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Nonadiabatic quantum dynamics without potential energy surfaces
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We present an ab initio algorithm for quantum dynamics simulations that reformulates the traditional “curse of
dimensionality” that plagues all state-of-the-art techniques for solving the time-dependent Schrödinger equation.
Using a stochastic wave-function ansatz that is based on a set of interacting single-particle conditional wave
functions, we show that the difficulty of the problem becomes dominated by the number of trajectories needed
to describe the process, rather than simply the number of degrees of freedom involved. This highly parallelizable
technique achieves quantitative accuracy for situations in which mean-field theory drastically fails to capture
qualitative aspects of the dynamics, such as quantum decoherence or the reduced nuclear probability density,
using orders of magnitude fewer trajectories than a mean-field simulation. We illustrate the performance of this
method for two fundamental nonequilibrium processes: a photoexcited proton-coupled electron transfer problem,
and nonequilibrium dynamics in a cavity bound electron-photon system in the ultrastrong-coupling regime.
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I. INTRODUCTION

New computational tools are still needed to treat nonequi-
librium many-body quantum dynamics problems in molec-
ular and condensed phase systems. Pragmatically speaking,
while exact solutions are out of reach for a broad range of
systems, our main goal is to provide an alternative theoret-
ical framework for generating simulation-based predictions
of observable properties that are as accurate as possible, in
a computationally feasible, ab initio, manner.

Trajectory-based quantum dynamics methods provide one
possible route toward this goal, and they offer the stan-
dard tradeoff between physical accuracy and computational
cost [1–3]. Of these approaches, perhaps the most popu-
lar are Ehrenfest mean field theory [4] and Tully’s surface
hopping dynamics [5]. Both of these approaches can be
simulated using an ensemble of uncorrelated trajectories.
Reintroducing correlation, for example by using wave-packet
methods [6–10], semiclassical techniques [11,12], the
quantum-classical Liouville equation [13–15], linearization-
based approaches [16–19], or methods based on the ex-
act factorization [20–22], allows for further accuracy at the
expense of (often significant) additional computational ef-
fort. In practice, essentially all of these quantum dynamics
methods are formulated using a discrete (truncated) Hilbert
space representation for the electronic degrees of freedom.
In this picture, the Born-Oppenheimer (BO) approxima-
tion naturally emerges as classical nuclear dynamics on the
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electronic ground-state potential energy surface (BOPES)
[23], and nonadiabatic effects are introduced by including
multiple electronic potential energy surfaces and nonadiabatic
coupling terms (NACTs) [24].

An alternative to this approach is to use the (real-space)
position representation for the electrons. This allows one to go
beyond the BO picture without the need to explicitly calculate
several BOPESs and NACTs [25]. This is an attractive feature
from a computational point of view, as these quantities may be
demanding to obtain from ab initio electronic structure calcu-
lations. The conditional wave-function approach (CWF) can
be formulated in this picture; it is an exact decomposition and
recasting of the unitary time-evolution of a closed quantum
system that yields a set of coupled, non-Hermitian, equations
of motion [26]. Inspired by the trajectory-based approach
to quantum dynamics of de Broglie and Bohm [27–30], the
CWF approach allows one to describe the evolution of ar-
bitrary subsets of the degrees of freedom in a system, on a
formally exact level. In addition, this alternative formulation
of the many-body quantum dynamics problem allows novel
approximate schemes to be developed [31,32], providing a
completely new perspective to deal with the long-standing
problems of nonadiabatic dynamics in complex interacting
systems.

In this paper, we report an approach for performing nona-
diabatic quantum dynamics simulations using a set of time-
evolving basis functions that are obtained from an approxi-
mation to the exact CWF equations of motion. This technique
allows one to bypass the, typically necessary, computation of
multiple BOPESs and NACTs, and potential subsequent dia-
batization procedures. Hence, this method offers an attractive
route to calculate observables and time correlation functions
without relying on the widely used concept of the BOPES.
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II. THEORY

We consider a closed system of interacting particles, and
we separate the degrees of freedom into two arbitrary subsets.
We also use the position representation for both sets; lower-
case symbols will be used for the first subsystem, e.g., r =
{r1, . . . , rn}, and uppercase symbols R = {R1, . . . , RN } for
the second. This decomposition holds for an arbitrary number
of subsets (up to the total number of degrees of freedom in
the system), and it applies to both fermionic and bosonic
many-body interacting systems. Here we choose n and N to
represent the total number of degrees of freedom in each of
the two subsystems.

