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We show that an energy gap is induced in graphene by light-matter coupling to a circularly
polarized photon mode in a cavity. Using many-body perturbation theory we compute the electronic
spectra which exhibit photon-dressed sidebands akin to Floquet sidebands for laser-driven materials.
In contrast with Floquet topological insulators, in which a strictly quantized Hall response is induced
by light only for off-resonant driving in the high-frequency limit, the photon-dressed Dirac fermions
in the cavity show a quantized Hall response characterized by an integer Chern number. Specifically
for graphene we predict that a Hall conductance of 2¢?/h can be induced in the low-temperature

limit.

The tunability of the properties of matter by light-
matter coupling is becoming a unifying scheme across
many disciplines, ranging from pump-probe spectro-
scopies [1-4] via artificial gauge fields in cold atoms [5—8]
to strong light-matter coupling in polaritonic chemistry
[9-13]. Floquet-topological states of matter have been
of particular theoretical interest [14-21] but reports of
theoretically predicted Floquet-band formation in time-
resolved photoemission [22] in solids are still rare [23, 24].
Only recently an anomalous Hall effect induced by circu-
larly polarized light has been reported in graphene [25].
One of the major hurdles towards controlling interesting
phases of matter with classical light in solids lies in heat-
ing effects that typically hide the low-energy properties of
Floquet-engineered Hamiltonians. Therefore the manip-
ulation of many-body systems with quantum instead of
classical light is a topic of increasing interest [26-39]. In
quantum optics the potential of chiral light-matter cou-
pling has been recognized to bear potential for instance
for the design of ultrafast optical switches or nonrecipro-
cal devices [40], and chiral exciton-plasmon coupling has
been demonstrated experimentally [41].

Here we show that coupling two-dimensional Dirac
fermions to circularly polarized light in a quantum-
electrodynamical (QED) cavity (Fig. 1(a)) gives rise to
an energy gap A at the Dirac point (Fig. 1(b),(c)). This
gap opening is due to the breaking of time-reversal sym-
metry in close analogy to the Floquet case of circularly
polarized classical light [14]. Within many-body per-
turbation theory we show that the scaling of the light-
induced energy gap with light-matter coupling strength
and light frequency is analogous to the high-frequency
limit in the classical case. Importantly, in contrast to
the classical case, this happens in the ground state of
the cavity, and therefore without electronic excitations
across the energy gap when the experiment is performed
at sufficiently low temperature. On top of that the light-
matter coupling also induces photon-shakeoff sidebands
in the electronic spectrum, again in close analogy to the

Floquet case. While a band gap induced by chiral vac-
uum fluctuations was suggested earlier [42], it was not
connected to light-induced topology. Here we predict
that for graphene the chiral light-matter coupling can
give rise to a quantized anomalous Hall effect (QAHE)
[43] at accessible temperatures.
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FIG. 1. Two-dimensional (2D) material inside a chi-
ral cavity. (a) Setup for 2D graphene between cavity mirrors
a distance A/2 apart, where X is the wavelength of the fun-
damental cavity photon mode. The red spiral indicates the
circular photon polarization. The 2D material is encapsulated
in a dielectric medium (glassy region). (b) Dirac cone of a 2D
Dirac material at electron-photon coupling g = 0. (c) Energy
gap A due to time-reversal symmetry breaking for g > 0.

We consider a two-sublattice (A, B) Hamiltonian with
inter-sublattice hybridizations v(k), to be specified be-
low, minimally coupled to a single QED cavity photon
mode,
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where we use the dipole approximation and assume cou-
pling only at zero momentum transfer to photons with



vector potential
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where Ag = \/h/(eegVw), with vacuum permittivity eo,
cavity volume V, and dielectric constant e of the dielec-
tric embedding of a two-dimensional material inside the
cavity. Here we have assumed an infinitely extended cav-
ity in the z-y plane for simplicity. For a single two-
dimensional spinless Dirac fermion with Fermi velocity
vp we have y(k) = hvp(k, + ik,). Notice that the A2
term that usually appears for massive charged particles
minimally coupled to a gauge field is absent for the mass-
less Dirac fermions considered here.

