
be clear after reading chapter 2, this can be interpreted probabilistically as a
maximum a posteriori (m.a.p.) estimate with certain Gaussian assumptions
about the value and the gradient of the function at the given surface points.
We now show how to solve for fn in explicit form.

Exact Solution

We begin by giving the explicit solution for fb without any derivation —
we will give the derivation directly (i.e. in lemma 4.3.1) for a slightly more
general case.

From theorem 2.2.7, we already know that we need only solve for m
coefficients αi as well as a further md coefficients βlj to obtain the optimal

62 Implicit Surface Reconstruction

solution

fn (x) =
m∑

i

αik (xi,x) +
m∑

i=1

d∑

l=1

βlikl (xi,x) , (4.4)

where we have defined

kl (xi,x) ,
∂

∂ [xi]l
k (xi,x) ,

the partial derivative of k in the l-th component of its first argument. The
coefficients α and βl of the solution are found by solving

0 = (K + σ2
yI)α +

d∑

l=1

Klβl (4.5)

along with, for m = 1 . . . d

Nm = Kmα + (Kmm + σ2
nI)βk +

d∑

l=1
l 6=m

Klmβl, (4.6)

where we’ve defined the following matrices and vectors:

[Nl]i = [ni]l; [α]i = αi
[βl]i = βli; [K]i,j = k(xi,xj)

[Kl]i,j = kl(xi,xj) ; [Klm]i,j = klm(xi,xj).

Note that the klm are the second derivatives of k(·, ·), defined similarly to
the first. Rather than deriving these expressions in a direct manner, it is
simpler to consider the more general

Lemma 4.3.1. Denote by X a non-empty set, by k a reproducing kernel
(r.k.) with r.k.h.s. H, by (z1, y1) . . . (zp, yp) ⊂ X × R a training set, by
σ1, . . . σp ⊂ R a set of noise variances, and by L1, . . . Lp a set of linear
operators H → H. The minimiser f ∈ H of the Tikhonov regularised risk
functional

O , ‖f‖2H +

p
∑

i=1

σ−2
i ((Lif) (zi)− yi)2 , (4.7)

is given by

f =

p
∑

i=1

αi(L
∗
i k)(·,zi), (4.8)

where, if we define Σ = diag (σ) as well as — in sloppy notation,

[KL]j,i = 〈k(·,zj), (LjL∗
i k)(·,zi)〉H ,

the coefficients α of the solution are given by

α =
(
KL + Σ2

)−1
y. (4.9)

Chapter 4 63

Proof. The expansion (4.8) follows directly from theorem 2.2.7. Putting it
into (4.7) yields

O = α⊤KLα +
∥
∥Σ−1 (KLα− y)

∥
∥

2

Rm , (4.10)

which, since it is convex in α, is minimised at the stationary point satisfying

1

2

∂

∂α
O = 0 = KLα +

(
Σ−1KL

)⊤ (
Σ−1 (KLα− y)

)
,

the explicit solution of which is given by (4.9).

Given lemma 4.3.1, it is trivial to solve our original problem (4.3) — if
we rewrite the gradient terms therein using partial derivatives, i.e. we make
the substitution

‖(∇f) (xi)− ni‖2Rd =
d∑

j=1

((
∂

∂xj
f

)

(xi)− [ni]j

)2

where the x1, . . . , xd represent the components of R
d, then it is clear that

(4.3) is merely a special case of lemma 4.3.1 with (assuming the obvious
dimensionalities of the following matrices and vectors),

p = m (d+ 1) ,

y =
(
0⊤ N1: · · · Nd:

)⊤
,

(
L1 · · · Lm

)
=
((
I · · · I

)
D1 · · · Dd

)
,

and
(
z1 · · · zm

)
=
(
X · · · X

)
,

and where we have defined

[X]:,i = xi,

[N]:,i = ni,

and

Dj =
(

∂
∂xj

· · · ∂
∂xj

)

.

The method we have developed so far in the present section 4.2 represents
a straightforward way of solving one of the two main problems with the
previous method of section 4.3, namely the need to manufacture off-surface
points. The computational problems remain however, as the computational
time complexity of solving for the required coefficients is O((md)3) due to
the matrix inverse, and so we now apply the fast approximation scheme of
section 3.1.

64 Implicit Surface Reconstruction

Fast Approximate Solution

One of the main advantages of the approximation scheme in comparison
to the f.m.m. for example, is that it is straightforward to solve problems
involving more complex functionals than the evaluation functional. In the
present case this is particularly useful due to the gradients in (4.3). For
convenience we recall here the form of our approximate solution, as given
previously by (3.2), i.e.

f =

p
∑

k=1

πkfk, (4.11)

as well as the expression for the norm of the above function,

‖f‖2H = π⊤Fψπ.

Once again it is simpler to derive the expression for the optimal vector π for
the more general case. Putting the above into (4.7) leads to the expression

O = π⊤Fψπ +
∥
∥Σ−1 (FLπ − y)

∥
∥

2

where [FL]i,k , Lifk(xi) and Σ = diag (σ) as before. The optimal coefficients
π are those satisfying the stationarity condition

1

2

∂

∂π
O[f] = 0 = Fψπ + F⊤

L Σ−2FLπ − F⊤
L Σ−2y

the solution of which is

π =
(
Fψ + F⊤

L Σ−2FL
)−1

F⊤
L Σ−2y. (4.12)

For the special case of (4.3), if we write [Fx]i,k , fk(xi) as before, and

[Fxj]i,k ,
(

∂
∂xj
fk

)

(xi), then the optimal solution is given by

π =

(

Fψ + σ−2
y F⊤

x Fx + σ−2
n

d∑

j=1

F⊤
xjFxj

)−1(

σ−2
n

d∑

j=1

FxjN
⊤
j:

)

. (4.13)

Clearly the statements we made about the sparsity of the linear system
(3.4) also hold for the above case. Also note that if Fx is too big to fit into
the computer memory, it is possible to utilise the fact that

(
A1 · · · Am

) (
A1 · · · Am

)⊤
=

m∑

i=1

AiA
⊤
i ,

by computing chunks of Fx, multiplying and then updating a running total
of F⊤

x Fx. Moreover it is straightforward to add this to Fψ in place, since the

Chapter 4 65

sparsity patterns are the same. Hence, the overall memory requirement is
approximately only that of Fψ.

It turns out that in combination with the B3-spline basis plus thin-plate
spline regulariser (cf. Example 3.1.4), the overall algorithm is rather efficient,
as we demonstrate in the next sub-section.

4.3.1 Experiments and Discussion

Before we demonstrate the method on various problems, let us explain how
we ray-trace the implicit surfaces.

Ray Tracing

To render 3D implicit surfaces we use a ray tracer, the usual choice for high
quality 3D graphics. To ray trace a given object one need only be able to
find the first intersection (if one exists) between the object and a light ray
with given starting point x0 and direction n. This is particularly simple for
the present case — as the embedding function is smooth and differentiable
everywhere the following iterative second order approximation line search
for the zero set converges rather quickly, and in our experiments took, on
average, approximately 2-3 iterations per intersection search.

Note that we found using a first order approximation to be slower. This
is probably due to the fact that a considerable part of the time needed to
compute the Hessian of the function is taken by the range search which finds
the contributing basis functions. Since these need to be found in order to
compute the function value and gradient for a first order method anyway,
it is not too much more expensive to use a more accurate second order
approximation which converges in fewer iterations.

At each iteration we make the second order approximation about x0, i.e.

f̃(x) = (x− x0)
⊤A(x− x0) + w⊤(x− x0) + b,

where b, w and A are available analytically, and given by

b = f(x0)

w = (∇f) (x0)

[A]i,j =

(

∂2

∂ [x]i ∂ [x]j
f

)

(x0)/2.

We then solve with respect to λ the equation

f̃(x0 + λn) = λ2n⊤An + λw⊤n + b = 0,

which is a quadratic function of λ with roots

λ∗ =
2tc

−tb ±
√

t2b − 4tatc
,

66 Implicit Surface Reconstruction

where we have defined

ta = n⊤An; tb = w⊤n; tc = b.

We take the lambda of smallest magnitude, since we seek the first intersec-
tion. Note that if the system cannot be solved for real λ then the real part

of λ∗ minimises
(

f̃ (x0 + λn)
)2

. The implementation of our ray tracer is

rather simple and not optimised, so we do not provide timing results in the
following subsection 4.3.1, but merely note in passing that the ray traced
images in Figure 4.8 each took of the order of a two minutes to calculate.

2D Examples

In order to show how the embedding function behaves (rather than just
its zero set) we include a two dimensional example in Figure 4.4. Note
that although the function basis includes various scales of basis function at
irregular locations, the regularisation scheme outlined in section 3.1 leads
to a solution that is well behaved over the entire support of the function.
Further evidence of the efficacy of the regulariser is evident in the video
accompanying [WSC06], which shows the performance on a rather complex
fractal-like data set.

3D Examples

Here we fit models to several 3D data sets of up to 14 million data points.
For each model, the timing of the various stages of the fitting process is given
in Table 4.1. The following general observations can be made regarding this
table:

• High compression ratios can be achieved, in the sense that a relatively
small number of basis functions can represent the shape.

• The fitting time scales rather well, from 38 seconds for the Stanford
Bunny with 35 thousand points to 4 hours 23 minutes for the Lucy
statue with 14 million points. Moreover, after accounting for the dif-
ferent hardware the times seem to be similar to those of the f.m.m.
approach [CBC+01].

Some example ray traced images of the resulting models are given in figures
4.3 and 4.7, and the well-behaved nature of the implicit over the entire 3D
volume of interest is shown for the Lucy data-set in the accompanying video.

In practice the system is extremely robust — we achieved excellent results
without any parameter adjustment — larger values of σy and σn in (4.3)
simply lead to the smoothing effect shown in Figure 4.5. Missing and noisy
data are also handled gracefully, as shown in figures 4.6 and 4.8.

Chapter 4 67

Figure 4.4: An example solution in two dimensions. Data points are depicted as dots with
normals vectors as arrows, the zero set as a black contour and the embedding function value as
the background colour. All of the basis function centers of various scales (produced by Algorithm
3.1 with the parameter setting ǫ = 0 and a lower limit on the basis support) are plotted with
various markers corresponding to the basis function support (e.g. the stars have the largest and
the red dots the smallest support). Note that although the basis consists of an ad-hoc set of
multi-scale, compactly supported basis functions, the overall solution is well behaved due to the
computation of the inner products depicted and explained in e.g. Figure 3.3. Also note that it is
precisely this algorithm which scales up to handle tens of millions of input point/normal pairs,
as per Figure 4.3.

68 Implicit Surface Reconstruction

Figure 4.5: Various values of the regularisation parameters lead to various amounts of smoothing
— here we set σy = σn in (4.3) to a decreasing value from left to right of the figure.

Figure 4.6: Missing data is handled by the interpolating properties of the thin-plate spline
regulariser — the ray traced model was constructed from the incomplete data set depicted in the
middle. Note that the model is wearing a loose t-shirt.

Chapter 4 69

Figure 4.7: Ray traced three dimensional implicits, Happy Buddha (543K points with normals)
and the Thai Statue (5 million points with normals).

70 Implicit Surface Reconstruction

Name # Points # Bases Basis Kreg Kxv , Kzv∇ Multiply Solve Total

Bunny 34834 9283 0.4 2.4 3.7 12 20 39
Face 75970 7593 0.7 1.9 7.0 20 16 46

Armadillo 172974 45704 6.6 8.5 37 123.4 72 248
Dragon 437645 65288 14.4 16.3 71 322.8 1381 1806
Buddha 543197 105993 117.4 27.4 99 423.7 2909 3577

Asian Dragon 3609455 232197 441.6 61 608.3 1885.0 1010 4005
Thai Statue 4999996 530966 3742.0 198 1575.6 3121.2 2570 11206

Lucy 14027872 364982 1425.8 170.5 3484 9367.7 1341 15789

Table 4.1: Timing results with a 2.4GHz AMD Opteron 850 processor, for various 3D data
sets. Column one is the number of points, each of which has an associated normal vector, and
column two is the number of basis vectors (the p of subsection 3.1.1). The remaining columns are
all in units of seconds: column three is the time taken to construct the function basis, columns
four and five are the times required to construct the indicated matrices, column six is the time
required to multiply the matrices as per (4.13), column seven is the time required to solve that
same equation for π and the final column is the total fitting time.

4D Examples

It is also possible to construct higher dimensional implicit surfaces, particu-
larly interesting being a 4D, or 3D plus time representation of a continuously
evolving 3D shape — one possible use for this is as means of constructing
3D animation sequences from a time series of 3D point cloud data. Optical
scanning devices can produce 3D scans at a rate of the order of a hundred
frames per second. In this case both spatial and temporal information can
help to resolve noise or missing data problems within individual scans. We
demonstrate this in the video accompanying [WSC06], which shows that 4D
surfaces yield superior 3D animation results in comparison to constructing
a separate 3D models for each instant. It is also interesting to note that the
interpolating behaviour which we observed in three dimensions also occurs
in four dimensions — in the video accompanying [WSC06] we effectively
interpolate between two three dimensional shapes.

4.4 Reconstructing Surfaces without using Normals

So far we have seen two methods for implicit surface fitting, both of which re-
quire more than just a sampling of the surface to be estimated. In section 4.2
we assumed some additional points labeled as interior or exterior to the sur-
face. In section 4.3 we improved on this by directly utilising surface normal
vectors as targets for the gradient of the embedding function.

The present section, which expands on our work in [WCS05], takes a
natural next step by dispensing with such additional knowledge entirely —
here we assume nothing more than a noisy sampling of the target manifold
(cf. Definition 4.1.1). The reasons for considering this setting are rather
uncompelling within the domain of reconstructing physical surfaces sampled

Chapter 4 71

Figure 4.8: Implicit reconstruction of the Stanford bunny after the addition of white Gaussian
noise, the variance of which increases from left (no noise) to right. The normal vectors were
similarly corrupted. The parameters σy and σn were chosen automatically using five-fold cross
validation.

Figure 4.9: Interpolation in the fourth dimension (call it time): a 4D implicit was constructed
from 3D data of the face of a monkey (at time zero) and a man (at time one). Pictured are
eight renderings of the implicit at evenly spaced times from zero to one. The data sets were
acquired using an optical range finding system, producing noisy data, especially in the case of
the monkey due to its hair. Note that we do not propose this as a general morphing algorithm (the
interpolated frames are smoothed, which is inappropriate — preferable being a correspondence
based approach such as [SSB05]), but rather wish to demonstrate the interpolation properties
that are useful for reconstructing animated models from sequences of 3D data as in the video
accompanying [WSC06].

