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Abstract
Objective
To characterize remote secondary neurodegeneration of spinal tracts and neurons below
a cervical spinal cord injury (SCI) and its relation to the severity of injury, the integrity of
efferent and afferent pathways, and clinical impairment.

Methods
A comprehensive high-resolution MRI protocol was acquired in 17 traumatic cervical SCI
patients and 14 controls at 3T. At the cervical lesion, a sagittal T2-weighted scan provided
information on the width of preserved midsagittal tissue bridges. In the lumbar enlargement,
high-resolution T2*-weighted and diffusion-weighted scans were used to calculate tissue-
specific cross-sectional areas and diffusion indices, respectively. Regression analyses determined
associations between MRI readouts and the electrophysiologic and clinical measures.

Results
At the cervical injury level, preserved midsagittal tissue bridges were present in the majority of
patients. In the lumbar enlargement, neurodegeneration—in terms of macrostructural and
microstructural MRI changes—was evident in the white matter and ventral and dorsal horns.
Patients with thinner midsagittal tissue bridges had smaller ventral horn area, higher radial
diffusivity in the gray matter, smaller motor evoked potential amplitude from the lower ex-
tremities, and lower motor score. In addition, smaller width of midsagittal tissue bridges was
also associated with smaller tibialis sensory evoked potential amplitude and lower light-touch
score.

Conclusions
This study shows extensive tissue-specific cord pathology in infralesional spinal networks
following cervical SCI, its magnitude relating to lesion severity, electrophysiologic integrity, and
clinical impairment of the lower extremity. The clinical eloquence of remote neurodegenerative
changes speaks to the application of neuroimaging biomarkers in diagnostic workup and
planning of clinical trials.
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Besides the primary damage to the lesion site, traumatic spinal
cord injury (SCI) triggers a cascade of pathologic processes
remote from injury.1,2 These are reflected by neuronal dys-
function, such as premature exhaustion of motor neurons and
impaired sensorimotor function below the level of the
lesion.3–9 Moreover, remote dynamic neurodegenerative and
reorganizational processes of the neural circuits are believed
to play a critical role in the patients’ long-term recovery1 and
might determine the success of future regenerative therapies.

To better understand the interaction between degenerative
processes at and caudal to a cervical lesion and their relation to
electrophysiologic and clinical measures of the lower extremity,
3 questions were investigated: (1) Are the degenerative pro-
cesses in the lumbar enlargement similar to those demon-
strated within the high cervical cord above the injury?10 (2) Is
there a relationship between lesion severity and the magnitude
of neurodegeneration in the lumbar enlargement? (3) Is there
a relationship between structural changes at and below the level
of injury and electrophysiologic and clinical measures?

We applied high-resolution multimodal MRI to the lumbar
enlargement11,12 and quantified electrophysiologic and clini-
cal measures of lower limb to investigate tissue-specific cord
pathology in chronic cervical SCI patients. We hypothesized
that (1) remote tissue-specific neurodegeneration (reflected
by macrostructural and microstructural MRI changes) occurs
in the lumbar enlargement, (2) preserved midsagittal tissue
bridges at the lesion site are related to the magnitude of tissue-
specific cord pathology in the lumbar enlargement, and
(3) preserved midsagittal tissue bridges and remote tissue-
specific neurodegeneration correlate with electrophysiologic
and clinical measures of lower limb function.

Methods
Standard protocol approvals, registrations,
and patient consents
The study protocol was designed in accordance with the
Declaration of Helsinki and was approved by the local ethics
committee (EK-2010-0271). All participants provided written
informed consent prior to study enrollment.

Participants
Seventeen SCI patients (4 female, age 42.7 ± 14.0 years
[mean ± SD]) were recruited and admitted to the out-
patient clinic at Balgrist University Hospital, Zurich, Swit-
zerland, between August 19, 2015, and December 6, 2016.
In addition, 14 healthy volunteers (4 female, age 42.4 ± 17.2
years) formed the control dataset. SCI patients fulfilled the
following inclusion criteria: (1) traumatic cervical SCI, (2)
no other neurologic or psychiatric disorders, (3) no MRI
contraindications, and (4) no pregnancy.