The conditional wave function (CWF) approach can be
developed starting from the full time-dependent Schrödinger
equation (TDSE) in the position representation,

ih̄
∂

∂t
�(r, R, t ) = Ĥ (r, R, t )�(r, R, t ). (1)

The total Hamiltonian for the system is

Ĥ = T̂1(r) + T̂2(R) + W (r, R, t ), (2)

where the kinetic energy operators for each species j are T̂j =
h̄2

2mj
[i∇ j − A j (t )]2, and mj are their characteristic masses. The

vector potential (in Coulomb gauge) due to an arbitrary exter-
nal electromagnetic field, A j (r, R, t ), is also included. The
full interacting potential energy of the system is W (r, R, t ).

The total wave function can be exactly decomposed in
terms of the CWFs of either of the two subsystems,

ψα
1 (r, t ) :=

∫
dR δ(Rα (t ) − R)�(r, R, t ), (3)

ψα
2 (R, t ) :=

∫
dr δ(rα (t ) − r)�(r, R, t ), (4)

where the index α describes an ensemble of trajectories
stochastically sampled from the initial probability density
|�(r, R, 0)|2 (see the Supplemental Material in Ref. [33] for
a detailed description of the numerical implementation of the
ICWF method). Using these definitions in Eq. (1), one can
show that the CWFs, ψα

1 (t ) and ψα
2 (t ), obey the following

equations of motion:

ih̄
dψα

1

dt
= (

T̂1(r) + W (r, Rα, t ) + ηα
1 (r, t )

)
ψα

1 , (5)

ih̄
dψα

2

dt
= (

T̂2(R) + W (rα, R, t ) + ηα
2 (R, t )

)
ψα

2 , (6)

where we have suppressed the explicit time-dependence of
the coordinates, i.e., {rα, Rα} ≡ {rα (t ), Rα (t )}. The complex
potentials ηα

1 (r, t ) and ηα
2 (R, t ) are functionals of the full

wave unction, and they are given in Refs. [25,26]. The
conditional wave functions, (3) and (4), represent slices of
the full wave function taken along the degrees of freedom
of the two disjoint subsets (see, e.g., Fig. 2 in Ref. [25]).
Each individual conditional wave function constitutes an open
quantum system, whose time-evolution is nonunitary, due to
the complex potentials. Notice also that, due to the fact that the
two subsets of degrees of freedom r and R are treated on the
same mathematical footing, the conditional decomposition in

Eqs. (3) and (4) links the number of trajectories used for both
subspaces.

An exact solution to Eq. (1) can be constructed provided
there is an ensemble of trajectories {rα, Rα} that explores
the full support of |�(r, R, t )|2. For example, an ensem-
ble of Bohmian trajectories defined through the conditional
velocity fields [34,35] would fulfill such requirements. An
approximate solution can be formulated [26] by expanding the
complex functionals around the conditional coordinates, and
then truncating such that ηα

1 (r, t ) = f (Rα, t ) and ηα
2 (R, t ) =

g(rα, t ). In this limit, these potentials only engender a pure
time-dependent phase that can be omitted, as the conditional
velocity fields are invariant under such global phase trans-
formations [26]. The resulting propagation scheme is thus
restored to a Hermitian form, and this approximate version
of the CWF formalism is referred to as the Hermitian-CWF
approach [26].

The Hermitian-CWF propagation scheme recasts the full
quantum time-propagator as a set of independent single-
species propagators, which is clearly a major simplification of
the full problem. Hence, this form of the conditional decom-
position allows one to circumvent the problem of storing and
propagating the full many-body wave function, whose size
scales exponentially with the number of degrees of freedom.