72 Implicit Surface Reconstruction

Figure 4.10: An illustration of one of the difficulties which arise in estimating a manifold based
on a sampling only, i.e. without being given e.g. surface normal vectors. Within either dashed
circle the surface normal vector can be determined only up to a sign change. The fact that this
ambiguity can only be resolved based on the global picture — as well as the fact that f and (−f)
are equally good implicit surface embedding functions — indicates an inherent non convexity in
the problem.

in R
3. Indeed, as we argued already in subsection 4.1.2, normal vectors are

usually available in such cases anyway.
In some other cases however it is not possible to derive these normal vec-

tors reliably. In the case of sparse or high dimensional data for example, de-
riving the normal vectors (by some local processing) as an intermediate step
to the final fitting process could introduce more difficulties than it avoids.
To quote the documentation of the state of the art commercially available
software product based on the work of [CBC+01]: “in general, without ad-
ditional information determining normals [from points] is ambiguous”.

In comparison to the previous sections of the present chapter, the present
setting is considerably more challenging. Loosely speaking, this is due to the
fact that since we aim for an implicit surface representation, the problem is
non-convex by nature. Perhaps the simplest explanation for this fact is that
all reasonable criteria of the goodness of fit (say e.g. O) of an implicit surface
embedding function to a given data set (at least all reasonable ones which
we can think of) will be invariant to a change of sign of the embedding
function — after all, the zero set of a function is itself invariant to such
a sign change. But since the zero function is not in general equally good
as other functions, there exist functions f such that O[f − f] > O[f] but
O[f] = O[−f], implying the non-convexity of O.

Thus, although the normals vectors may contain information which is
highly redundant given a dense sampling of the surface, they make the sur-
face estimation easier for technical reasons. Analogous is the semi-supervised
learning problem. Semi supervised learning is essentially identical to super-
vised learning except that some training examples are not labelled as to
their class membership. In this case, many authors have proposed augment-
ing standard learning algorithms such that the unlabelled examples are well

Chapter 4 73

classified into any of the true classes, but not left near the decision bound-
ary. To restate, this means that for a binary classification task the unlabelled
points should lie either well on one or the other side of the decision boundary,
but not close to it.

The difficulties of the present manifold estimation problem are similar to
those of the semi-supervised learning problem. Here, the gradient of the em-
bedding function should be orthogonal to the surface. Locally however, this
only means that, loosely speaking, the gradient should point either into or
out of the surface but not along it — the scenario is depicted in Figure 4.10.
It is the either-or in previous sentence as well as the final sentence of the
previous paragraph which seems to guarantee practical difficulties. As we
have said, these difficulties manifest themselves in the non-convexity of the
optimisation problems that we would most naturally like to solve. For ex-
ample, the transductive s.v.m. [Vap95], that most natural generalisation of
the s.v.m. to the semi-supervised setting, leads to a non-convex optimisation
problem.

4.4.1 Related Work

Given the difficulties we have just discussed it should come as no surprise
that few methods have been proposed for the implicit surface reconstruction
problem which use only surface points. We will come to those shortly —
first we note that there do exist other surface reconstruction methods which
do not use normal vectors, indeed highly effective ones.

Perhaps the most important and representative of these methods are the
so-called point set surface algorithms (see e.g. [ABCO+01]), which are ex-
tremely simple. The important thing for us to note about them here, is that
they construct only a projection operator from a point onto the surface. Since
the surface thus defined is not oriented, i.e. the concept of interior/exterior is
not represented, the problem does not suffer from the inherent non-convexity
we described previously.

Another method that does not use normal vectors is the slab s.v.m. — a
generalisation of the one-class s.v.m. for the purpose of implicit surface mod-
elling [SGS05]. For the sake of clarity we shall take a simplified view of the
slab s.v.m. — we replace the ǫ-insensitive loss with a simple one-norm loss,
and assume that an radial basis function (r.b.f.) kernel is used. In this case
the algorithm is similar to a one-class s.v.m., however the data incur a penalty
proportional to

∑

i |f(xi)|, rather than the usual term
∑

max(0, f(xi)). It
turns out that the optimisation problem it solves is

arg min
f∈H
||f ||2H + C

m∑

i=1

|f(xi)| − const(f)

74 Implicit Surface Reconstruction

Figure 4.11: The slab s.v.m. embedding function (left) is reasonable for 3D rendering, however
tends to a negative value both inside and outside the surface of interest, whereas the present
method (right) indicates by way of the sign of the resultant embedding function whether a given
point is interior to the surface. The dots are the 2D input data points, the colours represent
function value, and the lines depict the zero level set.

where const(f) denotes the zero order component of the function f (usually
denoted b or ρ in the s.v.m. literature), andH is an r.k.h.s. such that the term
||f ||2H in the above formulation acts as a regulariser. From this perspective
we can view this as a variant of a regression problem that has target values of
zero at each of the xi — as mentioned in the Chapter introduction however,
such a regression problem has the trivial solution f = 0, which the slab
s.v.m. avoids by including the term const(f) in the objective function.

The above approach is advantageous insofar as it yields a convex optimi-
sation problem, however the maximisation of const(f) has some undesirable
properties — as a result of it, rather than being positive inside and negative
outside the manifold of interest, if an r.b.f. kernel is used this property will
often only hold within some local neighbourhood of the data points, as in
Figure 4.11. This is an issue when rendering an implicit in three dimensions
(since the extraneous zero set will always be obscured), but the property
that the sign of the function indicates whether a given point is inside the
shape no longer holds.

The goal of the present section 4.4 then, is to preserve the strengths of
the slab SVM, especially the fact that it does not use normal vectors, while
producing embedding functions with the behaviour depicted on the right side
of Figure 4.11, as these are more suitable for inside/outside tests etc.

4.4.2 Algorithm

As we said at the very beginning of the Chapter, all of the different implicit
surface fitting algorithms can be viewed as a variant of a regression problem

Chapter 4 75

in which all the target values are zero. Essentially we aim for a means of
avoiding the triviality of this problem which leads to a proper implicit surface
embedding function (cf. the 4.1.3). In particular, given a noisy sampling
x1,x2, . . .xm ⊂ R

d of the surface, the approach we propose is based on the
following observations, generally true of such embedding functions:

1. Data term. The values |f(xi)| are relatively small, as the xi should
lie near f−1(0).

2. Energy term. The value |f(x)| is relatively large over most of the
space X , as f should be zero on the sampled manifold only.

3. Gradient term. The gradients ‖(∇f)(xi)‖Rd are relatively large, as
the zero set would otherwise be unstable with respect to small changes
in f .

4. Regularisation term. f is regular.

In the analogy with semi-supervised learning which we made previously,
we relate the first item to the classification function targets on the labelled
points, and the second item to the treatment of the unlabelled points.

As we have already made clear this tends to lead to difficult non-convex
optimisation problems. Various ways of dealing with this are possible, and
typically fall somewhere between the two extremes of either

1. Setting up an optimisation problem which is close to ideal but can only
be approximately solved.

2. Opting instead for a problem that can be solved exactly, but that is
further from the ideal.

Note that it would be tempting to write convex/non-convex instead of solv-
able/approximately solvable, but as we shall see there is a difference —
indeed we shall ultimately opt for a non-convex problem which we can solve
exactly. Both of the above approaches have their advantages and disadvan-
tages, and although we will take the latter approach, before we proceed to
the precise formulation let us suggest a possibility of the former. This will
help us to understand the difficulties involved.

An Example of the First Approach (Not Precisely Solvable)

Naturally various formulations are plausible — sufficient for our illustrative
purposes however, is e.g.

arg min
f∈F
‖f‖2F + σ−2

y

m∑

i=1

|f(xi)|+ σ−2
g

m∑

i=1

(‖(∇f) (xi)‖ − 1)2 ,

76 Implicit Surface Reconstruction

for some space of functions F . Another interesting (and possibly easier to
handle) alternative is to replace the third term with the following alternative
means of obtaining a gradient at the surface points which has an approxi-
mately constant and non-zero norm, i.e.

m∑

i=1

‖(∇f) (xi)‖−2 .

Although neither problem takes account of the energy term, both seem
promising for the problem at hand. Note in particular that

• If ‖(∇f) (xi)‖ ≈ 1, then |f(xi)| is a first order approximation of the
distance from xi to the zero level set f−1(0).

• The method is in fact similar to that of section 4.3, except that the
norm of the gradient is constrained rather than the norm and direction.

• Unfortunately, since the third term is non-convex in f the problem is
rather difficult to solve.

An Example of the Second Approach (Precisely Solvable)

Rather than trying to solve approximately the problem formulation which
we have just suggested, we opt instead for a similar problem which can be
solved exactly. In particular we devise four quadratic penalties motivated
by the four objectives which we stated previously, i.e.

feig , arg min
f∈F

mX

i=1

f(xi)
2

| {z }
data term

+ λΩ < f, f >2
F

| {z }
regularisation term

−λe

Z

u∈Rd

f(u)2dµ(u)

| {z }
energy term

−λ∇

mX

i=1

||(∇f)(xi)||
2

| {z }
gradient term

(4.14)

The labels of the individual terms note the correspondence between the
four terms of the objective function (balanced by the positive real-valued
λ’s) and the four properties we listed at the beginning of the present section.
The terms themselves each appear in quadratic form in order to allow us to
formulate the optimisation as an eigenvalue problem. To do this, we must
also define the function class as a finite mixture of basis functions with unit
norm coefficients — that is, we let

F =

{
p
∑

k=1

πkfk : ‖π‖
Rp = 1

}

. (4.15)

Now, writing f =
∑p

k=1 πkfk where

fk(·) = φr(|| · −vk||/sk), (4.16)

precisely as before in chapter 3 (cf. (3.2) and the surrounding comments),
and maintaining our definition [Fx]i,k , fk(xi) from that same chapter, the

Chapter 4 77

data term can be written
m∑

i=1

f(xi)
2 = π⊤F⊤

x Fxπ

Next, due to the quadratic nature of the energy term as well as the linearity of
integration, we can write the energy term as a vector-matrix-vector product
in the following way. Let us define Fe as

[Fe]i,j =

∫

u∈Rd

φr(||vj − u||/sj)φr(||vk − u||/sk)dµ(u),

then

∫

u∈Rd

f(u)2dµ(u) =

∫

u∈Rd

(
n∑

j

πjφr (||vj − u||/sj)
)2

dµ(u)

=
∑

j,k

πjπk[Fe]j,k

= π⊤Feπ

Similarly we can rearrange the gradient term to get
∑m

i=1 ||∇x=xi
f(x)||2 =

π⊤F∇π, where we have defined

[F∇]j,k =
m∑

i=1

〈∇x=xi
φr(||x− vj||/sj),∇x=xi

φr(||x− vk||/sk)〉

The only remaining term is the regulariser ||f ||2, which we treat in the
principled manner described in chapter 3.

Eigenvalue Problem

Since all of the terms are quadratic in π, it is possible to take advantage of
Rayleigh’s principle [GV96], which states that the solution with respect to
x of the problem

arg min
x⊤Bx=1

x⊤Ax = arg min
x

x⊤Ax

x⊤Bx
, (4.17)

is given by the eigenvector x∗ with smallest eigenvalue λ∗ of the generalised
eigenvalue problem

Ax∗ = Bx∗λ∗.

Thus, due to the constraint ‖π‖ = 1 which we place on F (cf. (4.15)), (4.14)
is solved by the eigenvector π∗ with the most negative eigenvalue λ∗ of the
following non positive definite (p.d.) eigenvalue problem:

(
KvxK

⊤
vx + λΩKΩ − λeKe − λ∇K∇

)
π∗ = λ∗π∗

78 Implicit Surface Reconstruction

which in our case is typically a large system with a high sparsity ratio. In
practice we solved the eigenvalue problem using the JDQR algorithm [SV96].
Actually, we found that it was more numerically stable to add a multiple of
the identity with magnitude

λe ‖Ke‖2 + λ∇ ‖K∇‖2 ,

where ‖·‖2 denotes the matrix spectral norm2, in order to yield an equiva-
lent but positive definite system, and then solve for the smallest magnitude
eigenvalue rather than the most negative.

Some Comments on the Eigenvalue Formulation

We would like to make three comments on the formulation we have chosen.
First comment. Since we are minimising two terms and maximising an-

other two, it may seem natural to minimise a ratio of sums of vector-matrix-
vector products, as this leads to a positive definite generalised eigenvalue
problem with more benign numerical properties. This is because we would
then need to solve for the eigenvector with smallest magnitude rather than
most negative eigenvalue, which tends to be easier from a numerical point of
view [SV96]. To be more precise, the exact form of the eigenvalue problem
would then be

(
KvxK

⊤
vx + λΩKΩ

)
π∗ = λ∗ (λeKe + λ∇K∇) π∗.

Unfortunately however, this costs us an important degree of freedom in bal-
ancing the individual terms. Let us illustrate this point — to begin with note
that minimising a/b is the same as minimising (log(a)− log(b)). Now, if we
balance the combination using a parameter c by minimising (log(a)−c log(b))
then it is equivalent to minimising a/bc. In other words, many Rayleigh’s
quotient type problems probably ought to have an exponent in the denomi-
nator, but as this no longer corresponds to an equivalent eigenvalue problem,
it will usually be considerably more difficult to solve. There are cases how-
ever in which both the numerator and denominator have equivalent units so
that one may argue in favour of the ratio problem on the grounds that it
measures a unitless ratio — popular among physicists, but this is not the
case here.

Second comment. The constraint ‖π‖ = 1 in (4.15) is not in itself
justifiable, and will leave an imprint on the solution. Our only justification
for the constraint is that it leads to a problem which we can solve exactly.
Indeed, as we have explained already, such are the costs of restricting oneself
to optimisation problems which can be solved exactly.

2The matrix spectral norm is equal to the largest magnitude of the eigenvalues of a matrix

Chapter 4 79

Third comment. We now identify the main problem with the eigenvalue
formulation which we have adopted — which we shall refer to as the energy-
focusing problem. Due to the sum-of-squares nature of the objective function
in (4.14), the optimal solution will tend to focus all of the energy of the
function on the region of the space in which the data is most benign. By
benign we mean amenable to achieving a low optimum value of the objective
function (4.14). Consider by way of analogy the problem

arg min
x∈{x′∈Rd:‖x′‖1=1}

‖x‖22 .