Using a right-handed circularly polarized cavity re-
duces the photon field to a single branch with &) = €,
operators a; = a', and frequency wy = w, with unit po-
larization vector € = %(1,1‘). In this case v(k — A) —
hwp(ky + ik, — V2Apat) in Eq. (1).

In the following we investigate the photon dressing ef-
fects on the electronic structure by means of many-body
perturbation theory using Matsubara Green’s functions.
To lowest order in the effective electron-photon coupling
strength ¢ = vpAgV/2 we obtain the zero-temperature,
energy-dependent retarded electronic self-energy at the
Dirac point k = 0 within the non-selfconsistent first Born
approximation [44] as
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where aa and bb refer to the intra-sublattice self-energies
on sublattices A and B, respectively.

The relevant quantity to analyze renormalizations of
the electronic structure due to light-matter coupling is
the electronic single-particle spectral function

1 AR

Ak e) = f;ImTrG (k,e), (5)
obtained from the retarded Green’s function on the real-
energy axis, which is related to the self-energy via the
Dyson equation GE=1(k,e) = G (k,€) — £E(k,¢). In
the following we discuss both the non-selfconsistent, low-
est order self-energies ¥ o< g2GoDy with bare electron
(Gp) and photon (Dy) propagators, as well as electroni-
cally self-consistent 3 oc g?G' Dy (see [44] for details) with
dressed electronic Green’s function G obtained from the
Dyson equation. The equations for X[G] and G[X] are
solved self-consistently until convergence is reached. We
neglect dressing of the photon propagators within this
work, as its main effect is a slight renormalization of the
photon frequency and an acquisition of a finite photon
lifetime. In particular, the photon renormalization leads

to a correction of order g* to the electronic self-energy.
As we are interested here in the realistic scenario of weak
light-matter coupling, we expect that these effects will
be small and will not qualitatively affect our results and
conclusions.

Considering the lowest order self-energy at the Dirac
point LBk = 0,6) — SE(k = 0,¢) from Eqs. (3,4)
we find that A(k = 0,€) acquires an energy gap A =
\/2g2 +w2 — w. In the limit 2¢%/w? < 1 we obtain
A~ g — 295 AT This result is in remarkably close for-
mal analogy with the Floquet high-frequency expansion
[14] when the quantum photon amplitude Aq is replaced

by the field strength Ag of the classical vector potential.
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FIG. 2. Electronic spectral function in circularly po-
larized cavity. (a) Spectral intensity A(k,€) versus momen-
tum k and binding energy € for temperature T' = 4.2 K and
cavity frequency w = 0.3 eV for coupling strength g = 0.023
eV. (b) Line cut of the spectral intensity A(k,e€) at the Dirac
point k& = 0 for the same parameters as in (a) on a logarithmic
scale. Colored lines show the occupied part of the spectrum
at different temperatures.

In order to estimate the coupling strength in a realistic
device, we consider graphene encapsulated in hexagonal
boron nitride with dielectric constant € =~ 7 for in-plane
light polarization inside a plasmonic cavity. We obtain
gleV] = (hwr)leVagly/4ar/(eV) and use the effective
cavity volume V = 2.5 x 1075 x (A\/(2V/€))? [33, 45] with
the photon wavelength A being twice the cavity size in z
direction. Lengths are measured in units of the graphene
interatomic distance ag = 1.42A, hvp = 4.2eVag, and
a & 1/137 is the fine structure constant. With these val-
ues we obtain g &~ 0.0077eV for w = 0.1eV (cavity size
6.2um) and g ~ 0.023eV for w = 0.3eV (2.07um). Since
these values are still safely in the weak-coupling regime
the corresponding energy gaps are given by ¢?/w and
take values of 0.00059 eV and 0.0018 eV, respectively.