In this paper, we consider the following ansatz for the full
many-body wave function:

�(r, R, t ) =
M∑

α=1

Cα (t )ψα
1 (r, t )ψα

2 (R, t ). (7)

The basis functions in this sum are chosen to be Hermitian-
CWFs, and the upper limit of the sum, M, refers to the total
number of stochastically sampled trajectories (which, as we
will show below, can be kept to a very low number, making
the present scheme computationally very efficient). Including
interactions between the trajectories in the ensemble corrects
the Hermitian-CWF evolution, through the set of complex
time-dependent coefficients, C(t ) = {C1(t ), . . . ,CM (t )}. The
time evolution of these coefficients is obtained by inserting
Eq. (7) into Eq. (1),

ih̄MĊ(t ) = (W − W1 − W2)C(t ), (8)

where the matrix elements of M, W, W1, and W2 are

Mα′,α =
∫

dr ψα′∗
1 ψα

1

∫
dR ψα′∗

2 ψα
2 , (9a)

Wα′,α =
∫

dr dR ψα′∗
1 ψα

1 ψα′∗
2 ψα

2 W (r, R), (9b)

Wα′,α
1 =

∫
dr ψα′∗

1 ψα
1 W (r, Rα )

∫
dR ψα′∗

2 ψα
2 , (9c)

Wα′,α
2 =

∫
dr ψα′∗

1 ψα
1

∫
dR ψα′∗

2 ψα
2 W (rα, R). (9d)

Obtaining these matrix elements is straightforward and,
except for (9b), they can be easily calculated from indepen-
dent single-species integrals. Evaluating the matrix elements
of W, in principle, requires the reconstruction of the full
(ansatz) wave function. This does not restrict the use of the
method to cases in which the potential energy W (r, R) can be

023803-2



NONADIABATIC QUANTUM DYNAMICS WITHOUT … PHYSICAL REVIEW MATERIALS 3, 023803 (2019)

fit to a sum-of-products form, as in the multiconfigurational
time-dependent Hartree method [36], for example, but it does
pose a potential numerical challenge in the case of a large
trajectory ensemble.

Once the coefficients C(t ) are known, the velocity fields
{ṙα, Ṙα} are then constructed according to the exact expres-
sions for each subsystem:

ṙα
ξ (t ) = Im

[∑
α Cα (t )ψα

2 (Rα, t )
[∇ξψ

α
1 (r, t )

]|rα (t )

mξ

∑
α Cα (t )ψα

1 (rα, t )ψα
2 (Rα, t )

]
, (10)

Ṙα
ν (t ) = Im

[∑
α Cα (t )ψα

1 (rα, t )
[∇νψ

α
2 (R, t )

]|Rα (t )

mν

∑
α Cα (t )ψα

1 (rα, t )ψα
2 (Rα, t )

]
. (11)

The interacting-CWF method, described above, does not
require the electronic BOPES or NACs as input, or for time
propagation. This feature is potentially quite advantageous
for treating processes that involve many quantum states or
continua, as in light-induced dynamics or surface-scattering
phenomena. In addition, the interacting-CWF propagation
scheme avoids the computation of the nonlocal complex po-
tentials, ηα

1 (r, t ) and ηα
2 (R, t ), as it is based on the Hermitian

limit of the CWF equations of motion. Furthermore, there
is minimal cross-talk between trajectories, which makes the
algorithm computationally efficient in massively parallel ar-
chitectures [33].

III. RESULTS AND DISCUSSION

A. Photoinduced proton-coupled electron transfer reaction

We first show interacting-CWF simulation results for a
prototypical photoinduced proton-coupled electron transfer
reaction, using the Shin-Metiu model [37]. The system com-
prises donor and acceptor ions that are fixed at a distance
L = 19.0a0, and a proton and an electron that are free to move
in one dimension along the line connecting the donor-acceptor
complex (see Fig. 1). This model is very flexible and, based
on the parameter regime chosen, can give rise to a number of
challenging situations in which electron-nuclear correlations
play a crucial role in the dynamics.