The solution to the above problem is clearly not unique — the minimisers
are all vectors with a single non zero element equal to ±1. This is similar to
the problem with the present eigenvalue formulation, though not identical.
We explain the nature of the problem in the present case by considering the
following pathological example.

Let’s assume that the surface consists of two disconnected components of
which the left one is more complex than the right, in the sense that if the
two components were treated separately, we would achieve a lower minimum
of the objective function in (4.14) by using data sampled from the right-
rather than the left-hand side component. Now, if we solve for feig using
data sampled from both components together, but we then increase the
separating distance between the two components, then eventually the purely
quadratic nature of the objective function will lead to a point at which the
optimal solution has feig = 0 in the vicinity of the left component, and places
all of the energy of the function on the right component. Alternatively, if
both components were identical then there would be two solutions for feig

— each of which places zero on either the left or the right component —
and each solution would correspond to each of the first two eigenvectors of
(4.17), which would have identical eigenvalues

Although such a situation will never arise in practice, it turns out that
the energy focusing problem also manifests itself in more realistic examples.
It is easiest to simply demonstrate this phenomenon, which brings us to the
next sub-section.

4.4.3 Experiments and Discussion

Although implicit surfaces are most commonly used for problems in R
3, it

is useful to experiment in R
2 since we can then visualise the embedding

function as a two-dimensional colour intensity plot. Examples of this are
given in figures 4.12 and 4.13. Note that while the energy-focusing problem is
evident in Figure 4.13, it is not evident in figures 4.11 or 4.12. The reason for
this seems to be that those examples feature data sets which have relatively
uniform complexity over the space — there is no part of the data which is

80 Implicit Surface Reconstruction

Figure 4.12: Here we used a simple function basis, the centres of which are denoted by pluses or
crosses depending on whether the corresponding coefficient in π turned out to be positive or negative.
For simplicity, we also used a Gaussian basis function and the regulariser (or function norm) naturally
implied by it (cf. (2.27) and preceding comments). The background colour corresponds to the function’s
value and the thin red line its zero level. Happily, the red line is largely obscured by the blue dots which
represent the given surface points.

Chapter 4 81

Figure 4.13: Investigating the role of the parameters in a two dimensional problem. Top: a
parameter set chosen using our automatic criteria (see subsection 4.4.3) — visually there seems
to be somewhat too large a derivative term, but the zero level rendered as a magenta line is
reasonable — as it is largely obscured by the data one must zoom in on an electronic copy of the
document to see it properly. Bottom-left: too large an energy term results in a large smooth
bump in the function outside the shape. Bottom-right: too large a gradient term results in a
concentrated region of high gradient at some subset of the data set, in this case in the bottom-
left part of the shape. Note that the energy focusing problem is evident in all cases — the only
variation being the part of the data set which (depending on the given parameter set) is most
favourable for the solution to focus on.

82 Implicit Surface Reconstruction

sufficiently less complex in comparison to the rest for it to become the focus
of the energy focusing problem. In general we found the energy focusing
problem to be a serious one on complex data sets — the approach is suitable
for relatively benign problems only.

As a consequence of the energy focusing problem, the algorithm is rather
sensitive to the choice of parameters — of which there is a rather large num-
ber (i.e. the three λ’s in (4.14)). Fortunately however the issue of parameter
choice is somewhat less problematic than in e.g. a classification problem,
since we can make some reasonable measures of the quality of the solution
without requiring a holdout set or cross-validation process. In practice it was
necessary to conduct exhaustive and time consuming parameter searches in
order to determine an effective parameter set — a task which would likely
have proven too difficult without the computer cluster which we had at our
disposal.

Two measures which we found useful for these automatic parameter tun-
ing exercises are defined as follows. Given an embedding function f that
models our training data set S, we take an approximately uniform sampling
R ⊆ f−1(0) of the zero set and compute the quantities

mRS = max
x1∈R

min
x2∈S
||x1 − x2||,

and mSR = max
x1∈S

min
x2∈R

||x1 − x2||.

These are, roughly speaking, the largest distance fromR to S and vice versa.
Both of these measures are useful, and if either measure is large then the
solution cannot be a good one.

Our experience has shown that both the energy and the gradient term are
necessary for maximum topological stability of the solution. As evidenced
by Figure 4.13 however, too great a value of λ∇ leads to instability, while
increasing λe reduces this effect, the net result being smoother but less precise
solutions. We stress however that these are heuristic and imperfect measures
of the quality of the solution — superior being a visual inspection. As
expected, the regularisation parameter λ∇ controls the trade off between
smoothness and fidelity to the data.

We also ran our system on some three dimensional data sets, particu-
larly focusing on two important applications of the algorithm which take
advantage of the strengths of implicit surfaces.

The first is the filling or interpolation of holes in the data, as in Figure 4.14.
Using a 3GHz Pentium III processor, we fit the bunny model in approxi-
mately forty minutes. The drawing took a similar amount of time, although
this is due to the fact that we employed a rendering algorithm which naively
evaluates the embedding function over the entire viewing region, rather than
using a faster method that follows or ray-traces the surface. We avoided

Chapter 4 83

Figure 4.14: An example of smoothly interpolating missing data — we created a hole in the
Stanford bunny data set (visible in the upper rear region of the bunny as shown on the left), re-
sulting in a data set of 35K data points in three dimensions. The surface that we fit approximately
recovers the original shape, as shown on the right.

such fast rendering schemes in order to be sure that there are no errant
components of the zero set lying away from the data.

The second interesting property that we demonstrate is the ease with
which set operations can be performed using implicit shape definitions. For
example, given a pair of embedding functions f1 and f2 that are negative
inside the shape and positive outside, the intersection of the shapes corre-
sponds to the embedding function f∩ = max(f1, f2). This is precisely how we
generated Figure 4.15. Alternatively one can define an embedding function
|f1|+ |f2|, the zero level set of which is the intersection of the zero level sets
of f1 and f2. The fitting of the knot model took roughly fifteen minutes. The
plain knot model was drawn in about forty minutes, whereas the intersection
picture took approximately a day using a higher resolution.

To define the union of the two implicit shapes we can use f∪ = min(f1, f2).
Similarly to the intersection case, we can alternatively use the product f1f2,
the zero level set of which is the union of those of f1 and f2, however this
retains those components of the zero set interior to the resultant shape in
spite of the fact that they will always be obscured from the observer.

84 Implicit Surface Reconstruction

Figure 4.15: An example using the knot data set consisting of 10K data points in three di-
mensions, as shown on the top left (the colours have no special meaning). The implicit surface
rendered on the top right was constructed using approximately 5K basis functions. The lower
image demonstrates that set operations such as intersection are trivial with implicit shape def-
initions, regardless of the topological complexity that results — we intersected the knot shape
with a grid of balls (also defined as an implicit).

Chapter 5

Kernels Invariant to
Transformations

In section 4.3 we applied the thin-plate spline regulariser of (2.28) to the
problem of implicit surface reconstruction. Interestingly, it is possible for
the resulting solutions to capture fine details of the input data, while at the
same time interpolating over relatively large unsampled regions. This type
of behaviour is not possible with the Gaussian kernel for example. In the
present chapter we shall investigate this phenomenon further from the point
of view of invariances (we define what we mean by invariances shortly) —
in the case just discussed, an important invariance is invariance to dilations
(i.e. multiplicative scaling of the input data).

In particular, we investigate function norms which are invariant to such
transformations as translation, rotation and dilation (cf. Figure 5.1), and
provide necessary and sufficient conditions for a reproducing kernel (r.k.)
to induce such a norm. Following this, we show that radial kernels which
induce a dilation invariant norm can only be conditionally positive definite
(c.p.d.), and analyse one particular such case, namely the thin-plate spline.
Practically speaking, the thin-plate spline has the advantage that — as we
show — varying the length-scale of the data has the same effect as varying
e.g. the regularisation parameter in the support vector machine (s.v.m.)This
allows one to build effective classifiers which have only one parameter.

Motivated by this finding, we consider the problem of using a c.p.d. kernel
with an s.v.m., and propose a simple algorithm which makes this possible.
This simple Newton method approach proceeds by repeatedly solving local
second order approximations of the true problem. Furthermore, we provide
a general procedure for deriving positive definite (p.d.) kernels from c.p.d.
ones, giving in particular a p.d. analog of the thin-plate kernel, which can
for example be employed in any kernel based algorithm. The experimental
results which we conclude with demonstrate that the s.v.m. with thin-plate
kernel, although possessing only one free parameter, performs as well on real

86 Kernels Invariant to Transformations

Figure 5.1: An implicit surface fit to a synthetic fractal-like data set using the method of
section 4.3. The regulariser is the m = 2 thin-plate spline energy of (2.28) which, in the termi-
nology of the present chapter, is rotation/translation invariant and dilation scaled. Such effective
behaviour over so wide a range of scales is impossible with e.g. the Gaussian kernel.

data as the Gaussian kernel, which has two free parameters.

5.1 Transformation Scaled Spaces and Tikhonov Reg-
ularisation

Definition 5.1.1. Let T be a bijection on X and F a Hilbert space of
functions on some non-empty set X such that f 7→ f ◦ T is a bijection on
F . Furthermore let F be endowed with an inner product. F is T -scaled if

〈f, g〉F = gT (F) 〈f ◦ T , g ◦ T 〉F (5.1)

for all f ∈ F , where gT (F) ∈ R
+ is the norm scaling function associated

with the operation of T on F . If gT (F) = 1 we say that F is T -invariant.

The following clarifies the behaviour of Tikhonov regularised solutions in
such spaces.

Lemma 5.1.2. For any Θ : F → R and T such that f 7→ f ◦T is a bijection
of F , if the left hand side is unique then

arg min
f∈F

Θ(f) =

(

arg min
fT ∈F

Θ(fT ◦ T)

)

◦ T

Chapter 5 87

Proof. Let f ∗ = arg minf∈F Θ(f) and By definition we have that ∀g ∈
F ,Θ(f ∗

T ◦ T) ≤ Θ(g ◦ T). But since f 7→ f ◦ T is a bijection on F , we
also have ∀g ∈ F ,Θ(f ∗

T ◦ T) ≤ Θ(g). Hence, given the uniqueness, this
implies f ∗ = f ∗

T ◦ T .

The following Corollary follows immediately from lemma 5.1.2 and Defi-
nition 5.1.1.

Corollary 5.1.3. Let Li be any loss function. If F is T -scaled and the left
hand side is unique then

arg min
f∈F

(

‖f‖2F +
∑

i

Li (f (xi))

)

=

(

arg min
f∈F

(

‖f‖2F /gT (F) +
∑

i

Li (f (T xi))
))

◦ T .

Corollary 5.1.3 includes various learning algorithms for various choices of
Li — for example the s.v.m. with linear hinge loss for Li(t) = max (0, 1− yit),
and kernel ridge regression for Li(t) = (yi − t)2. Let us now introduce the
specific transformations we will be considering.

Definition 5.1.4. Let Ws, Ta and OA be the dilation, translation and
orthonormal transformations R

d → R
d defined for s ∈ R \ {0}, a ∈ R

d

and orthonormal A : R
d → R

d by Wsx = sx, Tax = x + a and OAx = Ax

respectively.

Hence, for an reproducing kernel Hilbert space (r.k.h.s.) which is Ws-
scaled for arbitrary s 6= 0, training an s.v.m. and dilating the resultant
decision function by some amount is equivalent training the s.v.m. on sim-
ilarly dilated input patterns but with a regularisation parameter adjusted
according to Corollary 5.1.3.

While [FS03] demonstrated this phenomenon for the s.v.m. with a par-
ticular kernel, as we have just seen it is easy to demonstrate for the more
general Tikhonov regularisation setting with any function norm satisfying
our definition of transformation scaledness. In the next section we continue
our investigation by deriving the necessary and sufficient conditions for an
r.k. to induce a norm that is transformation scaled, before investigating some
interesting consequences and special cases.

5.2 Transformation Scaled Reproducing Kernel Hilbert
Spaces

We now derive the necessary and sufficient conditions for a r.k. to correspond
to an r.k.h.s. which is T -scaled. The relationship between T -scaled r.k.h.s.’s

88 Kernels Invariant to Transformations

and their r.k.’s is easy to derive given the uniqueness of the r.k. [Wen04]. It
is given by the following novel

Lemma 5.2.1 (Transformation scaled r.k.h.s.). The r.k.h.s. H with r.k.
k : X × X → R, i.e. with k satisfying

〈k(·,x), f(·)〉H = f(x), (5.2)

is T -scaled iff
k(x,y) = gT (H) k(T x, T y). (5.3)

Which we prove in section B.2. It is now easy to see that, for example,
the homogeneous polynomial kernel k(x,y) = 〈x,y〉p corresponds to a Ws-
scaled r.k.h.s. H with gWs(H) = 〈x,y〉p / 〈sx, sy〉p = s−2p. Hence when the
homogeneous polynomial kernel is used with the hard-margin s.v.m. algo-
rithm, the result is invariant to multiplicative scaling of the training and
test data. If the soft-margin s.v.m. is used however, then the invariance
holds only under appropriate scaling (as per Corollary 5.1.3) of the margin
softness parameter (i.e. λ of the later equation (5.11)).

We can now show that there exist no non-trivial r.k.h.s.’s with radial
kernels that are also Ws-scaled for all s 6= 0. First however we need the
following standard result on homogeneous functions:

Lemma 5.2.2. If φ : [0,∞) → R and g : (0,∞) → R satisfy φ(r) =
g(s)φ(rs) for all r ≥ 0 and s > 0 then φ(r) = aδ(r) + brp and g(s) = s−p,
where a, b, p ∈ R, p 6= 0, and δ is Dirac’s function.

Which we prove in section B.2. Now, suppose that H is an r.k.h.s. with
r.k. k on R

d × R
d. If H is Ta-invariant for all a ∈ R

d then

k(x,y) = k(T−yx, T−yy) = k(x− y,0) , φT (x− y).