Clinical examination
In patients, neurologic impairment was assessed by means of
the International Standards for Neurologic Classification of
Spinal Cord Injury (ISNCSCI) protocol.13 Single motor and
sensory scores in the ISNCSCI scoring sheet were summed
up between L2 and S4-5 neurologic levels and are referred to
as lower extremity motor (LEMS), light touch (LELT), and
pinprick scores (LEPP) throughout the article. Daily life in-
dependence (i.e., self-care, respiration, sphincter management,
and mobility) was assessed by the Spinal Cord Independence
Measure (SCIM).14

Electrophysiologic measurements
The electrophysiologic examinations were conducted
according to the standard protocol of the European Multi-
center Study about Spinal Cord Injury (emsci.org/). Abduc-
tor hallucis (AH) and tibialis anterior (TA) motor evoked
potentials (MEP) were acquired simultaneously by single-
pulse transcranial magnetic stimulation, placing the coil at 4
cm rostral of Cz, provoking a response in the AH and TA
muscles. A sample frequency of 2,000 Hz, biphasic stimulus
duration of 200 μs, and a band-pass filter of 30 Hz–1 kHz were
used. The time from the stimulation to the muscle response
onset determined the MEP latency and the amplitude was
measured from baseline to the highest negative peak of the
potential.

To obtain tibial sensory evoked potential (SEP), posterior
tibial nerves were stimulated bilaterally at the ankle. The
stimulation was performed until a motor response was in-
duced. Cortical responses were recorded with active electrode
at Cz’ (2 cm posterior to Cz) and referenced to Fz according

Glossary
AD = axial diffusivity;AH = abductor hallucis;AIS =American Spinal Injury Association Impairment Scale; dGMA = dorsal gray
matter area; DTI = diffusion tensor imaging; FA = fractional anisotropy; FOV = field of view; GM = gray matter; GMA = gray
matter area; ISNCSCI = International Standards for Neurologic Classification of Spinal Cord Injury; LELT = International
Standards for Neurologic Classification of Spinal Cord Injury lower extremity light touch score; LEMS = International
Standards for Neurologic Classification of Spinal Cord Injury lower extremity motor score; LEPP = International Standards for
Neurologic Classification of Spinal Cord Injury lower extremity pinprick score;MD = mean diffusivity;MEP = motor evoked
potential; RD = radial diffusivity; ROI = region of interest; SC = spinal cord; SCA = spinal cord area; SCI = spinal cord injury;
SCIM = Spinal Cord Independence Measure; SEP = sensory evoked potential; SNR = signal-to-noise ratio; TA = tibialis
anterior; TE = echo time; TR = repetition time; tSEP = tibial sensory evoked potential; vGMA = ventral horn gray matter area;
WM = white matter; WMA = white matter area.
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to the 10–20 EEG system. The impedance was maintained
under 5 kΩ. Two sets of 150 responses were averaged and
superimposed. The SEP P40 latency wasmeasured as the time
from the stimulation to the first positive peak of the primary
complex, and the amplitude as the difference between the P40
and N50 (first negative) peaks.

Means of both sides (left and right) of the electrophysiologic
measures were used for analysis, as MRI readouts were
extracted from the whole cross-section of the spinal cord
(SC). Evoked potential latencies were normalized for height.
For MEP and SEP, patients without any recordable potential
were given an amplitude of 0 mV/μV. Only patients with
bilateral responses were included into the latency analysis.
Due to the small number of participants with bilateral MEP
responses, MEP latency analysis was not performed.

Image acquisition
All MRI measurements were performed on a clinical 3T
Siemens (Erlangen, Germany) SkyraFit system, using a stan-
dard radiofrequency body coil for transmission and the
combination of 16-channel radiofrequency head and neck coil
and standard spine matrix coil for reception. Foam positioners
were placed under the knees to reduce the normal cord lor-
dosis and maximize the contact between the spine coil and the
lower SC. In addition, an MRI-compatible cervical collar
(Laerdal Medical, Stavanger, Norway) was used to reduce
motion in the cervical cord.15

At the lesion level, a standard clinical sagittal T2-weighted
image was acquired to assess the extent of the lesion. The
following settings were used: repetition time (TR) 3,430 ms,
echo time (TE) 90 ms, flip angle 150°, field of view (FOV)
218 × 218 × 55 mm3, resolution 0.34 × 0.34 × 2.75 mm3.

In the lumbar enlargement, high-resolution structural data were
acquired using a T2*-weighed 3D multi-echo gradient-echo
sequence (multi-echo data image reconstruction sequence).
The 20 axial–oblique slices were centered at the widest point of
the enlargement as appearing in a localizing sagittal T2-
weighted image, following the procedure described in Yian-
nakas et al.11 Depending on the participant, the widest point
was located between the T10 and L1 vertebral levels. Four
measurements were acquired using the following parameters:
slice thickness 2.5 mm, in-plane resolution 0.5 × 0.5 mm3, in-
plane FOV192 × 162mm2, TE 19ms, TR 44ms, flip angle 11°,
readout bandwidth 260 Hz/pixel, 4 measurements, total ac-
quisition time 8:32 minutes. Zero filling interpolation was used
to double the apparent in-plane resolution (0.25 × 0.25 mm2).