The total Hamiltonian for the system is

Ĥ (r, R) = − 1

2m

∂2

∂r2
− 1

2M

∂2

∂R2
+ Ŵ (r, R), (12)

where m is the electron mass and M is the proton mass. The
coordinates of the electron and the mobile ion are measured
from the center of the two fixed ions, and they are labeled
r and R, respectively. The full electron-nuclear potential is

FIG. 1. Schematic representation of the Shin-Metiu model [37].
Two ions are fixed (in black) and a third one (in red) and an electron
(in blue) are free to move in one dimension.

FIG. 2. Full electron-nuclear potential Ŵ (r, R) for the Shin-
Metiu model system.

depicted in Fig. 2 and reads

Ŵ (r, R) = 1∣∣ L
2 − R

∣∣ + 1∣∣ L
2 + R

∣∣ −
erf

( |R−r|
R f

)
|R − r|

− erf
( |r− L

2 |
Rr

)
∣∣r − L

2

∣∣ − erf
( |r+ L

2 |
Rl

)
∣∣r + L

2

∣∣ , (13)

where erf() represents the error function. The parameter
regime studied in this model (R f = 5a0, Rl = 4a0, and
Rr = 3.1a0) was selected to compare with previous work
on nonadiabatic relaxation in photoexcited electron-ion sys-
tems [26,38], and it was chosen such that the ground
Born-Oppenheimer potential-energy surface (BOPES), ε

(1)
BO,

is strongly coupled to the first excited adiabatic state, ε
(2)
BO,

around Rac = −2a0. The coupling to the rest of the BOPESs
is negligible (see Fig. 3).

We suppose the system to be initially uncorrelated, as
if prepared by a short laser pulse, in the first excited BO
electronic state, ε

(2)
BO, while the initial nuclear wave function

is a Gaussian wave packet, with σ = 1/
√

2.85, centered on
the equilibrium geometry of the ground BO state, at R =
−4.0a0. The time step used for integrating the TDSE is 2.4 ×
10−3 fs (or 0.1a0). The fourth-order Runge-Kutta algorithm
is used to propagate the CWF equations of motion and the
corresponding trajectories. Propagating Eq. (8) requires the
matrix inverse of M in Eq. (9a). However, this matrix can
become ill-conditioned when different products of CWFs
strongly overlap, or if the basis becomes overdetermined, for

FIG. 3. BOPESs for the Shin-Metiu model system. Ground state,
ε (1), first excited state, ε (2), and second excited state, ε (3), BOPESs
are shown, respectively, by a red solid line, a blue dashed line, and a
green dotted line.
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example. We used the Moore-Penrose pseudoinversion
method to ameliorate this numerical complication.

The short-time dynamics that proceeds from this ini-
tial condition involves a passage through an avoided cross-
ing of two BOPESs, with further crossings occurring at
later times as the system evolves. To characterize the
dynamics, we monitor the BO electronic state popula-
tions, the reduced nuclear probability density, ρ(R, t ) =∫

dr|�(r, R, t )|2, as well as an indicator of decoherence
that is defined as the overlap integral of projected nuclear
densities evolving on different BO electronic states, Dnm(t ) =∫

dR|χ (n)(R, t )|2|χ (m)(R, t )|2, where we have introduced the
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FIG. 4. Dynamics in the Shin-Metiu model for photoinduced
proton-coupled electron transfer (see the text and the Supplemental
Material in Ref. [33] for details). Exact results (black circles),
interacting-CWF with M = 250 (dark green line) and M = 10 (light
green line), and Ehrenfest mean field theory results with M = 20 000
(dark blue dashed line), M = 2000 (blue dashed line), and M = 250
(light blue dashed line). Top panel: evolution of the BO state popula-
tions P1(t ) and P2(t ). Middle panel: snapshot of the reduced nuclear
coordinate density ρn(R, t ) at t = 31.84 fs. Bottom panel: time-
dependent decoherence indicator D12(t ); fewest-switches surface-
hopping results with 200 trajectories (red dashed line).

so-called Born-Huang expansion of the molecular wave func-
tion, �(r, R, t ) = ∑

n �
(n)
R (r, t )χ (n)(R, t ) [33].