We go beyond the lowest-order perturbation theory by
numerically solving for the selfconsistent self-energy %
on the Matsubara frequency axis and obtain the real-
frequency self-energy by Padé approximants [46]. We
checked our procedure against the closed-form analytical
continuation result for the non-selfconsistent case. The
resulting electronic spectral function A(k,€) is shown in
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FIG. 3. Spectral function showing sidebands for varying coupling strength. (a) Spectral intensity A(k = 0, ¢) (Dirac
point) for temperature 7' = 1.0 K and cavity frequency w = 0.3 eV versus coupling strength g and binding energy e. (b)
A(k = 0.05,¢€) (away from Dirac point) versus g for the same parameters as in (a).

Fig. 2(a) for a cavity with photon frequency w = 0.3
eV. Indeed a small energy gap is obtained, as discussed
above. In order to better resolve this gap at the Dirac
point, we show in Fig. 2(b) a line cut of the same data
as in Fig. 2(a).

Importantly, the filling of electronic states within
many-body perturbation theory in thermal equilibrium
is simply given by a Fermi-Dirac distribution at the
temperature of interest. To show the thermal occupa-
tion effect, we plot in Fig. 2(b) the occupied electronic
spectra f(e,T)A(k,¢) with Fermi function f(e,T) =
1/(exp(e/(kpT)) + 1) for cryostatic temperatures of 4.2
K, 2.1 K, and 1.05 K. Indeed at sufficiently low tempera-
ture one obtains basically filled states in the valence band
below zero energy and empty states in the conduction
band above. This will be important for the discussion of
the QAHE below.

As a next step we are interested in the larger-scale
renormalization of the electronic structure by photon
dressing. In the classical laser-driving case one obtains
Floquet sidebands due to emission and absorption of
photons from the laser field, and these sidebands can
be measured in time- and angle-resolved photoemission
spectroscopy [22, 23]. Fig. 3 shows the electronic spec-
tra A(k,e) for w = 0.3 €V at varying coupling strength:
g = 0.023 (same as in Fig. 2), g = 0.069, and g = 0.23.
At g = 0.023 only the first photon sideband is barely
visible here, separated from the main band by the pho-
ton frequency. As the coupling strength is increased to
g = 0.069 the sideband becomes more pronounced. On
the energy scale required to see sidebands the energy gap
at the Dirac point is hardly visible. For the strongest cou-
pling g = 0.23 the second-order sideband becomes also
visible, and the energy gap is pronounced. Notice that
these sidebands look quite different from the classically
driven Floquet case (cf. Ref. 22) because in the undriven
cavity the rates of photon absorption and emission are
obviously very different, especially at weak coupling and
low temperature when the photons are almost in their

vacuum state. By contrast, in the driven case the pho-
tons are basically in a coherent state with large occupa-
tion numbers.

We now turn to the discussion of the light-induced
anomalous Hall effect. As outlined above the occupied
electronic spectrum is given by the equilibrium Fermi-
Dirac distribution, which is in marked contrast from the
driven Floquet case. In particular, at zero temperature
only electronic states below the Fermi energy, ¢ = 0, are
filled and those above are empty. This immediately im-
plies that the Hall conductance can be computed from the
Chern number of the dressed electronic structure. This
can be achieved by employing the topological invariant
computed from the interacting Green’s function matrix
of a 2+1-dimensional system [47-49]

1 N N ~ ~ ~ ~
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where p, v, p run through kg, kz, ky and kg = iw is
imaginary frequency. The invariant Ny is equal to the
first Chern number €1, of an effectively noninteracting
system with Hamiltonian heg(k) = —G~(k,0).