If in addition to this H is OA-invariant for all orthogonal A, then by choosing
A such that A(x− y) = ‖x− y‖ ê where ê is an arbitrary unit vector in R

d

we have

k(x,y) = k(OAx, OAy) = φT (OA(x− y)) = φT (‖x− y‖ ê) , φOT (‖x− y‖)

i.e. k is radial. All of this is straightforward, and a similar analysis can be
found in [Wen04]. Indeed the widely used Gaussian kernel satisfies both of
the above invariances. But if we now also assume that H is Ws-scaled for all
s 6= 0 — this time with arbitrary gWs(H) — then

k(x,y) = gWs(H)k(Wsx,Wsy) = gW|s|
(H)φOT (|s| ‖x− y‖)

so that letting r = ‖x− y‖ we have that φOT (r) = gW|s|
(H)φOT (|s| r) and

hence by lemma 5.2.2 that φOT (r) = aδ(r) + brp where a, b, p ∈ R. This

Chapter 5 89

is positive semi-definite for the trivial case p = 0, but there are various
ways of showing this cannot be non-trivially positive semi-definite for p 6= 0.
One simple way is to consider two arbitrary vectors x1 and x2 such that
‖x1 − x2‖ = d > 0. For the corresponding Gram matrix

K ,

(
a bdp

bdp a

)

,

to be positive semi definite we require 0 ≤ det(K) = a2 − b2d2p, but for
arbitrary d > 0 and a < ∞, this implies b = 0. This may seem disappoint-
ing, but fortunately there do exist c.p.d. kernel functions with the stated
properties, such as the thin-plate kernel.

5.3 Thin-Plate Kernel

Definition 5.3.1. The m-th order thin-plate kernel φm : R
d×R

d → R is
given by

φm(x,y) =

{

(−1)m−(d−2)/2 ‖x− y‖2m−d log(‖x− y‖) if d ∈ 2N,

(−1)m−(d−1)/2 ‖x− y‖2m−d if d ∈ (2N− 1),

(5.4)
for x 6= y, and zero otherwise. φm is c.p.d. with respect to πm−1(R

d), the
set of d-variate polynomials of degree at most m − 1. The kernel induces
the following norm on the space Fφm

(
R
d
)

of Definition 2.2.10 (this is not
obvious — see e.g. [Wen04, Wah90])

〈f, g〉Fφm(Rd) , 〈ψf, ψg〉L2(Rd)

=
d∑

i1=1

· · ·
d∑

im=1

∫ ∞

x1=−∞

· · ·
∫ ∞

xd=−∞

(
∂

∂xi1
· · · ∂

∂xim
f

)(
∂

∂xi1
· · · ∂

∂xim
g

)

dx1 · · · dxd

where ψ : Fφm

(
R
d
)
→ L2(R

d) is a regularisation operator, implicitly defined
above.

Clearly gOA
(Fφm

(
R
d
)
) = gTa

(Fφm

(
R
d
)
) = 1. Moreover, from the chain

rule we have

∂

∂xi1
· · · ∂

∂xim
(f ◦Ws) = sm

(
∂

∂xi1
· · · ∂

∂xim
f

)

◦Ws (5.5)

and therefore since 〈f, g〉L2(Rd) = sd 〈f ◦Ws, g ◦Ws〉L2(Rd) ,we can immedi-
ately write

〈ψ (f ◦Ws) , ψ (g ◦Ws)〉L2(Rd) = s2m 〈(ψf) ◦Ws, (ψg) ◦Ws〉L2(Rd)

= s2m−d 〈ψf, ψg〉L2(Rd)

90 Kernels Invariant to Transformations

so that
gWs(Fφm

(
R
d
)
) = s−(2m−d). (5.6)

Note that although it may appear that this can be shown more easily using
(5.4) and an argument similar to lemma 5.2.1, the process is actually more
involved due to the log factor in the first case of (5.4), and it is necessary to
use the fact that the kernel is c.p.d. with respect to (w.r.t.) πm−1(R

d). Since
this is redundant and not central to the paper we omit the details.

Understanding the thin-plate invariances from the kernel

We have just seen that the invariances of the thin-plate spline are easy to
see from the definition of the regulariser. It turns out however that our
characterisation of the kernel function of transformation scaled r.k.h.s.’s in
lemma 5.2.1 does not hold for c.p.d. kernels. For completeness we now use
only the corresponding kernel function (introduced shortly) to demonstrate
that the thin-plate spline is indeed translation and rotation invariant as well
as dilation scaled.

The precise form of φm was derived by Duchon [Duc77], and is different in
even and odd space dimensions. As we mentioned in subsection 2.2.4 φm is
only c.p.d. with respect to the null space of the semi-norm, namely πm−1(R

d).
Now, lemma 5.2.1 is not valid for c.p.d. kernels as the function φ(·,x) is not
the representer of evaluation at x ∈ X for Fφ(X) — indeed it is generally
not even in Fφ(X).

This explains why the condition

s2m−dφm(x,y) = φm(sx, sy)

is not satisfied in general (as lemma 5.2.1 would require, if the kernel were
p.d.). We now proceed to demonstrate that the form of φm does indeed imply
the invariances which we mentioned in Definition 5.3.1. For this purpose it
is sufficient to note that if φ is a c.p.d. kernel on X × X with respect to P
then if
m∑

i=1

m∑

j=1

αiαjφ(xi,xj) = gT (Fφ(X))
m∑

i=1

m∑

j=1

αiαjφ(T xi, T xj) for all α ∈ P⊥,

(5.7)
then Fφ(X) is obviously T -scaled. Of course, for this to be so we additionally
require that

m∑

j=1

αjφ(·, T xi)

is actually in Fφ(X). In other words we require that

P⊥(x1, . . . ,xm) = P⊥(T x1, . . . , T xm),

Chapter 5 91

but as the reader may verify this is true for the case we are interested in,
namely the space Fφ(X) = Fφm

(
R
d
)

and T ∈ {Ta, OA,Ws}.
We now proceed to show that φm implies the translation, dilation and

orthogonal transformation scaledness which, as we saw in Definition 5.3.1,
are possessed by Fφm

(
R
d
)
.

We can immediately see that (5.7) holds for the thin-plate for T ∈
{Ta, OA}, as well as the case T = Ws with odd d, since in all of these
cases we have

φm(x,y) = gT (Fφm

(
R
d
)
)φ(T x, T y),

e.g. for the case T = Ws when d is odd we have

gWs(Fφm

(
R
d
)
) = φm(x,y)/φm(sx, sy) = s−(2m−d),

in agreement with (5.6). The only remaining case is T = Ws when d is even,
which is less obvious due to the log factor in φm. To show this final case we
will use the following

Lemma 5.3.2. For all sets {x1,x2, . . . ,xm} ⊆ R
d, all α ∈ R

N satisfying
∑N

i=1 αip(xi) = 0 for all p ∈ πm−1(R
d), and all polynomials q of degree less

than 2m
N∑

j,k=1

αjαkq(xj − xk) = 0. (5.8)

For a proof we refer the reader to, e.g. Section 8.1 of [Wen04]. Now, if we
define

n(s) =
∑

i,j

αiαjφFφm(Rd)(sxi, sxj)

it is sufficient to show that
∑

j

αjp(xj) = 0 for all p ∈ πm−1(R
d) (5.9)

implies that n(s) grows like gWs(Fφm

(
R
d
)
)−1 in s, i.e.

∂

∂s

(
n(s)gWs

(
Fφm

(
R
d
)))

= 0. (5.10)

Putting in (5.4) we have

∂

∂s

(
n(s)gWs

(
Fφm

(
R
d
)))

=
∑

i,j

αiαj
∂

∂s
‖xi − xj‖2m−d log(s ‖xi − xj‖)

=
1

s

∑

i,j

αiαj ‖xi − xj‖2m−d ,

which is identically zero due to (5.9) and lemma 5.3.2, concluding a simple
way of showing that the thin-plate kernel implies all of the invariances which
we observed in the norm that defines it.

92 Kernels Invariant to Transformations

5.4 Thin-Plate Spline s.v.m.

In the section 5.2 we showed that non-trivial kernels which are both ra-
dial and dilation scaled cannot be p.d. but rather only c.p.d. It is therefore
somewhat surprising that the s.v.m. — one of the most widely used kernel
algorithms — has been applied only with p.d. kernels, or kernels which are
c.p.d. respect only to P = {1} (see e.g. [BTB05]). After all, it seems inter-
esting to construct a classifier independent not only of the absolute positions
of the input data, but also of their absolute multiplicative scale.

Hence we propose using the thin-plate kernel with the s.v.m. by minimis-
ing the s.v.m. objective over the space Fφ (X)⊕P (or in some cases just over
Fφ (X), as we shall see in subsection 5.4.1). For this we require somewhat
non-standard s.v.m. optimisation software. The method we propose seems
simpler and more robust than previously mentioned solutions. For example,
[SSM98] mentions the numerical instabilities which may arise with the direct
application of standard solvers.

5.4.1 Optimising an s.v.m. with c.p.d. Kernel

It is simple to implement an s.v.m. with a kernel φ which is c.p.d. w.r.t.
an arbitrary finite dimensional space of functions P by extending the primal
optimisation approach of [Cha07] to the c.p.d. case. The quadratic loss s.v.m.
solution can be formulated as arg minf∈Fφ(X)⊕P of

λ ‖Pφ(P)f‖2Fφ(X) +
n∑

i=1

max(0, 1− yif(xi))
2, (5.11)

Note that for the second order thin-plate case we have X = R
d and P =

π1(R
d) (the space of constant and first order polynomials). Hence dim (P) =

d+ 1 and we can take the basis to be pj(x) = [x]j for j = 1 . . . d along with
pd+1 = 1.

It follows immediately from theorem 2.2.15 that, letting p1, p2, . . . pdim(P)

span P , the solution to (5.11) is given by fsvm(x) =
∑n

i=1 αiφ(xi,x) +
∑dim(P)

j=1 βjpj(x). Now, if we consider only the margin violators — those vec-

tors which (at a given step of the optimisation process) satisfy yif(xi) < 1,
we can replace the max (0, ·) in (5.11) with (·). This is equivalent to mak-
ing a local second order approximation. Hence by repeatedly solving in this
way while updating the set of margin violators, we will have implemented a
so-called Newton optimisation. Now, since

‖Pφ(P)fsvm ‖2Fφ(X) =
n∑

i,j=1

αiαjφ(xi,xj), (5.12)

Chapter 5 93

the local approximation of the problem is, in α and β

minimise λα⊤Φα + ‖Φα + Pβ − y‖2 , subject to P⊤α = 0, (5.13)

where [Φ]i,j = φ(xi,xj), [P]j,k = pk(xj), and we assumed for simplicity that

all vectors violate the margin. The solution in this case is given by [Wah90]

(
α

β

)

=

(
λI + Φ P⊤

P 0

)−1(
y

0

)

. (5.14)

In practice it is essential that one makes a change of variable for β in order
to avoid the numerical problems which arise when P is rank deficient or
numerically close to it. In particular we make the QR factorisation [GV96]
P⊤ = QR, where Q⊤Q = I and R is square. We then solve for α and
β = Rβ. As a final step at the end of the optimisation process, we take
the minimum norm solution of the system β = Rβ, β = R#β where R# is
the pseudo inverse of R. Note that although (5.14) is standard for squared
loss regression models with c.p.d. kernels, our use of it in optimising the
s.v.m. is new. The precise algorithm is given in section C.2, where we also
detail two efficient factorisation techniques, specific to the new s.v.m. setting.
Moreover, the method we present in subsection 5.4.2 deviates considerably
further from the existing literature. An example solution obtained this way
is depicted in Figure 5.2.

5.4.2 Constraining the solution

Previously, if the data can be separated with only the P part of the function
space — i.e. with α = 0 — then the algorithm will always do so regardless
of λ. This is correct in that, since P lies in the null space of the regulariser
‖Pφ(P)·‖2Fφ(X), such solutions minimise (5.11), but may be undesirable for

various reasons. Firstly, the regularisation cannot be controlled via λ. Sec-
ondly, for the thin-plate, P = π1(R

d) and the solutions are simple linear
separating hyperplanes. Finally, there may exist infinitely many solutions to
(5.11). It is unclear how to deal with this problem — after all it implies that
the regulariser is simply inappropriate for the problem at hand. Nonetheless
we still wish to apply a (non-linear) algorithm with the previously discussed
invariances of the thin-plate.

To achieve this, we minimise (5.11) as before, but over the space Fφ (X)
rather than Fφ (X) ⊕ P. It is important to note that by doing so we can
no longer invoke theorem 2.2.15, the representer theorem for the c.p.d. case.
This is because the solvability argument of lemma 2.2.11 no longer holds.
Hence we do not know the optimal basis for the function, which may involve
infinitely many φ(·,x) terms. The way we deal with this is simple — instead
of minimising over Fφ (X) we consider only the finite dimensional subspace

94 Kernels Invariant to Transformations

given by {
n∑

j=1

αjφ(·,xj) : α ∈ P⊥(x1, . . . ,xn)

}

,

where x1, . . .xn are those of the original problem (5.11). The required update
equation can be acquired in a similar manner as before. The closed form
solution to the constrained quadratic programme is in this case given by
(see section C.2)

α = −P⊥

(
P⊤
⊥

(
λΦ + Φ⊤

sxΦsx

)
P⊥

)−1
P⊤
⊥ Φ⊤

sxys (5.15)

where Φsx = [Φ]s,:, s is the current set of margin violators and P⊥ the null
space of P satisfying PP⊥ = 0. The precise algorithm we use to optimise in
this manner is given in section C.2, where we also detail efficient factorisation
techniques. An example solution obtained in this manner is depicted in
Figure 5.2.

5.4.3 p.d. Kernels from c.p.d. Kernels

The method we now propose involves modifying c.p.d. kernels such that
they are p.d., but hopefully retain some of the properties of the regulariser
to which the original c.p.d. kernel corresponds. As a starting point consider
the following result [BCR84]:

Theorem 5.4.1. Let X be a non-empty set, x0 ∈ X and kcpd : X ×X → R

be a symmetric kernel and put

k(x,y) = kcpd(x,y)− kcpd(x,x0)− kcpd(y,x0) + kcpd(x0,x0).

k is p.d. if and only if kcpd is c.p.d. with respect to {1}, the constant function.

Proof. If
∑m

i=1 αi = 0 then

m∑

j,k=1

αjαkk(xi,xj) =
m∑

j,k=1

αjαkkcpd(xi,xj),

so if k is p.d. then kcpd is c.p.d. Now if we choose α0 = −∑m
i=1 αi then

∑m
i=0 αi = 0 so that if kcpd is c.p.d. we have

0 <
mX

j,k=0

αjαkkcpd(xj ,xk)

=
mX

j,k=1

αjαkkcpd(xj ,xk) +
mX

j=1

αjα0kcpd(xj ,x0) +
mX

k=1

α0αkkcpd(x0,xk) + α0α0kcpd(x0,x0)

=
mX

j,k=1

αjαk (kcpd(xj ,xk) − kcpd(xj ,x0) − kcpd(x0,xk) + kcpd(x0,x0))

=

mX

j,k=1

αjαkk(xj ,xk).