When the system passes through the nonadiabatic coupling
region, the electron transfers probability between the first
excited state and the ground state (top panel of Fig. 4). As
a result of the electronic transitions, the reduced nuclear
density changes shape by splitting into two parts representing
influences from both ground and excited state BOPES’s at
t ≈ 32 fs (middle panel of Fig. 4). As nonadiabatic transitions
occur, the system builds up a degree of coherence, and this
coherence subsequently decays as the system evolves away
from the coupling region (bottom panel of Fig. 4). The
interacting-CWF method vastly outperforms the Hermitian-
CWF approach [26], Ehrenfest mean field theory, as well
as Tully’s surface hopping dynamics (also shown in Fig. 4)
[39] in describing all these aspects of this problem. While
both the interacting-CWF method and Ehrenfest dynamics
correctly capture the exact population dynamics at short
times, the latter breaks down at longer times. Mean field
theory also fails to capture the qualitative structure of the
time-evolving reduced nuclear density, and the indicator of
decoherence. These features are perfectly captured by our
interacting-CWF approach using very few trajectories; fully
converged interacting-CWF results were reached with 250
trajectories, while 2 × 104 trajectories (initially sampled from
the Wigner distribution corresponding to the initial quantum
nuclear wave packet) were required for convergence with
Ehrenfest dynamics. Somewhat surprisingly, as shown in the
bottom panel of Fig. 1, electronic decoherence is captured
nearly quantitatively by the interacting-CWF method using
only 10 trajectories.

B. Nonequilibrium dynamics in a cavity bound
electron-photon system

Next, we simulate a single electron in a one-dimensional
double well potential that is coupled to a quantum electro-
dynamical (QED) cavity through a single photon mode in
the ultrastrong-coupling regime [40–42] (see Fig. 5). The
Hamiltonian for the coupled electron-photon system is given

FIG. 5. The figure schematically illustrates a 1D optical cav-
ity containing one atom, with a single electron. The coupling of
the electron to the cavity mode at resonance frequency ω and with
electron-photon coupling strength λ modifies the dynamics of the
electron density n(r, t ), which moves in a double-well potential
represented by vext.
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FIG. 6. Full electron-photon potential Ŵ (r, R) for the model
system used in this work (depicted in Fig. 5).

by the following expression [40]:

Ĥ (r, R) = − 1

2m

∂2

∂r2
− 1

2M

∂2

∂R2
+ Ŵ (r, R), (14)

where m and M are the electron mass and the effective mass
of the mode of the quantized displacement field.

The first two terms of the Hamiltonian describe the nonrel-
ativistic kinetic energy of the electron and the kinetic energy
operator of the quantized displacement-field component for a
single photonic mode (with M = 1 in atomic units). The full
electron-photon potential is depicted in Fig. 6 and reads

Ŵ (r, R) = ω2

2

(
R − λ

ω
r

)2

+ �

2
r2 + Voe−r2/d2

. (15)

The electron-photon interaction is described in the dipole
approximation, i.e., the dipole-moment operator r couples
linearly to the photon displacement coordinate R, which is
proportional to the quantized displacement field component
of the mode, i.e., D ∝ ωλR. The value of the electron-photon
coupling λ can be changed from the weak- to the ultrastrong-
coupling limit in circuit QED experiments [41,42]. In ad-
dition, the Hamiltonian contains a quadratic electron self-
interaction ves = λ2r2

2 and an external potential vext = �
2 r2 +

Voe−r2/d2
that introduces an additional confining potential plus

a quantum barrier that forces the electron to tunnel as it
couples to the photonic mode.

The parameter regime studied in this model is defined by
the parameters � = 0.7827, V0 = 12, d = 0.15, ω = 0.1249.

FIG. 7. BOPESs for the electron-photon model system used in
this work. Ground state, ε (1), first excited state, ε (2), and second
excited state, ε (3), BOPESs are shown, respectively, by a red solid
line, a blue dashed line, and a green dotted line.