A diffusion MRI dataset consisting of 60 diffusion-weighted
(b = 500 seconds/mm2) and 7 T2-weighted (b = 0 seconds/
mm2) volumes was also acquired using a reduced-FOV single-
shot spin-echo echo-planar imaging sequence with identical
slice prescription as the T2*-weighed images. Acquisition
measures were as follows: slice thickness 5 mm (10% gap), in-
plane resolution 0.76 × 0.76 mm2, in-plane FOV 133 ×

30 mm2, TE 71 ms, TR 350 ms, 5/8 partial Fourier in phase-
encoding direction (anterior–posterior direction). The ac-
quisition time varied with the participant’s heart rate with
a nominal acquisition time of 5.2 minutes. The acquisition was
cardiac gated (minimal duration between 2 successive trig-
gers: 1,800 ms) to reduce artifacts related to CSF pulsation.
The in-plane apparent resolution was doubled by zero filling
interpolation (0.38 × 0.38 mm2).

Image analysis

Lesion segmentation
In SCI patients, the lesion appearing as a hyperintense area in
the T2-weighted image was segmented as previously de-
scribed.16 On the midsagittal slice, we quantified the width of
midsagittal tissue bridges,16 which was defined as the width of
the normal-appearing tissue bundles ventral and dorsal to the
visible lesion. The lesion characteristics could not be assessed
in 4 out of 17 patients due to artifacts caused by the ortho-
pedic fixations.

Processing of structural MRI data
An average of the 4 T2*-weighted volumes was created using
serial longitudinal registration (SPM12, MATLAB 2013) to
account for between-scan motion. The averaged image was
resliced to 5 mm slice thickness to increase signal to noise
ratio. Cross-sectional SC area (SCA) was obtained in all slices
using the semi-automatic 3D active surface cord segmentation
method as implemented in JIM 7.0.17 Three slices around the
slice having the largest SCA were considered for further
segmentation and analysis to ensure comparable and re-
producible anatomical coverage of the lumbar enlargement.11

Gray matter (GM) was segmented manually (using sub-voxel
segmentation in JIM 7.0) to determine cross-sectional GM
area (GMA) measures. White matter area (WMA) was cal-
culated as the difference between SCA and GMA. Using the
same manual segmentation tools, GMA was further sub-
divided into bilateral dorsal (dGMA) and ventral horn
(vGMA) areas as previously described.10,18 For the statistical
analysis, the slice-averaged tissue areas including SCA, WMA,
GMA, dGMA, and vGMA were used.

Processing of diffusion MRI data
We used the SPM-based ACID toolbox for processing the
diffusion tensor imaging (DTI) data, following the procedure
described in our previous studies.19,20 In short, we performed
slice-wise registration between all 67 volumes to correct for
motion and eddy-current artifacts. Then, we fitted the diffu-
sion tensor model using a robust tensor fitting algorithm,
which has been shown to effectively reduce physiologic arti-
facts, residual motion artifacts, and misregistrations.20 Tensor
fitting generated the following DTI index maps: fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD). After tensor fitting, all DTI
maps were registered to the corresponding T2*-weighed
image using a nonlinear transformation (BSplineSyn algo-
rithm21) implemented in the Spinal Cord Toolbox.22 The SC,
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GM, and white matter (WM) masks generated on the T2*-
weighted structural image were then applied to the DTI maps
and were manually adjusted if necessary to account for slight
registration errors. All binary masks were one-voxel eroded to
reduce partial volume effects. Finally, mean FA, MD, AD, and
RD values were extracted from the SC, GM, and WM binary
masks, which were used for subsequent analyses.

Statistical analysis
All statistical analyses were performed in Stata 14 (StataCorp
LP, TX). Age and sex differences between SCI patients and
controls were assessed usingMann-WhitneyU test and Fisher
exact test, respectively. We excluded 4 SCI patients and 1
healthy control from the cross-sectional area and DTI meas-
urements due to extensive motion artifacts or signal dropout.
First, to assess remote tissue-specific neurodegeneration,
cross-sectional tissue areas (SCA, WMA, GMA, vGMA, and
dGMA) and DTI measures (FA, MD, AD, RD) were com-
pared between SCI patients and controls using a 2-sample t
test (1-tailed, unequal variances, α = 0.05). Second, correla-
tion analysis was used to investigate linear associations be-
tween these remote MRI readouts and lesion measures (α =

0.05). Finally, the relationships between the MRI readouts
(lesion-level and in the lumbar enlargement), electrophysio-
logic assessments, and clinical scores were assessed using
correlation analysis (α = 0.05).

Data availability
The authors certify they have documented all data, methods,
and materials used to conduct the research presented. Ano-
nymized data pertaining to the research presented will be
made available by request from qualified investigators.