Chapter 5 95

Figure 5.2: An s.v.m. separating white pluses from yellow crosses, with quadratic loss (i.e.
p = 2 in (5.11)) and the m = 2 thin-plate spline kernel as per Definition 5.3.1. The algorithm
is invariant to rotation and translation, and dilating the data has the same effect as varying the
regularisation parameter. The solutions are exact ones resulting from the procedure described in
the first part of subsection 5.4.1. The white line represents the zero level, the black line the ±1
levels of the decision function fsvm. The regularisation parameter λ (or equivalently, to restate,
the absolute scale of the data) increases from ≈ 0 on the top-left to ≈ ∞ on the bottom-right.

96 Kernels Invariant to Transformations

We now derive an analogous case for arbitrary c.p.d. kernels. The basic
idea is already clear from the previous theorem — there, an extra point x0

was chosen along with its coefficient α0 such that the constraint
∑

i αi = 0
was satisfied. Now we need to choose an extra dim (P) points along with
the corresponding coefficients such that the resulting coefficients lie in P⊥.
The following Lemma does exactly this. The form of the Lemma as we
derived it was inspired by by the above result. We have since become aware
however that a similar statement is made in e.g. [Wah90] and the Native
Spaces Chapter of [Wen04], although with a completely different proof idea.

Theorem 5.4.2. Let X be a non-empty set, z1, . . . zdim(P) be a P-unisolvent
subset of X , p1, . . . pdim(P) be a Lagrange basis with respect to P, kcpd : X ×
X → R be a symmetric kernel and put k(x,y) equal to

kcpd(x,y)−
dim(P)
∑

k=1

pk(x)kcpd(zk,y)−
dim(P)
∑

k=1

pk(y)kcpd(x,zk)

+

dim(P)
∑

k,l=1

pk(x)pl(y)kcpd(zk,zl) (5.16)

k is p.d. if and only if kcpd is c.p.d. with respect to P.

Proof. If
∑m

j=1 αjpk(xj) = 0 for all k = 1 . . . dim (P) then

m∑

j,k=1

αjαkk(xi,xj) =
m∑

j,k=1

αjαkkcpd(xi,xj), (5.17)

so if k is p.d. then kcpd is c.p.d. Now, due to the statements about the
P-unisolvence and the Lagrange basis we have

pk(zl) = δkl,

so that if m > dim (P) and we choose for k = 1 . . . dim (P)

xk = zk

and

αk = −
m∑

j=dim(P)+1

αjpk(xj),

then for all k = 1 . . . dim (P) we have

m∑

i=1

αipk(xi) = 0,

Chapter 5 97

and if kcpd is c.p.d. it is simple but tedious to see that

0 <
m∑

i,j=1

αiαjkcpd(xi,xj)

=
m∑

i=dim(P)+1

m∑

j=dim(P)+1

αiαjkcpd(xi,xj) +

dim(P)
∑

k=1

m∑

j=dim(P)+1

αkαjkcpd(xk,xj)

+
m∑

i=dim(P)+1

dim(P)
∑

k=1

αiαkkcpd(xi,xk) +

dim(P)
∑

k=1

dim(P)
∑

l=1

αkαlkcpd(xk,xl)

=
m∑

i=dim(P)+1

m∑

j=dim(P)+1

αiαjkcpd(xi,xj)

−
m∑

j=dim(P)+1

m∑

i=dim(P)+1

dim(P)
∑

k=1

αipk(xi)αjkcpd(xk,xj)

−
m∑

i=dim(P)+1

m∑

j=dim(P)+1

dim(P)
∑

k=1

αjpk(xj)αikcpd(xi,xk)

+
m∑

i=dim(P)+1

m∑

j=dim(P)+1

dim(P)
∑

k=1

dim(P)
∑

l=1

αjpk(xj)αipl(xi)kcpd(xk,xl)

=
m∑

i,j=dim(P)+1

αiαjk(xi,xj).

It is not clear that a p.d. kernel so constructed has similar properties to
the original c.p.d. kernel — but as shown in Figure 5.3, there does appear to
be a qualitative similarity at least with data in R

2. Note that the Lagrange
basis can be constructed using numerical means. Assume that we have a
function

q : X → R
dim(P)

x→
(
q1(x), . . . , qdim(P)(x)

)⊤
,

where the qk span P , as well as a P-unisolvent basis z1, . . . ,zdim(P) (i.e. a
basis leading to a non-singular Qz below). If we now define

Qz =
(
q(z1) · · · q(zdim(P))

)
,

then can construct a Lagrange basis p1, . . . , pdim(P) of the form
(
p1(x), . . . , pdim(P)(x)

)⊤
, Q−1

z q(x). (5.18)

98 Kernels Invariant to Transformations

This may not be the most efficient approach, but it does allow one to con-
veniently experiment with p.d. analogs of arbitrary c.p.d. kernels. Next, we
take a more elegant approach to the specific thin-plate spline case in which
we are interested.

Example 5.4.3
One practical problem with (5.16) is the double sum, which leads to a compu-
tational time complexity of O(dim (P)2). In some cases this can be avoided
however — consider the kernel ktp on R

d × R
d defined by

ktp(x,y) = ‖x− y‖2 log(‖x− y‖),

which is c.p.d. with respect to π1(R
d) as we can be proven using Michelli’s

Theorem [Wen04]. Since this expression vanishes when ‖x− y‖ = 1, if
we choose for the π1(R

d)-unisolvant basis (i.e. the z1, . . . zdim(P) of theorem
5.4.2) the dim(π1(R

d)) = d+ 1 vectors

0,e1/
√

2,e2/
√

2, . . . ,ed/
√

2 ⊂ R
d

then the problem with the double sum is avoided. It is easy to verify that a
Lagrange basis for π1(R

d) with respect to the above basis is, for k = 1 . . . d

pk(x) =
√

2 [x]k ,

along with pd+1 = 1 −
√

2e⊤x. Putting this into (5.16) and making a few
simplifications leads to

k(x,y) = ktp(x,y) +
√

2 (x̆ktp(0,y) + y̆ktp(0,x)) +
log(2)

2
(x̆y + y̆x)

−
√

2
d∑

k=1

(

ktp(x,ek/
√

2) [y]k + ktp(y,ek/
√

2) [x]k

)

, (5.19)

as our O(d) time complexity p.d. analog of ktp, where x = e⊤x and x̆ = x−
1/
√

2. We provide classification performance results using the above kernel
in Table 5.1. Note that the kernel tends to behave better when the input
points are not too close to the set 0,e1/

√
2,e2/

√
2, . . . ,ed/

√
2. Accordingly,

for our classification tests we first added a multiple of e to all of the input
vectors.

5.4.4 Experiments

We now investigate the behaviour arising from the algorithms which we have
just discussed. To summarise, the three types of thin-plate spline based
s.v.m. which we employ are

Appendix 99

Figure 5.3: An s.v.m. separating white pluses from yellow crosses, with quadratic loss (i.e. p = 2
in (5.11)). The white line represents the zero level, the black line the ±1 levels of the decision
function fsvm. Left: the exact solution with the m = 2 thin-plate spline kernel as per Definition
5.3.1, solved by the algorithm of subsection 5.4.1. Middle: similar but with the β = 0 constraint
discussed in the latter part of subsection 5.4.1. Right: the solution arising from the p.d. analog
(5.19) of the thin-plate spline. Note that the three solutions are rather similar to one another
in the central part of the figure, but diverge as one moves outwards. Also interesting is the fact
that in the left figure, points are allowed to be closer to the zero level as this choice yields a more
linear classification function, that is one which relies more on the P part of the function space.
All three solutions were obtained via Algorithm C.1.

1. The optimisation over Fφ (X)⊕ P as per subsection 5.4.1.

2. The approximate optimisation over Fφ (X) as per the latter part of
subsection 5.4.1.

3. The optimisation using the p.d. analog (5.19) of the thin-plate spline.

As demonstrated in Figure 5.3, the above approaches do seem to yield results
which bear qualitative similarities, in particular stability on data which has
features on various scales.

Using the Gaussian kernel (2.26) as a baseline, we also compared the
algorithms on real world classification problems. For the true thin-plate
spline kernel case corresponding to the first two points above, we used the
first method if the data was not linearly separable, otherwise we used the
second.

The results, given in Table 5.1, indicate that the thin-plate methods are
competitive with the Gaussian kernel method. Importantly however, the
dilation scaled nature of the thin-plate regulariser means that the thin-plate
approach is free of a length scale parameter. Indeed, in the experiments
summarised in the table, for the thin-plate cases we had to perform cross
validation in order to choose only the regularisation parameter λ, whereas
for the Gaussian we had to choose both λ and the scale parameter σ. The
discovery of an equally effective algorithm which has only one parameter is
interesting, since the Gaussian is probably the most popular and effective
kernel used with the s.v.m. [HCL03].

100 Kernels Invariant to Transformations

Data-set Gaussian p.d. thin-plate thin-plate dim n

UCI banana 10.567 (0.547) 10.667 (0.586) 10.667 (0.586) 2 3000∗

UCI breast cancer 26.574 (2.259) 28.767 (3.136) 28.026 (2.900) 9 263
UCI diabetis 23.578 (0.989) 23.966 (1.152) 23.452 (1.215) 8 768
UCI flare solar 36.143 (0.969) 35.429 (0.620) 38.190 (2.317) 9 144
UCI german 24.700 (1.453) 24.700 (1.342) 24.800 (1.373) 20 1000
UCI heart 17.407 (2.142) 16.667 (1.932) 17.037 (2.290) 13 270
UCI image 3.210 (0.504) 1.915 (0.342) 1.867 (0.338) 18 2086
UCI ringnorm 1.533 (0.229) 1.767 (0.193) 1.833 (0.200) 20 3000∗

UCI splice 8.931 (0.640) 9.106 (0.683) 8.651 (0.433) 60 2844
UCI thyroid 4.199 (1.087) 3.701 (1.160) 3.247 (1.211) 5 215
UCI twonorm 1.833 (0.194) 1.800 (0.200) 1.867 (0.254) 20 3000∗

UCI waveform 8.333 (0.378) 7.933 (0.441) 8.233 (0.484) 21 3000
SSL 1: Digit 1 2.068 (0.418) 3.666 (0.347) 2.269∗ (0.540) 241 1500
SSL 2: USPS 2.867 (0.445) 5.133 (0.703) 2.933∗ (0.424) 241 1500
SSL 3: COIL2 0.467 (0.142) 1.333 (0.385) 0.800∗ (0.259) 241 1500
SSL 4: BCI 15.750 (1.789) 19.500 (2.000) 16.500∗ (2.014) 117 400
SSL 5: g241c 11.067 (0.896) 10.933 (0.796) 16.133 (1.299) 241 1500
SSL 7: g241n 8.597 (0.916) 11.994 (1.040) 15.067 (1.178) 241 1500
USPS 0 0.600 (0.191) 0.767 (0.228) 0.500∗ (0.181) 256 3000∗

USPS 1 0.433 (0.118) 0.542 (0.155) 0.325∗ (0.147) 256 2769∗

USPS 2 1.729 (0.273) 1.894 (0.348) 1.071∗ (0.196) 256 2429∗

USPS 3 1.548 (0.302) 2.237 (0.286) 1.550∗ (0.206) 256 2324∗

USPS 4 1.404 (0.354) 2.296 (0.371) 2.254∗ (0.805) 256 2352∗

USPS 5 1.625 (0.235) 1.987 (0.280) 1.715∗ (0.268) 256 2216∗

USPS 6 0.728 (0.231) 1.286 (0.286) 0.685∗ (0.194) 256 2334∗

USPS 7 1.047 (0.186) 1.527 (0.198) 0.959∗ (0.192) 256 2292∗

USPS 8 1.404 (0.172) 2.174 (0.189) 1.540∗ (0.245) 256 2208∗

USPS 9 1.077 (0.116) 1.594 (0.204) 1.034∗ (0.115) 256 2321∗

Table 5.1: Classification performance of the s.v.m. with quadratic loss (i.e. p = 2 in (2.20)),
using either the Gaussian kernel or the p.d. analog of the thin-plate kernel as per (5.19). To
compute each error measure, we used five splits of the data — testing on each split after training
on the remainder, and report the results in the form of “mean % classification error (standard
error)”. For parameter selection, we performed five-fold cross validation on the four-fifths of the
data available for training each split, over an exhaustive search of the algorithm parameter(s) (σ
and λ for the Gaussian and λ for the other two), taking the parameter(s) with lowest mean error
rate and retraining on the entire four-fifths. In each case we made sure the chosen parameters
were well within the searched range by visually inspecting the cross validation error as a function
of the parameters. dim is the input dimension and n the total number of training examples (i.e.
which we randomly split into five folds). A star in the n column means that more examples
were available but we discarded them in order to reduce the computational burden. The UCI
and USPS data sets are standard ones (as used in e.g. [MRW+03]), and e.g. “USPS 3” means
learning to discriminate the digit three from all other digits. The SSL data-sets are described
in [CSZ06]. A star in the thin-plate column indicates that the data was linearly separable and
so we used the β = 0 constrained version of the optimisation as described in the latter part of
subsection 5.4.1.

Appendix A

Formulae and Notation

A.1 Notation and Abbreviations

Abbreviations

r.k.h.s. Reproducing Kernel Hilbert Space
m.a.p. Maximum a posteriori
k.r.r. Kernel Ridge Regression
g.p. Gaussian Process

s.v.m. Support Vector Machine
r.b.f. Radial Basis Function
p.d. Positive Definite

p.s.d. Positive Semi-Definite
c.p.d. Conditionally Positive Definite
p.d.f. Probability Density Function
i.i.d. Independent and Identically Distributed

f.m.m. Fast Multipole Method
w.r.t. With Respect To

102 Formulae and Notation

Notation

, Equals by definition
ı The unit imaginary number, i.e.