Furthermore, we chose the electron-photon coupling to be
λ = 0.4, which corresponds to the ultrastrong-coupling
regime. This scenario constitutes a formidable challenge
for approximate approaches. The ground Born-Oppenheimer
potential-energy surface (BOPES), ε (1), is strongly coupled to
the first excited adiabatic state, ε (2), around R12 = 0a0. There
is also a non-negligible coupling between the first excited and
second adiabatic states at around R23 = −5a0 and R23 = 5a0.
The coupling to the rest of the BOPESs is negligible (see
Fig. 7). The effective mass of the photon displacement coor-
dinate is identical to the electronic mass, hence the dynamics
deviates strongly from the BO limit. Furthermore, tunneling,
quantum coherence, and zero-point energy conservation are
also important for both interacting subsystems.
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FIG. 8. Nonequilibrium QED cavity-bound electronic dynam-
ics in the ultrastrong-coupling regime. Exact (black circles) and
interacting-CWF with M = 250 (dark green line) and M = 20 (light
green line), and Ehrenfest mean field theory results with M = 20 000
(dark blue dashed line), M = 2000 (blue dashed line), and M = 250
(light blue dashed line). Top panel: evolution of electronic BO state
populations. Middle panel: reduced quantized displacement-field
coordinate probability density ρ(R, t ) at t = 1 fs. Bottom panel:
time-dependent decoherence indicator D12(t ).

023803-5



ALBAREDA, KELLY, AND RUBIO PHYSICAL REVIEW MATERIALS 3, 023803 (2019)

We choose the system to be initially prepared with the
electron in the first excited BO state, ε (2), while the initial
“photonic” wave function is prepared in a displaced coher-
ent state, with σ = 1/

√
0.05, centered at R = −10.0a0. The

time-step used for integrating the TDSE was chosen to be
2.4 × 10−5 fs (or 0.001a0). The fourth-order Runge-Kutta
algorithm is used to propagate the CWF equations of motion
and the corresponding trajectories, and we again used the
Moore-Penrose pseudoinversion method in propagating the
time-dependent coefficients.

This initial state described above is not a stationary eigen-
state of the full electron-photon Hamiltonian, and it evolves
in time by scattering thorough multiple avoided crossings.
The reduced photon density develops a complex structure
as time progresses (middle panel of Fig. 8). The exact elec-
tronic and photonic dynamics are quantitatively captured by
the interacting-CWF approach, as shown in Fig. 8, again
with an extremely small trajectory ensemble. Again Ehrenfest
dynamics correctly captures the exact population dynamics
at short times, but breaks down at long times. Mean field
theory also fails to capture the qualitative structure of the
time-evolving reduced nuclear density and hence the indicator
of decoherence.

IV. CONCLUSIONS

To summarize, we presented a method for solving the
TDSE that is based on the recently introduced, exact, condi-
tional decomposition of the many-body wave function [26].
We use the lowest order solution to the CWF equations
of motion as a time-dependent basis, in a stochastic wave-
function ansatz that we call the interacting-CWF approach.
Our simulation results for the coupled electron-nuclear and

electron-photon model system show that this method cap-
tures a quantitatively accurate physical picture, while using
a number of trajectories that is orders of magnitude lower
than the corresponding mean-field simulation. The degree
of computational efficiency offered by this approach creates
the possibility to treat dynamics in molecular and extended
quantum systems with unprecedented accuracy without the
need to precompute the BOPESs or NACTs, while providing
access to all observables relevant for describing nonequilib-
rium dynamical phenomena.

In addition, these developments provide a general frame-
work to approach the many-body problem in a variety of
contexts. Notice that the decomposition of the full wave
function offered here, in (3) and (4), is but one option of many
possible conditional decompositions of the interacting many-
body wave function. For example, using single-particle CWFs
in a form compatible with time-dependent density functional
theory is another particularly appealing route to follow in this
respect, and work in this direction is already in progress.
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