Results
Demographic, clinical, electrophysiologic, and
radiologic characteristics
There was no significant difference between the SCI patients
and controls in terms of sex (Fisher exact test, p = 0.370) and
age (Mann-Whitney U test, z = −0.437, p = 0.66). Of the
17 patients, 3 were classified as American Spinal Injury As-
sociation Impairment Scale (AIS) A, 4 as AIS C, and 10 as AIS
D (table 1). Patients were scanned on average 74.5 ± 60.0

Table 1 Demographic, clinical, lesion, and neurophysiologic information of the spinal cord injury patients

Patient
ID Sex

Age,
y

Time
since
injury,
mo

Level
of
injury AIS

LEMS
(max:
50)

LELT
(max:
32)

LEPP
(max:
32)

TB,
mm

MEP
ampl
(AH),
mV

MEP
ampl
(TA),
mV

SEP
ampl,
μV

MEP
lat
(AH),
ms

MEP
lat
(TA),
ms

SEP
lat,
ms

1 M 29 12 C5 A 0 0 0 0.42 0 0 0 ND ND ND

2 M 23 13 C7 A 0 0 0 0 0 0 0 ND ND ND

3 M 33 32 C5 A 0 0 0 0.36 0 0 0 ND ND ND

4 F 32 23 C5 C 18 0 0 NA 0.39 0.08 0 48.7 ND ND

5 M 69 4 C2 C 26 9 0 NA 0.15 0 0 43.6 ND ND

6 F 40 84 C4 C 1 16 0 1.24 0.21 0 0.09 47.4 ND 48.5

7 M 30 135 C7 C 14 16 6 1.23 0.10 0.06 0.27 ND ND 37.4

8 M 41 146 C6 D 50 32 32 3.49 NA NA 1.93 NA NA 40.2

9 M 49 181 C8 D 50 16 24 1.46 NA NA 0.82 NA NA 37.3

10 M 27 59 C7 D 23 16 0 1.41 0.37 0.09 3.80 45.8 36.6 38.5

11 M 41 55 C6 D 44 26 22 NA NA NA NA NA NA NA

12 M 50 91 C4 D 47 16 16 2.71 0.95 0.54 0 44.1 35.4 ND

13 M 48 22 C5 D 50 32 29 6.89 NA NA NA NA NA NA

14 M 64 49 C2 D 45 17 14 3.66 0.85 0.43 1.23 41.4 32.0 54.1

15 M 68 158 C7 D 50 32 30 2.65 NA NA 1.22 NA NA 41.0

16 M 39 40 T1 D 44 32 32 NA 0.59 0.30 1.31 43.2 33.1 43.8

17 M 43 163 C5 D 29 7 8 2.40 1.55 0.25 2.12 41.1 33.2 56.3

Abbreviations: AH = abductor hallucis; AIS = American Spinal Injury Association Impairment Scale; amp = amplitude; lat = latency; LELT = International
Standards for Neurologic Classification of Spinal Cord Injury lower extremity light touch score; LEMS = International Standards for Neurologic Classification of
Spinal Cord Injury lower extremity motor score; LEPP = International Standards for Neurologic Classification of Spinal Cord Injury lower extremity pinprick
score; MEP = motor evoked potential; NA = not available; ND = not defined; SEP = sensory evoked potential; TA = tibialis anterior; TB = width of preserved
midsagittal tissue bridges.

e1370 Neurology | Volume 92, Number 12 | March 19, 2019 Neurology.org/N

http://neurology.org/n


months following the injury. Midsagittal tissue bridges were
present in all incomplete patients (AIS B-D) and in 2/3
complete patients (AIS A). The amplitudes of the recorded
signals are shown in table 1. No bilateral AH and TA MEP
signal was detected in motor complete patients, while 2 out of
8 motor incomplete patients did not have bilateral TA MEP
signal. Tibial SEP (tSEP) signal was not recordable in com-
plete and 3 out of 12 incomplete patients. The mean (±SD)
amplitudes for AH and TAMEP, as well as tSEP, were 0.43 ±
0.48 mV, 0.15 ± 0.19 mV, and 0.85 ± 1.11 μV, respectively.
The mean latencies for AH MEP, TA MEP, and tSEP were
44.41 ± 2.71, 34.05 ± 1.88, and 44.13 ± 7.18 ms, respectively.

Remote tissue-specific neurodegeneration in
the lumbar enlargement
In the lumbar enlargement, SCI patients had lower WMA
(−10.8%, p = 0.011) and GMA (−13.0%, p = 0.005) compared
to controls, with both ventral GMA (−9.3%, p = 0.046) and
dorsal GMA (−19.1%, p < 0.001) being affected (figure 1 and

table 2). In the atrophied lumbar enlargement, patients had
lower FA and AD values in both GM and WM compared to
controls (figure 2 and table 2). In addition, higher RD of WM
and lower MD of GM were observed in SCI patients.