√
−1

a, b, c, . . . Column vectors (bold lowercase)
∧,∨ Logical and, logical or

A,B,C, . . . Matrices (uppercase)
[a]i The i-th element of the vector a

[A]i,j The i, j-th element of the Matrix A
[A]:,j A column vector of the j-th column of A
[A]i,: A row vector of the i-th row of A

[A]1:i,j Submatrix of rows 1 to i and column j of A
[B C] B and C are partitions of the matrix [B C]

0 Column vector of zeros
e Column vector of ones
ei Column vector satisfying [ei]j = δij
I The identity matrix
∇ The gradient operator
∇2f The Laplacian operator
∂x Partial derivative operator, i.e. ∂

∂x

g′, g′′, g(n) 1-st, 2-nd, and n-th derivative of g
diag(a) A diagonal matrix with [diag(a)]ii = [a]i

C(X), Cm(X) Continuous (cont. in m-th derivative) fns on X
diag(A) A column vector with [diag(A)]i = [A]ii

a|b Conditional random variable
N (µ,Σ) Multivariate normal distribution (see A.4)

Fx [f(x)] (ω) Fourier transform (see A.3)
F−1

ω [F (ω)] (x) Inverse Fourier transform (see A.3)
δ(·) Dirac delta distribution
δij Kronecker delta

supp(f) Support of a function, i.e.{x : f(x) 6= 0}
(f ⊗ g) (y) Vector Convolution, i.e.〈f(·), g(· − y)〉L2

πm(Rd) Space of d-variate polynomials with degree ≤ m
arg minx∈X f(x) Minimiser(s) of f , {x : ∀x′ ∈ X , f(x) ≤ f(x′)}
arg maxx∈X f(x) Maximiser(s) of f , {x : ∀x′ ∈ X , f(x) ≥ f(x′)}

O(·) Big O notation (asymptotic complexity)

Appendix A 103

A.2 Useful Algebra

Matrix Inversion Lemma

The Matrix Inversion Lemma or Sherman-Morris-Woodbury formula states
that

(
A+ CBC⊤

)−1
= A−1 − A−1C

(
B−1 + C⊤A−1C

)−1
C⊤A−1, (A.1)

provided the inverses exist.1 In particular if P and R are positive definite
then

(
P−1 +B⊤R−1B

)−1
B⊤R−1 = PB⊤

(
BPB⊤ +R

)−1
.

Partitioned Matrix Inverse

If A is a symmetric matrix given by

A =

[
P Q
Q⊤ S

]

=

[
P̃ Q̃

Q̃⊤ S̃

]−1

,

where P (resp. S) is square and the same size as P̃ (S̃), then

P̃ = P−1 + P−1QM−1Q⊤P−1,

Q̃ = −P−1QM−1,

S̃ = M−1,

where M = S −Q⊤P−1Q.

Multinomial Theorem
(

m∑

i=1

xi

)p

=
∑

p1,p2,...,pm≥0
p1+p2+...+pm=p

p!
∏m

j=1 pj!

m∏

i=1

xpi

i

A.3 Fourier Transforms

Definition

We use the following pedantic notation for the Fourier transform and its
inverse:

Fx [f(x)] (ω) = (2π)−d/2
∫

x∈Rd

f(x) exp(−x⊤ωı)dx

F−1
ω [F (ω)] (x) = (2π)−d/2

∫

ω∈Rd

F (ω) exp(x⊤ωı)dω.

1The proof is analogous to (2.19) etc.in the text.

104 Formulae and Notation

Fourier Transform of Radial Functions

For radially symmetric functions in R
d the Fourier transform is its own in-

verse (as is easily seen from the definitions above), and can be computed by
the single integral

Fx [gr(‖x‖)] (‖ω‖) =
(2π)

d
2

||ω|| d−2
2

∫ ∞

0

r
d
2 gr(r)J d−2

2
(||ω||r)dr, (A.2)

where Jν(r)is the ν-th order Bessel function of the first kind,

Jν(r) =
∞∑

m=0

(−1)m

Γ(m+ ν + 1)m!

(r

2

)2m+ν

.

Fourier Transform Identities

Fx [(f ⊗ g) (x)] (·) = Fx [f(x)] (·)Fx [g(x)] (·) (A.3)

Fx

[

∂

∂ [x]j
f(x)

]

(ω) =
(

2π [ω]j ı
)

Fx [f(x)] (ω) (A.4)

Fx [f(x− a)] (ω) = exp(−a⊤ωı)Fx [f(x)] (ω) (A.5)

Fx [f(sx)] (ω) =
1

|s|d
Fx [f(x)] (ω/s) (A.6)

A.4 Gaussian Random Variable

The multivariate Gaussian probability density function (p.d.f.) on x ∈ R
d is

given by

N (µ,Σ) = (2π)−d/2 |Σ|−1/2 exp

(

−1

2
(x− µ)⊤ Σ−1 (x− µ)

)

.

Now if x ∼ N (µ,Σ) then

(Ax + b) ∼ N (Aµ + b, AΣA⊤).

If x and y be distributed according to
[

x

y

]

∼ N
([

a

b

]

,

[
A C
C⊤ B

])

,

then the conditional distributions are

x|y ∼ N
(
a+ CB−1(y − b), A− CB−1C⊤

)
,

y|x ∼ N
(
b+ C⊤A−1(x− a), B − C⊤A−1C

)
. (A.7)

Appendix A 105

Multiplication or convolution of Gaussians leads to an unnormalised Gaus-
sian:

N (a, A)N (b, B) ∝ N
(

CA−1a + CB−1b,
(
A−1 +B−1

)−1
)

,

N (a, A)⊗N (b, B) ∝ N (a+ b, A+B) .

The Fourier transform of the Gaussian p.d.f. is an unnormalised Gaussian:

Fx

[
exp

(
−‖x‖2

Rd /(2σ
2)
)]

(ω) = σd exp
(
−‖ω‖2

Rd σ
2/2.

)
(A.8)

Finally we have the following integral in closed form:
∫

Rd

(x− µ)Σ−1 (x− µ)N (m, S)dx = (µ−m)⊤ Σ−1 (µ−m)+Tr
[
Σ−1S

]
.

106

Appendix B

Mathematical Addenda

B.1 Proof of Lemma 3.1.2

We need to a) prove which (dilated) Gaussian functions lie in the reproducing
kernel Hilbert space (r.k.h.s.) of a Gaussian, and b) compute the norm of
those which do. The inner product then follows from the parallelogram
identity. Note that the result corresponding to a) is mentioned in [BJ01]
(in the proof of their Theorem 2), based on a characterisation of the r.k.h.s.
in terms of Fourier transforms — for a sketch of this simple approach see
subsection B.1.2.

B.1.1 Eigendecomposition Based Approach

Presently we prove both a) and b) (described above) in a direct manner using
the following

Theorem B.1.1 (Aronzajn [Aro50]). The function f belongs to the r.k.h.s.
H with reproducing kernel (r.k.) k if and only if there exists an ǫ > 0 such
that

Rǫ(x,y) = k(x,y)− ǫf(x)f(y),

is positive definite (p.d.), in which case

‖f‖2H = inf {1/ǫ : Rǫ is p.d.} .

Let

p(x) = exp(−2ax2)

and

k(x, y) = exp(−b(x− y)2).

108 Mathematical Addenda

It turns out that we can write ([RW06], Chapter 4.3, Eigenfunction Analysis
of Kernels)

k(x, y) =
∞∑

m=0

λmφm(x)φm(y),

where

λm =

√

2c

A

Bm

2mm!
6=

√

2a

A
Bm,

φm(x) = exp(−(c− a)x2)Hm(
√

2c x),

and

c =
√
a2 + 2ab, A = a+ b+ c, B = b/A.

Note that what follows the 6= for λm was given in [RW06], but is incorrect.
The functions {φi} are orthogonal with respect to the Lebesgue measure,
with

∫

R

φm(x)φn(x)dp(x) =

∫

R

exp(−2cx2)Hm(
√

2c x)Hn(
√

2c x)dx

= 1/
√

2c

∫

R

exp(−x2)Hm(x)Hn(x)dx

=

√
π

2c
2mm! δm,n.

Here we made a change of variables
∫

R
f(x)dx = a

∫

R
f(ax)dx, and used

(7.374.1) from Gradshteyn and Ryzhik [GR80], namely
∫

R

exp(−x2)Hm(x)Hn(x)dx =
√
π 2mm! δij.

Since the basis functions are not normalised, we have the following relation

s =
∞∑

m=0

ζmφm ⇒ 〈s|p|φn〉 = r2
nζn.

Hence can write f(x) = exp(−x2) =
∑∞

i=0 γiφi(x) where

r2
2mγ2m =

∫

R

f(x)φ2m(x)dp(x)

=

∫

R

exp(−x2) exp(−(c− a)x2)H2m(
√

2c x) exp(−2ax2)dx

= 1/
√
F

∫

R

exp(−x2)H2m

(√

2c/F x
)

dx

=

√
π

F

(2m)!

m!
(2c/F − 1)m .

Appendix B 109

where F = c+a+1. To evaluate this integral we used (7.373.2) from [GR80],
namely

∫

R

exp(−x2)H2m(xy)dx =
√
π

(2m)!

m!
(y2 − 1)m,

from which we also have γ2m+1 = 0,∀m ∈ N0. This leads to

γ2m =

√
π

F

(2m)!

m!
(2c/F − 1)m /

(√
π

2c
22m(2m)!

)

=

√

2c

F

(2c/F − 1)m

22mm!
,

and so we have

Rǫ(x, y) = k(x, y)− ǫf(x)f(y)

=
∞∑

i=0

λiφi(x)φi(y)− ǫ
∞∑

j=0

γjφj(x)
∞∑

k=0

γkφk(y).

Letting g =
∑∞

p=0 ξpφp be arbitrary, to satisfy Mercer’s condition we require
that I ≥ 0 where

I ,

∫ ∫

g(x)g(y)Rǫ(x, y)dp(x)dp(y)

=

∫ ∫ ∞∑

p=0

ξpφp(x)
∞∑

q=0

ξqφq(y)

·
(

∞∑

i=0

λiφi(x)φi(y)− ǫ
∞∑

j=0

γjφj(x)
∞∑

k=0

γkφk(y)

)

dp(x)dp(y)

=
∞∑

p=0

ξ2
pr

4
pλp − ǫ

∞∑

p=0

ξpr
2
pγp

∞∑

q=0

ξqr
2
qγq.

This can be written ξ⊤Mξ where M = N − ǫp⊤p is an infinite dimensional
diagonal matrix minus a rank one matrix. Since λk > 0 for all k, we can use
the fact that (Observation 1, [Pan90])

(
N − ǫpp⊤ � 0

)
⇔
(
p⊤N−1p ≤ 1/ǫ

)
,

and hence we equivalently require

1/ǫ ≥
∞∑

k=0

γ2
k/λk =

b√
2b− 1

.

The above equality can be shown using (in addition to various tedious alge-
braic manipulations) formula (0.241.3) from [GR80], namely

∞∑

m=1

pm(2m)!/(m!)2 = 1/
√

1− 4p.

110 Mathematical Addenda

Note that the final sentence in Lemma 3.1.2 follows from theorem B.1.1 and
the fact that for b ≤ 1/2 there is no ǫ > 0 satisfying the above inequality.

It also follows from theorem B.1.1 that ‖f‖2H(k) = b/
√

2b− 1 , where we

denote by H(k) the r.k.h.s. with r.k. k. To compare this to Lemma 3.1.2,
note that

f =
√
π g(0, ·, 1/2), (B.1)

and

k(x, y) =

√
π

b
g(x, y, 1/(2b)). (B.2)

Using Lemma 3.1.2 and 〈f, g〉H(k) = c 〈f, g〉H(ck), one can verify with a little
algebra that

〈√
π g(0, ·, 1/2),

√
π g(0, ·, 1/2)

〉

H(
√

π
b
g(x,y,1/(2b))

=
b√

2b− 1
.

Finally, it is straightforward to generalise the result to the Gaussian kernel
on R

d, since this is merely the product of d univariate Gaussian kernels.

B.1.2 Sketch of the Fourier Transform Based Approach

Assuming k : R× R→ R, by letting

k(x, y) = φ(x− y) =

∫

R

Φ(w) exp(−ı(x− y)w)dw,

we can verify that

〈∫

R

F (w) exp(−ıxw)dw,

∫

R

G(w) exp(−ıxw)dw

〉

H(k)

=

∫

R

F (w)G(w)

Φ(w)
dw,

because the reproducing property holds, i.e.

〈f(x), k(x, y)〉H(k)

=

〈∫

R

F (w) exp(−ıxw)dw,

∫

R

Φ(w) exp(−ıxw) exp(ıyw)dw

〉

H(k)

=

∫

R

F (w)Φ(w) exp(ıyw)

Φ(w)
dw

= f(y).

The result follows by substituting the known Fourier transforms for the Gaus-
sian, and requiring a finite norm.

Appendix B 111

B.2 Additional Proofs for Chapter 5

Lemma 5.2.1

Proof. Using (5.1) and (5.2) we have

f(x) =
(
f ◦ T −1

)
(T x) =

〈
f ◦ T −1, k(·, T x)

〉

H
= gT (H) 〈f, k(T ·, T x)〉H ,

which along with the uniqueness of r.k.’s implies (5.3) as required for the
only if. Since {k(·,x) : x ∈ X} spans H, it is sufficient for the if to show
that (5.2) and (5.3) imply (5.1) by showing they imply

gT (H) 〈k(T ·,x), f ◦ T 〉H = 〈k(·,x), f〉H .

Now (5.2) implies that the r.h.s. equals f(x), and (5.2) and (5.3) imply that
the l.h.s. equals

gT (H) 〈k(T ·,x), f ◦ T 〉H = gT (H)
〈
k(·, T −1x)/gT (H), f ◦ T

〉

H

= (f ◦ T) (T −1x)

= f(x).

Lemma 5.2.2

Note that there are standard results on homogeneous functions which are
similar to Lemma 5.2.2. Homogeneous functions are those satisfying (B.3)
but where g(s) is fixed to s−p a priori. Here we begin with general g and
show that it must take the stated form.

Proof. We will show that

φ(r) = g(s)φ(rs) (B.3)

implies that φ is affine in the log-log domain. To do this we let φ̃(·) =
log(φ(exp(·))), g̃(·) = log(g(exp(·))), r̃ = log(r) and s̃ = log(s), so that if we
assume that r > 0 (in addition to the assumption of the lemma that s > 0),

then we have from (B.3) that φ̃(r̃) = g̃(s̃) + φ̃(r̃ + s̃). Hence φ̃(r̃) − φ̃(q̃) =

φ̃(r̃ + s̃)− φ̃(q̃ + s̃), and we see that φ̃ is affine, because it satisfies

φ̃(r̃)− φ̃(r̃ + s̃) = φ̃(q̃)− φ̃(q̃ + s̃).