For the single photon-dressed Dirac fermion we ob-
tain N = +1 for the choice of right-handed (+) or
left-handed (—) photon polarization. In graphene, one
has two Dirac fermions in the Brillouin zone of oppo-
site chirality, with y(k) = vp (ks £ iky,) and the sign +
referring to the Dirac-fermion chirality. Repeating the
calculations for the negative-chirality Dirac fermion, one
obtains the same contribution to the topological invari-
ant for given photon chirality. Therefore, we obtain the
final result for the zero-temperature Hall conductance of
spinfull graphene in a circularly polarized cavity

e2

Opy = £2 W (7)

with the sign + determined only by the photon chiral-

ity, and 2 = % x Ng x N, with spin degeneracy Ng = 2
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FIG. 4. Hall conductance for different cavity frequen-
cies. Hall conductance as a function of temperature for cavity
photon frequencies as indicated.

and valley degeneracy N, = 2. Fig. 4 shows the Hall con-
ductance with a right-handed circularly polarized photon
mode obtained for different cavity frequencies and their
respective coupling strengths as a function of tempera-
ture by multiplying the respective Berry curvatures with
the Fermi-Dirac distribution. For each of the frequencies,
there is a characteristic gap energy scale below which the
Hall conductance quickly approaches the quantized limit.
Importantly the fully quantized limit is reached at cryo-
static temperatures that can be reached in the laboratory.

In summary, we have shown that a circularly polar-
ized cavity gives rise to a quantized Hall conductance
in two-dimensional Dirac fermions at zero temperature.
Importantly, in practice the size of the energy gap will
set the temperature scale below which the QAHE can
be observed experimentally. Realistic estimates for plas-
monic micro- and nanocavities yield temperatures of tens
of Kelvin for the gap sizes, which implies that a QAHE
induced by QED environments should be within exper-
imental reach. Similar ideas to push from the classi-
cal Floquet regime to the quantized collectively coupled
Dicke regime have been put forward [50]. Natural follow-
up questions pertain to the crossover from the classical
to the QED limit, which could find interesting applica-
tions for instance to light-controlled topological super-
conductivity [51-53]. Similarly it will be interesting to
investigate how effective couplings in materials, such as
dynamical Hubbard U [54-57], the exchange interaction
[36, 58, 59], or electron-phonon couplings [60-63], can be
affected by quantum rather than classical light.
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Supplementary Material

Analytical calculation of lowest-order self-energy

We derive the lowest-order perturbative correction to the single-particle electronic Hamiltonian via the Matsubara

Green’s function

G =Gyt -3, (S1)
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with the electronic Green’s function in matrix form
i T
- (c,z(m)c ) (e, z(T)e), o)
Ak AR AR B,k
B A B B
The bare electronic Green’s function written in Matsubara frequency space is

-1
SN I R N 1 ST R iPp _UF(kzr + Zky)
Go(k,ipn) = (ip,1 — ho(k)) ™ = ( —op(ke — iky) iy ) (S3)

In particular we have for the diagonal elements in orbital-momentum basis

. . _ipn
Goﬂa(k‘, an) = Go,bb(k‘7 an) = m (84)

The lowest order perturbative self-energy is then given by

2
- . -1 = . .
ZO,aa(k'z an) = - Z mebb(k, 1Pn + Zwm), (85)

= 1 = .
EO,bb(kv ipn) = —% mGO,aa(k’ iPn + W), (S6)

or explicitly

g 7ipn - Zwm)
b k = E S7
0.aa(k; ipn) — Wi + w (pn + wim)? + vEk? (87)
2 . .
9 (=ipn — iwm)
Yo.60(Esipp) = , S8
0 bb( Zp Z Zwm, 0 pn I Wm) ¥ ’U%kz ( )

with g = vrpAgv/2. Here we have used the photon Green’s functions Dy (1) = —7,{a'(7)a) and Dy(7) = —T,{a(7)a'),
for which the bare propagators in Matsubara frequency space read D o(iwm,) = iw;iw and Da o(iwm,) = iwiiw,
respectively.
The only remaining task is to carry out the Matsubara summation as follows. Consider the summation for 3¢ 4q =
2 .
—g°S, with

Z (ipn + iwnm,)
B W 4+ w (Pn + wim)? + v5k2

(S9)