Relation of tissue bridges to cord pathology
Patients with larger width of the midsagittal tissue bridges had
larger vGMA (r = 0.62, p = 0.041) (figure 3A) and lower MD
(WM: r = −0.76, p = 0.006; GM: r = −0.86, p < 0.001) and RD
(WM: r = −0.71, p = 0.015; GM: r = −0.87, p < 0.001)
(figure 3B).

Relationship between tissue bridges, cord
pathology, and electrophysiologic measures
Patients with larger width of midsagittal tissue bridges had
larger MEP amplitudes (AH: r = 0.81, p = 0.008; TA: r =
0.908, p < 0.001) (figure 3G), but not SEP amplitudes (r =
0.41, p = 0.192). In addition, smaller MEP amplitudes were
associated with smaller GMA (AH: r = 0.68, p = 0.043; TA: r =
0.75, p = 0.020) and higher RD in the GM (AH: r = −0.83, p =
0.006; TA: r = −0.89, p = 0.001) (figure 3, C and D). Patients
with longer SEP latencies had lower FA in both WM and GM
(WM: r = −0.85, p = 0.030; GM: r = −0.81, p = 0.049) (figure
3, E and F).

Relation of lesion measures and cord
pathology to clinical outcome
At the lesion level, the width of midsagittal tissue bridges
correlated positively with LEMS (r = 0.75, p = 0.003), LELT
(r = 0.76, p = 0.003), LEPP (r = 0.73, p = 0.046) (figure 4,
A–C), and SCIM (r = 0.70, p = 0.017). In the lumbar en-
largement, RD of both GM and WM were negatively corre-
lated with LEMS (WM: r = −0.60, p = 0.029; GM: r = −0.63, p
= 0.021), LELT (WM: r = −0.58, p = 0.039; GM: r = −0.62, p
= 0.025), LEPP (WM: r = −0.59, p = 0.033; GM: r = −0.63, p =
0.020), and SCIM (WM: r = −0.61, p = 0.045; GM: r = −0.70,
p = 0.017; figure 4, D–F). In addition, MD of the WM cor-
related negatively with LEMS (r = −0.72, p = 0.006), LELT
(r = −0.61, p = 0.028), LEPP (r = −0.69, p = 0.009), and SCIM
(r = −0.65, p = 0.032).

Discussion
While the extent of secondary remote changes in the cervical
cord after traumatic SCI has been described in vivo, this study
shows in vivo evidence of secondary remote neurodegenera-
tive changes affecting infralesional spinal networks. We ob-
served marked macrostructural (reflected by cross-sectional
area measurements) and microstructural (reflected by diffu-
sion MRI) signs of degeneration in both the GM and WM
within the lumbar enlargement. The magnitude of (trans-
synaptic) neurodegeneration was associated with changes in
preserved electrophysiologic information flow of afferent and
efferent pathways and lower limb function. Thus, next to
tissue-specific supralesional cord pathology,10,23,24 the lumbar
enlargement after a cervical SCI also undergoes neurode-
generative changes, both in WM and GM tissue.

Figure 1Box plots of tissue-specific cross-sectional areas in
the lumbar enlargement

Spinal cord (SC), gray matter (GM), and white matter (WM) areas are illus-
trated in (A), while dorsal GM and ventral GM areas resulting from GM
subsegmentation are plotted in (B). In case of significant group-level dif-
ference (p < 0.05), the percent group difference is also indicated. Both WM
and GM were significantly smaller in patients (−10.8% and −13.0%, re-
spectively), where dorsal GM contributed proportionally more to the GM
atrophy. Dots represent outliers that fall belowQ1 − 1.5 × interquartile range
(IQR) or above Q3 + 1.5 × IQR (Q1, Q3 = first and third quartiles, respectively;
IQR = Q3 − Q1).
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Remote tissue-specific neurodegeneration in
the lumbar enlargement
In the WM of the lumbar enlargement, AD was decreased and
RD increased, which led to the overall reduction in FA. Fur-
thermore, impaired microstructure also translated to tissue
atrophy in the WM. These observations are consistent with
previous studies that showed that axonal degeneration, including
disintegration of the axonal skeleton and membrane, as well as
accompanying demyelination leads to increased RD and de-
creased AD after experimental or human SCI.25–27 This suggests
that the dominant histopathologic substrates of the observed in
vivo human WM changes are likely to be anterograde and ret-
rograde degeneration of descending motor pathways and as-
cending afferent spinal projections (for an overview of WM
degeneration processes, see figure 5).Moreover, accumulation of
cellular debris in the extracellular space could further reorganize
the microstructural architecture and lead to reduced anisotropy
and diffusivity in the WM.28 Interestingly, the magnitude of
neurodegeneration in the lumbar enlargement was similar to the
above-level neurodegeneration in the upper cervical cord.10