Hence we can write it as log(φ(exp(log(r)))) = p log(r)+log(b), which implies
that φ(r) = brp,∀r > 0. But since any value of φ(0) satisfies (B.3), we have
φ(r) = aδ(r) + brp,∀r ≥ 0, and hence g(s) = s−p,∀s > 0.

112 Mathematical Addenda

Lemma 2.2.11

Taken from Section 8.6 of [Wen04]:

Proof. Letting [Φ]i,j = φ(xi,xj) and [P]j,k = pk(xj), we need to prove the
solvability of (

Φ P
P⊤ 0

)(
α

β

)

=

(
y

0

)

. (B.4)

Let V , P (Rr) ⊂ R
m. Then the orthogonal complement V ⊥ of V is the null

space of P⊤. The system (B.4) is solvable for every y if ΦV ⊥+V = R
m. But

this is a direct sum because x ∈ ΦV ⊥ ∩ V means that x = Φα = Pβ with
a certain α ∈ V ⊥ and a β ∈ R

r, which implies that α⊤Φα = (P⊤α)⊤β = 0
and hence α = 0 and Φα = 0. But the fact that the intersection of ΦV ⊥

and V contains only the zero vector gives

dim(ΦV ⊥ + V) = dim(ΦV ⊥) + dim(V) = dim(V ⊥) + dim(V) = m,

because the mapping V ⊥ → ΦV ⊥ is bijective. Hence the system (B.4) is
solvable.

Appendix C

Implementation Details

C.1 Thin-plate regularisation of the B3-spline

The thin plate spline inner product of orderm = 2, between two B3-splines in
three dimensions, separated by a distance r (measured between their max-
ima), and dilated such that they have radii of support s1 and s2 can be
computed by the C language code of Figure C.1. The following function
evaluates the B3-spline (dilated such that it has radius of support sup) at a
distance r from its maxima. Note that the implementation could be more
computationally efficient.

void b3spline(double *rval, double *r, double *sup) {

double rr = *r / (*sup), rr2 = rr*rr, rr3 = rr2 * rr;

*rval = 1.0 + 6.0 * rr3 - 6.0 * rr2;

if (rr > 0.5) {

*rval -= 8.0 * rr3 - 12.0 * rr2 + 6.0 * rr - 1.0;

if (rr > 1.0) {

*rval += 2.0 * rr3 - 6.0 * rr2 + 6.0 * rr - 2;

}

}

}

C.2 Support Vector Machine with c.p.d. Kernel

The precise algorithm we use for optimising the support vector machine
(s.v.m.) with a conditionally positive definite (c.p.d.) kernel function is anal-
ogous to that used for the p.d. case in [Cha07], which provides a more detailed
discussion of the basic ideas used in both cases. Here we focus mainly on
the aspects particular to the c.p.d. case. The main logical flow is given as
Algorithm C.1.

To derive (5.15), we first use the standard second order update rule α =
−H−1

α vα where
Hα , λΦ + Φ⊤

sxΦsx

114 Implementation Details

#define sign(x) ((x<0) ? -1 : 1)

double b3spline_reg(double r, double s1, double s2) {

return

(32*pow(3.14159265358979323846 ,8)*(6*s1*(-48*pow(r,5) +

240*pow(r,3)*pow(s1,2) + 360*pow(r,2)*pow(s1,3) + 210*r*pow(s1,4)

+ 45*pow(s1,5) + 80*pow(r,4)*s2 - 240*pow(r,2)*pow(s1,2)*s2 -

240*r*pow(s1,3)*s2 - 70*pow(s1,4)*s2 - 80*pow(r,2)*pow(s2,3) +

40*pow(s1,2)*pow(s2,3) - 60*r*pow(s2,4) - 14*pow(s2,5) -

96*pow(fabs(r - s1),5) + 6*pow(fabs(-2*r + s1),5) + pow(fabs(-2*r

+ s1 - 2*s2),5) - pow(fabs(2*r + s1 - 2*s2),5) + 16*pow(fabs(r +

s1 - s2),5) + 4*pow(fabs(2*r + s1 - s2),5) - 2*pow(fabs(-2*r -

2*s1 + s2),5) + 2*pow(fabs(2*r - 2*s1 + s2),5) - 16*pow(fabs(r -

s1 + s2),5) - 4*pow(fabs(2*r - s1 + s2),5) - 4*pow(fabs(-2*r + s1

+ s2),5) - 16*pow(fabs(-r + s1 + s2),5) + 2*pow(fabs(-2*r + 2*s1 +

s2),5) + pow(fabs(-2*r + s1 + 2*s2),5)) + 6*s2*(-48*pow(r,5) +

80*pow(r,4)*s1 - 80*pow(r,2)*pow(s1,3) - 60*r*pow(s1,4) -

14*pow(s1,5) + 240*pow(r,3)*pow(s2,2) - 240*pow(r,2)*s1*pow(s2,2)

+ 40*pow(s1,3)*pow(s2,2) + 360*pow(r,2)*pow(s2,3) -

240*r*s1*pow(s2,3) + 210*r*pow(s2,4) - 70*s1*pow(s2,4) +

45*pow(s2,5) - 2*pow(fabs(-2*r + s1 - 2*s2),5) + 2*pow(fabs(2*r +

s1 - 2*s2),5) - 96*pow(fabs(r - s2),5) - 16*pow(fabs(r + s1 -

s2),5) - 4*pow(fabs(2*r + s1 - s2),5) + 6*pow(fabs(-2*r + s2),5) +

pow(fabs(-2*r - 2*s1 + s2),5) - pow(fabs(2*r - 2*s1 + s2),5) +

16*pow(fabs(r - s1 + s2),5) + 4*pow(fabs(2*r - s1 + s2),5) -

4*pow(fabs(-2*r + s1 + s2),5) - 16*pow(fabs(-r + s1 + s2),5) +

pow(fabs(-2*r + 2*s1 + s2),5) + 2*pow(fabs(-2*r + s1 + 2*s2),5)) +

4*(-576*pow(r,6) - 96*pow(r + s1,6) + 6*pow(2*r + s1,6) - 96*pow(r

+ s2,6) + 6*pow(2*r + s2,6) - 16*pow(r + s1 + s2,6) - 4*pow(2*r +

s1 + s2,6) + pow(2*r + 2*s1 + s2,6) + pow(2*r + s1 + 2*s2,6) -

96*pow(r - s1,6)*sign(r - s1) + 6*pow(-2*r + s1,6)*sign(r - s1/2.)

- 96*pow(r - s2,6)*sign(r - s2) - 16*pow(-r + s1 + s2,6)*sign(r -

s1 - s2) + pow(-2*r + s1 + 2*s2,6)*sign(r - s1/2. - s2) + pow(2*r

+ s1 - 2*s2,6)*sign(r + s1/2. - s2) - 16*pow(r + s1 - s2,6)*sign(r

+ s1 - s2) - 4*pow(2*r + s1 - s2,6)*sign(2*r + s1 - s2) +

6*pow(-2*r + s2,6)*sign(r - s2/2.) + pow(-2*r + 2*s1 +

s2,6)*sign(r - s1 - s2/2.) - 4*pow(-2*r + s1 + s2,6)*sign(r -

s1/2. - s2/2.) + pow(-2*r - 2*s1 + s2,6)*sign(r + s1 - s2/2.) +

pow(2*r - 2*s1 + s2,6)*sign(r - s1 + s2/2.) - 16*pow(r - s1 +

s2,6)*sign(r - s1 + s2) - 4*pow(2*r - s1 + s2,6)*sign(2*r - s1 +

s2) + pow(-2*r + s1 - 2*s2,6)*sign(r - s1/2. + s2)) +

15*s1*s2*(-8*pow(r + s1 + s2,4) - 2*pow(2*r + s1 + s2,4) + pow(2*r

+ 2*s1 + s2,4) + pow(2*r + s1 + 2*s2,4) - 8*pow(-r + s1 +

s2,4)*sign(r - s1 - s2) + pow(-2*r + s1 + 2*s2,4)*sign(r - s1/2. -

s2) - pow(2*r + s1 - 2*s2,4)*sign(r + s1/2. - s2) + 8*pow(r + s1 -

s2,4)*sign(r + s1 - s2) + 2*pow(2*r + s1 - s2,4)*sign(2*r + s1 -

s2) + pow(-2*r + 2*s1 + s2,4)*sign(r - s1 - s2/2.) - 2*pow(-2*r +

s1 + s2,4)*sign(r - s1/2. - s2/2.) - 16*pow(r + s1 -

s2/2.,4)*sign(r + s1 - s2/2.) - pow(2*r - 2*s1 + s2,4)*sign(r - s1

+ s2/2.) + 8*pow(r - s1 + s2,4)*sign(r - s1 + s2) + 2*pow(2*r - s1

+ s2,4)*sign(2*r - s1 + s2) - 16*pow(r - s1/2. + s2,4)*sign(r -

s1/2. + s2)))) /(5.*r*pow(s1,5)*pow(s2,5));

}

Figure C.1: An implementation in the C language of the inner product calculation described
in section C.1 and Example 3.1.4 in subsection 2.2.3. Note that the implementation is rather
innefficient, e.g.the pow function is very slow for integer exponents and ought not to be used.

Appendix C 115

is the Hessian and
vα , Φ⊤

sxys

is the gradient of the objective function. We then make a change of variables
α = P⊥γ where P⊥ is the null space of P satisfying PP⊥ = 0. Hence the
Hessian and gradient in this new parametrisation are H = P⊤

⊥HαP⊥ and
v = P⊤

⊥ vα.
The following matrix factorisation techniques can be used to improve

the constant factor of the run time for the β = 0 case of the algorithm
corresponding to subsection 5.4.2 and the parameter setting bβ = true in
Algorithm C.1.

Rank One Cholesky Updates

What follows is a standard idea. Instead of solving (5.15) directly, it is more
efficient and computationally stable to maintain a Cholesky decomposition
of the Hessian matrix. That is, we maintain the factorisation H = L⊤L
where L is upper triangular, and solve (5.15) using two back substitutions.
Importantly, it is possible to efficiently recompute L as the set s changes, in
spite of the P⊥ terms. This is because the new Hessian Hnew after, say, the
inclusion of one new margin violator with index w, is related to the old one
by

Hnew = H +
(

[Φ]w,: P⊥

)⊤ (

[Φ]w,: P⊥

)

,

which is a standard rank one Cholesky update and can be computed in O(n2)
time where H ∈ R

n,n [GV96]. Note that the removal of a margin violator
can be handled similarly using a so called Cholesky down date.

Cholesky Expansions

What now follows is somewhat less obvious, and appears to be new at least
in the context of the s.v.m. as it cannot be readily applied to the normal
p.d. s.v.m. algorithm of e.g. [Cha07]. Algorithm C.1 employs a recursive
divide and conquer strategy in order to find the margin violators efficiently
by working on an increasing subset of the data. It turns out that we can also
efficiently recompute the Cholesky factorisation after adding elements to the
working set. To do so is fairly straightforward — first we have to make sure
that P⊥ is constructed1 in such a way that

[P](1,2,...,n)(1,2,...n′) [P⊥](1,2,...,n′)(1,2,...n) = 0

for all n ∈ 1, 2, . . .m where n′ = r − n + 1 and r is the number of rows of
P⊥. Such a P⊥ can easily be derived from the row reduced echelon form
of P [GV96]2. The point is that if we now increase the working set size by

1Note that the null space of a matrix is not unique.
2For instance by calling null(P,’r’) in Matlab 7.

116 Implementation Details

adding elements in counting order (as is the case in Algorithm C.1), then
the corresponding P⊥ is modified by merely adding rows and columns to the
previous one. As can be easily verified, the update to the Hessian Hα in α

also consists of merely adding rows and columns, and so the new Hessian in
γ after bringing a single new element into the working set is given by

H ′ = P ′
⊥
⊤
H ′

αP
′
⊥

where

P ′
⊥ =

(
P⊥ pb
pa pc

)

and

H ′
α =

(
Hα h
h⊤ h∗

)

.

As one may verify, we can now write H ′
α =

(
A B
C D

)

where

A = P⊤
⊥ (HαP⊥ + hpa) + p⊤c (h⊤P⊥ + h∗pa),

and the forms of B, C and D are easy to derive. Now recomputing the
Cholesky factorisation after adding rows and columns to the matrix is a
straightforward matter — in fact most algorithms for computing Cholesky
factorisation proceed iteratively in this manner anyway. Hence the only
remaining trick is to efficiently compute the Cholesky factorisation of A.
But we can now take advantage of the way P⊥ is constructed using the row
reduced echelon form of P , which can be sketched as

P⊥ =

(

P̃⊥

I

)

.

In particular, for working set sizes greater than the number of columns of P
— which is dependent only on the dimension of the space P with respect to
which the kernel is c.p.d., and in particular independent of the number of
training points — we have pa = 0. Hence A reduces to the simple form

A = P⊤
⊥HαP⊥ + p⊤c h

⊤P

= H +
1

2

(
(pc + P⊤h)⊤(pc + P⊤h)− p⊤c pc − (P⊤h)⊤(P⊤h)

)
,

from which it is clear that, given the Cholesky factorisation of H, that of A
can be computed using one update and two down dates. Remarkably, this
means that the Cholesky factorisation of H ′ after increasing the working set
size by one can be computed in quadratic time with respect to the current
working set size. Indeed, as a proof of concept we have developed a simple
implementation based on the above ideas.