This is written as

S=—23 fliwm), (810)

b
which is evaluated by a contour integration
dz
I=1 — 11
Jm L pene), (s11)
with the Bose function ng(z) = ﬁ, and
1 (ipn + 2)
= . S12
O e e (812)
We use the residual theorem for first order poles of g(z) = f(z)np(z) with residues given by
R = lim (z — 29)g(2). (S13)

zZ—r20



The poles of the integrand of I and their respective residues are

Zm = 12rm/pB, Ry, = %f(zwm), (S14)
= —w, Ry = —Pn =) (—w), (S15)

- np
(an - w)2 — U%—ka

lipn +2)(z=22) (S16)

223 = —ip, £vpk, Ro3 = oot o Upn + 2)2 = VL2 B

A straightforward calculation gives

1 np(—ip, X vpk)
Ry/3 = . S17
2/3 —ip, Tvpk +w 2 (817)
Using e~ #"Pn = —1 for all fermionic Matsubaras p,, these residues can be written as
1 TLF(:l:’UFk‘)
Ro/a = S18
2/3 an T 'UFk — 2 ) ( )
and their sum
1 (ipn — w+vpk)np(vek) + (ipp, — w — vpk)(1 — np(vpk))
Ro+ Rz = — . S19
2 s =3 (ipn — w)? — vEk? (519)
The total integral is then given by
1 . (ipn — w)np(—w) + 3 [(ipn — w + vek)np(vek) + (ip, —w — vrk)(1 — np(vpk))]
I=— m . 520
s ;f(w o (ipn — w)? — vpk? (520)
The integral vanishes for R — oo, I = 0, which gives the result
G- (ipn, —w)np(—w) + % [(ipn, — w +vpk)np(vpk) + (ip, —w —vpk)(1 — np(vrk))] ($21)

; 2
(ipn — w)2 - 'UFk2
In summary, we have

.00 ipn) = —g? (ipn — w)np(—w) + 5 [(ipn —w Z;;Fk)z;(w:;)/; (ipn —w —vpk)(1 — nF(ka))]’ (522)
n ¥
2 (ipn +w)np (W) + 5 [(ipn +w + vek)np(vpk) + (ipn +w — vpk) (1 = np(vpk))]

(ipn +w)? — vEk2

So,00(k,ipn) = g : (S23)

where we have used that X p, is the negative of ¥g 4 With w — —w (cf. Egs. (S7) and (S8)).
We analytically continue the Matsubara result to the real axis, ip, — €+ i0T to obtain the retarded self-energy

R (E 0= g (e +i0" — w)np(—w) + % [(e +i0" —w+vpk)np(vek) + (e + 10T —w — vrk)(1 — np(vrk))]
0.0a(K,€) = —9 (e +i0T —w)2 — v2k2 ’
(S24)
SR (E O =g (e +i0" + w)np(w) + % [(e +40T +w +vrpk)np(vrk) + (e + 107 +w — vrk)(1 — nr(vrk))] ($25)
0,66\ €) =g (e +i0t +w)? — U%kQ '
At zero temperature 8 — oo one has for w > 0 that np(w) = 0 and np(—w) = —1. Moreover at the Dirac point
k =0 one has np(0) = % independent of temperature. Therefore at zero temperature and k =0
+i0T —w)(=1) + L (e + 0" —w) g%/2
ZR 0 — _ 2 (6 2 = S26
O,aa( 76) g (6+i0+_W)2 6+i0+—w’ ( )
1 N+ 2
s(e+i07 + 2
SRy 0.0 = 2 ) 0/ (s27)

(€40t +w)2  e+i0t +w’



Selfconsistent numerics

Within electronically selfconsistent many-body perturbation theory, we evaluate at the lowest nonvanishing order
(g%) the Hartree and Fock self-energy diagrams on the Matsubara frequency axis. One can show that the Hartree
diagrams vanish when using the bare photon propagator; in any case, the Hartree diagrams would only yield a static,
non-retarded contribution to the self-energy. The nonvanishing Fock diagrams are the same as the non-selfconsistent
ones discussed in detail above (Eqs (S5,56)), where we simply replace the bare electronic Green’s function by the
dressed ones 3y = 3[G] — 2[G], which are obtained from the solution of the Dyson equation G~' = G5! —
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