In the GM of the lumbar enlargement, we found decreased
AD, which led to reduction in MD and FA. In the acute and

subacute phases, animal SCI models have demonstrated
morphologic changes in the GM including decreased number
but increased length of the remaining dendrites and enlarged
soma size.29,30 In humans, however, remote structural changes
in the cords’ GM after SCI are understudied. The atrophy of
ventral horns presumably reflects transsynaptic degeneration
of flexor motor neuron pool due to deprivation from supra-
spinal input (figure 5).7,31,32 In contrast, the extensor motor
neuron pool in the lumbar cord continues to receive pro-
prioceptive input to become activated. It has been reported
that the extensor neurons are likely to survive after the injury
compared to flexor neurons.5 Similarly, dorsal horn neurons,
interneurons, and propriospinal networks33 are also prone to
undergo a partially transsynaptic degeneration (figure 5).
Other mechanisms including vascular remodeling and
changes in the amount of glial cells34 could also play a role in
GM pathology; however, their degree of contribution is not
clear.

Relation of tissue bridges to cord pathology
Following the initial injury, a post-traumatic cyst develops in
the majority of patients within the first month.16 It has been
shown that the magnitude of such neuronal tissue loss

Table 2 List of tissue-specific cross-sectional areas and diffusion tensor imaging scalar values in the lumbosacral
enlargement in both spinal cord injury patients and controls

MRI readout ROI

Lumbar enlargement

Controls Patients Difference p Value

Cross-sectional area, mm2 SC 68.7 ± 6.1 60.8 ± 6.5 −11.6% 0.002

GM 21.5 ± 2.8 18.7 ± 2.3 −13.0% 0.005

WM 47.2 ± 4.9 42.1 ± 5.7 −10.8% 0.011

dGM 6.3 ± 0.7 5.1 ± 0.9 −19.1% <0.001

vGM 10.8 ± 1.6 9.8 ± 1.3 −9.3% 0.046

FA SC 0.46 ± 0.05 0.42 ± 0.04 −10.5% 0.004

GM 0.32 ± 0.04 0.28 ± 0.04 −10.2% 0.023

WM 0.58 ± 0.04 0.52 ± 0.03 −10.3% <0.001

MD, μm2/ms SC 1.04 ± 0.06 1.00 ± 0.05 −3.6% 0.064

GM 0.94 ± 0.06 0.90 ± 0.05 −4.2% 0.044

WM 1.11 ± 0.07 1.11 ± 0.06 −0.3% 0.454

AD, μm2/ms SC 1.64 ± 0.11 1.50 ± 0.09 −8.2% 0.002

GM 1.27 ± 0.09 1.17 ± 0.08 −7.6% 0.005

WM 1.93 ± 0.10 1.82 ± 0.10 −6.0% 0.005

RD, μm2/ms SC 0.74 ± 0.06 0.75 ± 0.06 1.6% 0.319

GM 0.78 ± 0.06 0.77 ± 0.04 −1.5% 0.302

WM 0.70 ± 0.07 0.76 ± 0.05 7.5% 0.026

Abbreviations: AD= axial diffusivity; dGM=dorsal horn graymatter; FA = fractional anisotropy; GM=graymatter;MD=meandiffusivity; RD= radial diffusivity;
ROI = region of interest; SC = spinal cord; vGM = ventral horn gray matter; WM = white matter.
Results are given as group-level mean ± SD.
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(i.e., lesion severity) is associated with reduced cross-sectional
GM andWM area above the level of lesion.10 In this study, we
show relationships between lesion severity (i.e., preserved
midsaggital tissue bridges) and remote cord pathology below
the level of injury. We found associations between the width
of the midsagittal tissue bridges and the magnitude of ventral
horn atrophy as well as microstructural alterations within the
lumbar enlargement. Thus, the relation between the severity
of lesion and below-level neurodegeneration indicates that the
initial damage to the cervical cord primarily drives (initiates)
remote neurodegenerative processes.35,36

Relationship between tissue bridges, cord
pathology, and electrophysiologic measures
Electrophysiologic measures obtained after SCI are predictive of
functional recovery.37 We previously demonstrated that pre-
served tissue bridges underwrite electrophysiologic communi-
cation.16 This finding has been confirmed in our data: (1) no
MEP and SEP signals were present in the patient without tissue
bridges and (2) patients with larger width of tissue bridges also
had larger MEP amplitudes. However, here we show that not
only does the severity of lesion correlate with the cervical im-
pairment of conductivity, but it is also associated with the tissue-
specific pathology in the lumbar enlargement. That is, patients
with GM atrophy and altered microstructure (reflected by RD
and MD) within the GM had lower MEP amplitudes of the
abductor halluces (extensor) and tibialis anterior (flexor)

muscles. These associations are thought to reflect transsynaptic
changes within both extensor and flexor motor neuron pools.
Based on the literature, we suggest that the leg extensor moto-
neurons are less affected as they continue to receive pro-
prioceptive input, even after the injury, while a loss of flexor
motoneurons occurs after deprivation from supraspinal input.5,31

Thus, a great part of the neurodegenerative changes observed
within the GM might directly relate to the loss of supraspinal
drive onto the flexor motor neuron pools.