Appendix C 117

Algorithm C.1:

(α,β) = CPDPrimalSVM (Φ, Q,R, y, λ, bβ)

input:

[Φ]j,k = φ(xj ,xk) where φ is c.p.d. w.r.t. {p1, . . . , pr}
Q,R such that P⊤ = QR, Q⊤Q = I & [P]k,j = pk(xj)

class labels y ∈ {1,−1}n
regularisation parameter λ

bβ ∈ {true, false} = “enforce β = 0”

output:

α, β such that fsvm =
∑n

j=1
αjφ(·, sj) +

∑r

k=1
βkpk(·)

1: n← length(y)

2: if (n > 500) ∧ not(bβ) then

3: n2 ← n/2

4: (α,β)← CPDPrimalSVM([Φ]
1:n2,1:n2

, [Q]
1:n2,: , R, [y]

1:n2
, λ, bβ)

5: s← indices of non-zero components of α

6: else

7: s← {1, . . . , n}
8: end if

9: oold ←∞
10: αold ← 0

11: βold ← 0

12: repeat

13: if bβ then

14: β ← 0

15: α← r.h.s. of (5.15)

16: else

17:

(

[α]s
β

)

=

(

λI + [Φ]s,s [Q]s,:

[Q]
⊤
s,: 0

)−1(

[y]s
0

)

18: [α]{1,...,n}\s ← 0

19: end if

20: sold ← s

21: t = 0

22: repeat

23: αnew ← 2−tα + (1− 2−t)αold

24: βnew ← 2−tβ + (1− 2−t)βold

25: s←
{
i : yi

[
Φαnew + Qβnew

]

i
< 1
}

26: onew ← λα⊤
new

Φαnew +
∥
∥
∥[Φ]s,: αnew + [Q]s,: βnew − [y]s

∥
∥
∥

2

R|s|

27: t← t + 1

28: until onew ≤ oold

29: αold ← αnew

30: βold ← βnew

31: oold ← onew

32: until s = sold

33: β ←
(
R⊤R

)−1
R⊤βnew

Bibliography

[ABCO+01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Point set surfaces. In IEEE Visualization 2001,
pages 21–28. IEEE Computer Society, October 2001. 53, 73

[Aro50] N. Aronszajn. Theory of reproducing kernels. Transactions of
the American Mathematical Society, 68, 1950. 34, 107

[BBX95] Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. Au-
tomatic reconstruction of surfaces and scalar fields from 3D
scans. Computer Graphics, 29(Annual Conference Series):109–
118, 1995. 53

[BCR84] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis
on Semigroups. Springer-Verlag, New York, 1984. 94

[BG97] Rick Beatson and Leslie Greengard. A short course on fast
multipole methods. In Wavelets, Multilevel Methods and Elliptic
PDEs, pages 1–37, 1997. 43, 47

[BJ01] Francis R. Bach and Michael I. Jordan. Kernel indepen-
dent component analysis. Technical Report UCB/CSD-01-
1166, EECS Department, University of California, Berkeley,
Nov 2001. 107

[BPT06] R. K. Beatson, M. J. D. Powell, and A. M. Tan. Fast evalua-
tion of polyharmonic splines in 3-dimensions. Technical Report
NA2006/03, Numerical Analysis Group, University of Cam-
bridge, 2006. 47, 48

[BTB05] S. Boughorbel, J.-P. Tarel, and N. Boujemaa. Conditionally
positive definite kernels for svm based image recognition. In
Proc. of IEEE ICME’05, Amsterdam, 2005. 92

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction and
representation of 3d objects with radial basis functions. In ACM

118

Appendix C 119

SIGGRAPH 2001, pages 67–76. ACM Press, 2001. 43, 47, 55,
56, 58, 66, 72

[Cha07] Olivier Chapelle. Training a support vector machine in the
primal. Neural Computation, 19(5):1155–1178, 2007. 14, 59,
92, 113, 115

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, 2006. 100

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification. Wiley, New York, 2000. 2nd Edition. 18

[Duc77] J. Duchon. Splines minimizing rotation-invariant semi-norms
in sobolev spaces. Constructive Theory of Functions of Several
Variables, pages 85–100, 1977. 23, 90

[FS03] F. Fleuret and H. Sahbi. Scale-invariance of support vector
machines based on the triangular kernel. Proc. of ICCV SCTV
Workshop, 2003. 87

[FWML06] Nando De Freitas, Yang Wang, Maryam Mahdaviani, and
Dustin Lang. Fast krylov methods for n-body learning. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 251–258. MIT Press,
Cambridge, MA, 2006. 49

[GJP93] Federico Girosi, Michael Jones, and Tomaso Poggio. Priors
stabilizers and basis functions: From regularization to radial,
tensor and additive splines. Technical Report AI 1430, Mas-
sachusetts Institute of Technology, 1993. 20

[GR80] Izrail S. Gradshtein and Iosif Ryzhik. Table of Integrals, Se-
ries, and Products. Academic Press, New York, corrected and
enlarged edition, 2nd printing edition, 1965, 1980. 108, 109

[GR97] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. J. Comp. Phys., pages 280–292, 1997. 56

[GV96] Gene H. Golub and Charles F. Van Loan. Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore MD, 2nd
edition, 1996. 32, 43, 77, 93, 115

[HB04] Matthias Hein and Olivier Bousquet. Kernels, associated struc-
tures and generalizations. Technical report, Max Planck Insti-
tute for Biological Cybernetics, Department of Empirical Infer-
ence, Tbingen, Germany, July 2004. 11

120 BIBLIOGRAPHY

[HCL03] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A prac-
tical guide to support vector classification. Technical report,
National Taiwan University, 2003. 22, 99

[Hör60] L. Hörmander. Estimates for translation invariant operators in
lp spaces. Acta Mathematica, 104:93–140, 1960. 21

[KD05] Sathiya Keerthi and Dennis DeCoste. A modified finite newton
method for fast solution of large scale linear svms. J. Mach.
Learn. Res, 6:341–361, 2005. 59

[KW71] G. Kimeldorf and G. Wahba. Some results on Tchebycheffian
spline functions. Journal of Mathematical Analysis and Appli-
cations, 33:82–95, 1971. 13

[LGM06] Dongryeol Lee, Alexander Gray, and Andrew Moore. Dual-tree
fast gauss transforms. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems 18,
pages 747–754. MIT Press, Cambridge, MA, 2006. 47

[LMGY04] Ting Liu, Andrew Moore, Alexander Gray, and Ke Yang. An
investigation of practical approximate nearest neighbor algo-
rithms. In Advances in Neural Information Processing Systems
14, 12 2004. 46

[Mac98] D. J. C. MacKay. Introduction to Gaussian processes. In C. M.
Bishop, editor, Neural Networks and Machine Learning, NATO
ASI Series, pages 133–166. Kluwer Academic Press, 1998. 17

[MBC99] Cameron Mouat, Rick Beatson, and Jon Cherrie. Fast fitting of
radial basis functions: Methods based on preconditioned gmres
iteration. In Surface Approximation and Visualisation, 1999. 48

[MPL00] C. Merkwirth, U. Parlitz, and W. Lauterborn. Fast nearest
neighbor searching for nonlinear signal processing. Phys. Rev.
E, 62(2):2089–2097, 2000. 32

[MRW+03] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A.J. Smola, and
K.-R. Müller. Constructing descriptive and discriminative non-
linear features: Rayleigh coefficients in feature spaces. IEEE
PAMI, 25(5):623–628, 2003. 100

[MYC+01] Bryan S. Morse, Terry S. Yoo, David T. Chen, Penny Rhein-
gans, and K. R. Subramanian. Interpolating implicit surfaces
from scattered surface data using compactly supported radial
basis functions. In SMI ’01: Proc. Intl. Conf. on Shape Model-
ing & Applications, Washington, 2001. IEEE Computer Society.
56

Appendix C 121

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk,
and Hans-Peter Seidel. Multi-level partition of unity implicits.
ACM Transactions on Graphics, 22(3):463–470, July 2003. 56

[OBS03] Y. Ohtake, A. Belyaev, and Hans-Peter Seidel. A multi-scale ap-
proach to 3d scattered data interpolation with compactly sup-
ported basis functions. In Proc. Intl. Conf. Shape Modeling,
Washington, 2003. IEEE Computer Society. 31, 56

[Pan90] C. T. Pan. A modification to the linpack downdating algorithm.
BIT Numerical Mathematics, 30(4):707–722, 1990. 109

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient sim-
plification of point-sampled surfaces. In VIS ’02: Proceedings
of the conference on Visualization ’02, pages 163–170, Wash-
ington, 2002. IEEE Computer Society. 41, 42

[Pop68] K.R. Popper. The Logic of Scientific Discovery. Hutchinson,
1968. 6

[QCR05] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view
of sparse approximate gaussian process regression. Journal of
Machine Learning Research, 6:1935–1959, 12 2005. 40

[RG01] C. E. Rasmussen and Z. Ghahramani. Occam’s razor. In
Thomas G. Dietterich Todd Leen and Volker Tresp, editors,
Advances in Neural Information Processing Systems 13, pages
294–300. MIT Press, 2001. 6

[Roa70] G. F. Roach. Green’s Functions. Cambridge University Press,
Cambridge, UK, 1970. 19, 20

[RS80] M. Reed and B. Simon. Methods of modern mathematical
physics. Vol. 1: Functional Analysis. Academic Press, Address
San Diego, 1980. 14

[RW06] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes
for Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, Massachusetts, 01 2006.
17, 108

[Set98] J. Sethian. Level set methods and fast marching methods:
Evolving interfaces in computational geometry, 1998. 53

[SGS05] Bernhard Schölkopf, Joachim Giesen, and Simon Spalinger.
Kernel methods for implicit surface modeling. In Lawrence K.
Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neu-
ral Information Processing Systems 17. MIT Press, Cambridge,
MA, 2005. 73

122 BIBLIOGRAPHY

[SHS01] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A gener-
alized representer theorem. In Proc. of the 14th Annual Conf. on
Computational Learning Theory, pages 416–426, London, UK,
2001. Springer-Verlag. 13

[Sol00] P. Sollich. Probabilistic methods for support vector machines.
In S. A. Solla, T. K. Leen, and K.R. Müller, editors, Advances
in Neural Information Processing Systems 12, pages 349–355.
MIT Press, 2000. 18

[SOS04] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. In-
terpolating and approximating implicit surfaces from polygon
soup. In ACM SIGGRAPH 2004. ACM Press, August 2004. 56

[SS02] Bernhard Schölkopf and Alexander J. Smola. Learning with
Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, Cambridge, 2002. 10, 11, 14, 18,
20, 21, 24

[SS03] Valeria Simoncini and Daniel B. Szyld. Theory of inexact
krylov subspace methods and applications to scientific comput-
ing. SIAM J. Sci. Comput., 25(2):454–477, 2003. 49

[SSB05] Florian Steinke, Bernhard Schölkopf, and Volker Blanz. Support
vector machines for 3d shape processing. Computer Graphics
Forum (Proc. EUROGRAPHICS), 24(3), 2005. 58, 71

[SSM98] A.J. Smola, B. Schölkopf, and K.-R. Müller. The connection
between regularization operators and support vector kernels.
Neural Networks, 11:637–649, 1998. 24, 92

[SV96] Gerard L. G. Sleijpen and Henk A. Van der Vorst. A Jacobi-
Davidson iteration method for linear eigenvalue problems.
SIAM Journal on Matrix Analysis and Applications, 17(2):401–
425, 1996. 78

[TA77] Andrey Tikhonov and Vasiliy Arsenin. Solutions of Ill-posed
Problems. V.H. Winston and Sons, Washington, 1977. 6

[TO99] Greg Turk and James F. O’Brien. Shape transformation us-
ing variational implicit functions. In Proceedings of ACM SIG-
GRAPH 1999, pages 335–342, August 1999. 56

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, 1995. 18, 73

Appendix C 123

[Wah90] G. Wahba. Spline Models for Observational Data. Series in
Applied Math., Vol. 59, SIAM, Philadelphia, 1990. 12, 13, 20,
23, 24, 89, 93, 96

[WB98] Ross T. Whitaker and David E. Breen. Level-set models for
the deformation of solid objects. In Dietmar Saupe Jules Bloo-
menthal, editor, Implicit Surfaces 98 Proceedings, Eurograph-
ics/ACm Workshop, pages 19–35, 1998. 53

[WCS05] Christian Walder, Olivier Chapelle, and Bernhard Schölkopf.
Implicit surface modelling as an eigenvalue problem. In Proceed-
ings of the 22nd International Conference on Machine Learning,
Bonn, 2005. 57, 70

[WCS+06] J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik.
Inference with the universum. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, 2006. 60

[Wen04] Holger Wendland. Scattered Data Approximation. Monographs
on Applied and Computational Mathematics. Cambridge Uni-
versity Press, 2004. 11, 12, 24, 88, 89, 91, 96, 98, 112

[WLK03] Christian Walder, Brian Lovell, and Peter Kootsookos. Alge-
braic curve fitting support vector machines. In DICTA 2003,
pages 693–702, Sydney, 2003. IEEE Computer Society. 57, 58,
59, 60

[WSC06] Christian Walder, Bernhard Schölkopf, and Olivier Chapelle.
Implicit surface modelling with a globally regularised basis of
compact support. Proceedings of Eurographics, 25(3):635–644,
2006. 13, 57, 66, 70, 71

[YG89] A.L. Yuille and N.M. Grzywacz. A mathematical analysis of the
motion coherence theory. International Journal of Computer
Vision, 3(2):155–175, June 1989. 22

	Introduction
	Background Theory
	Ill Posed Problems
	Solving a Linear System
	Linear (-in-the-parameters) Models

	Kernel Methods
	Reproducing Kernel Hilbert Spaces
	Some Kernel Based Algorithms
	Kernels and Regularisation Operators
	Conditionally Positive Definite Kernels

	Fast Approximation Methods
	Decoupling Regulariser and Function Basis
	Restricting the Set of Available Functions
	Computing the Regularisation Matrix
	Interpretation as a Gaussian Process
	Construction of the Function Basis

	Fast Multipole Method
	The Basic Idea --- Unipole Expansion
	Space Subdivision and the Multipole Expansion
	Improvements

	Comparing the Two

	Implicit Surface Reconstruction
	Background
	Surface Reconstruction
	Data Acquisition
	Implicit Surfaces
	Implicit Surface Reconstruction
	Overview of the Rest of the Chapter

	An SVM-like Method
	Experiments and Discussion

	Direct Incorporation of Normal Vectors
	Experiments and Discussion

	Reconstructing Surfaces without using Normals
	Related Work
	Algorithm
	Experiments and Discussion

	Kernels Invariant to Transformations
	Transformation Scaled Spaces and Tikhonov Regularisation
	Transformation Scaled Reproducing Kernel Hilbert Spaces
	Thin-Plate Kernel
	Thin-Plate Spline s.v.m.
	Optimising an s.v.m. with c.p.d. Kernel
	Constraining the solution
	p.d. Kernels from c.p.d. Kernels
	Experiments

	Formulae and Notation
	Notation and Abbreviations
	Useful Algebra
	Fourier Transforms
	Gaussian Random Variable

	Mathematical Addenda
	Proof of Lemma 3.1.2
	Eigendecomposition Based Approach
	Sketch of the Fourier Transform Based Approach

	Additional Proofs for Chapter 5

	Implementation Details
	Thin-plate regularisation of the B3-spline
	Support Vector Machine with c.p.d. Kernel