Relation of lesion measures and cord
pathology to clinical outcome
The width of midsagittal tissue bridges measured at 1 month
post-SCI predicts clinical recovery at 1 year post-SCI.16 In
addition, chronic SCI patients show an association between
cervical macrostructural and microstructural changes and
clinical impairment.10 Our findings are in agreement with this
observation: patients with smaller width of midsagittal tissue
bridges had greater functional impairment below the lesion.
While several DTI measures in the WM (MD, RD) and GM
(MD, RD) were related significantly to the motor impair-
ment, no correlation was found between the ventral horn area
in the lumbar enlargement and the ISNCSCI motor score.
The reason for this might be that motor scores merely reflect
muscle strength quantitatively on a coarse 5-grade scale.
Hence, macrostructural changes within the ventral horn can
hardly be translated into measurable functional loss.

Figure 2 Box plots of tissue-specific diffusion tensor imaging scalar values (fractional anisotropy [FA], mean diffusivity
[MD], axial diffusivity [AD], radial diffusivity [RD]) comparing controls and patients

In case of significant group-level difference (p < 0.05), the percent group difference is also reported. Spinal cord injury (SCI) patients had lower FA and AD and
higher RD in thewhitematter (WM). In the graymatter (GM), patients had lower FA,MD, and AD. Dots represent outliers that fall belowQ1 − 1.5 × interquartile
range (IQR) or above Q3 + 1.5 × IQR (Q1, Q3 = first and third quartiles, respectively; IQR = Q3 − Q1).
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Figure 3 Significant associations between the severity of the lesion (width of midsaggital tissue bridges), remote structural
changes in the lumbar enlargement, and electrophysiologic measures

(A, B) Width of midsaggital tissue bridges is associated with cross-sectional gray matter (GM) area and radial diffusivity in the GM of the lumbosacral
enlargement. (C, D) GMarea and radial diffusivity of GMare associatedwithmotor evoked potential (MEP) amplitudes. (E, F) Fractional anisotropy in thewhite
matter (WM) and GM is associated with sensory evoked potential (SEP) latencies. (G) Width of tissue bridges is associated with the MEP amplitudes. AH =
abductor hallucis.
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Limitations
The study had several limitations. First, this cross-sectional
study included a heterogeneous patient cohort in terms of
injury severity, time since injury, and lesion level. In addition,
MRI readouts in the spinal cord have been shown to alter with
age and sex,38 which might have affected the groupwise
comparisons between DTI measures. To address this, we
recruited sex- and age-matched controls. Furthermore, the
expected sex- and age-related effects were smaller than the
SCI-induced ones.

Another limitation is related to the technical feasibility of
lumbar cord imaging such as the low signal-to-noise ratio
(SNR), susceptibility, motion, and other physiologic artifacts.

We have addressed these issues at the acquisition and image
processing stage. To compensate for the relatively low SNR of
the lumbar images due to the application of a spine matrix coil
(instead of head and neck surface coil in the cervical coil), we
have (1) placed foam positioners under the knee to increase
the contact between the spine and the coil, (2) acquired 4
averages for the T2*-weighted and relatively many volumes
(67) for the DTI dataset, and (3) acquired thick slices
(5 mm). To compensate for the susceptibility artifacts af-
fecting mainly the DTI dataset, we have coregistered the
distorted DTI dataset to the nondistorted T2*-weighted
images. Motion artifacts were probably the biggest issue,
which resulted in the exclusion of 4 patients and 1 healthy
control due to extensive blurring. In addition, we used cardiac

Figure 4 Significant associations between the severity of the lesion (width of midsaggital tissue bridges), remote structural
changes in the lumbosacral enlargement, and clinical outcome

(A–C) Width of midsaggital tissue bridges is associated with ISNCSCI extremity motor, light touch, and pinprick scores. (D–F) Radial diffusivity in the white
matter (WM) correlates with lower extremity motor, light touch, and pinprick scores.
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gating for the DTI dataset to minimize the effect of CSF
pulsation. In all participants, between-volume motion was
corrected by realigning the T2*-weighted and DTI images
using serial longitudinal registration and slice-wise linear
registration, respectively. Finally, the application of robust
tensor fitting further reduced residual motion artifacts in the
DTI dataset, as previously demonstrated.20

At present, automatic segmentation algorithms have been
validated only for the cervical GM.39 Although the segmen-
tation of the cross-sectional area of the lumbar cord was semi-
automatic (only the midpoint of the cord had to be set
manually), the GM was segmented manually. To be as ac-
curate and reliable as possible in the region of interest (ROI)
analysis, (1) GM was segmented on the T2*-weighted image
due to the better contrast and applied on the DTI dataset after
coregistration, (2) all the segmentation was performed by the
same experienced user, (3) all SC, GM, and WM masks were
1-voxel eroded to reduce partial volume effects, and (4) all
final masks were visually inspected and corrected if necessary.

However, despite the careful approach applied in the ROI
selection, remaining partial volume effects and imperfect
registration could have affected the ROI-based analysis, but
we considered their extent to be minor.

Discussion
Tracking trauma-induced tissue-specific neurodegenerative
and reorganizational changes in infralesional spinal networks
demonstrates the far-reaching consequences of a focal CNS
injury. Our findings suggest that the macrostructural and
microstructural changes reflect signs of transsynaptic de-
generation in sensorimotor pathways. These are for example
reflected in the premature exhaustion of motoneurons and an
impaired sensorimotor function below the lesion level.4,5,7

The clinical consequence of remote neurodegenerative
changes—including axonal and transsynaptic changes—
favors the application of multimodal MRI approaches in
routine clinical decision-making and planning of clinical trials.
Neuroimaging biomarkers of remote cord pathology offer
efficient targeting of therapeutic agents and monitoring in
clinical trials.

Author contributions
Gergely David: study concept and design, data acquisition,
analysis and interpretation of data, statistical analysis, writing
the manuscript. Maryam Seif: analysis of data, critical revision
of manuscript for intellectual content. Eveline Huber: study
concept and design, data acquisition, interpretation of data,
critical revision of manuscript for intellectual content. Markus
Hupp: data collection, interpretation of data, critical revision
of manuscript for intellectual content. Jan Rosner: in-
terpretation of data, critical revision of manuscript for in-
tellectual content. Volker Dietz: interpretation of data, critical
revision of manuscript for intellectual content. Nikolaus
Weiskopf: study concept and design, critical revision of
manuscript for intellectual content. Siawoosh Mohammadi:
study concept and design, critical revision of manuscript for
intellectual content. Patrick Freund: study concept and de-
sign, interpretation of data, writing the manuscript, study
supervision.

Acknowledgment
The authors thank all the patients and healthy volunteers who
participated in this study and the staff of the Department of
Radiology and Neurology at the University Hospital Balgrist.

Study funding
P.F. is funded by a SNF Eccellenza Professorial Fellowship
grant (PCEFP3_181362/1). The study was supported by the
International Foundation for Research in Paraplegia (IRP-
158). M.S. was funded by Wings for Life Austria (WFL-CH-
007/14) and the EU project (Horizon2020 “NISCI” grant
agreement n_681094). P.F., N.W., and S.M. received funding
from the ERANET NEURON (hMRIofSCI) and the BMBF

Figure 5 Secondary degenerative processes occurring re-
motely, above and below the primary injury site

Sensory and motor tracts affected by the injury undergo anterograde or
retrograde (depending on the direction) axonal degeneration and accom-
panying demyelination. In the lumbar cord, the lower motor neurons lo-
cated in the ventral horn may undergo transsynaptic degeneration due to
the loss of input from the injured corticospinal tracts. Similarly, second-
order sensory neurons of the spinothalamic and dorsal column medial
lemniscus systems can also be affected by transsynaptic degeneration. MEP
= motor evoked potential; SEP = sensory evoked potential.

e1376 Neurology | Volume 92, Number 12 | March 19, 2019 Neurology.org/N

http://neurology.org/n


(01EW1711A and B). S.M. was supported by the Marie
Sklodowska-Curie Individual Fellowship MSCA-IF-2015 (EU
Horizon 2020) and the Deutsche Forschungsgemeinschaft
(grant MO 2397/4-1). N.W. was supported by the European
Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agree-
ment 616905. The Wellcome Trust Centre for Neuroimaging
is supported by core funding from the Wellcome Trust 0915/
Z/10/Z. TheWellcomeTrust Centre for Neuroimaging has an
institutional research agreement with and receives support
from Siemens Healthcare. The Article Processing Charge was
funded by Wellcome Trust, grant 091593/Z/10/Z.

Disclosure
The authors report no disclosures relevant to the manuscript.
Go to Neurology.org/N for full disclosures.

Publication history
Received by Neurology June 25, 2018. Accepted in final form November
7, 2018.

References
1. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Prim

2017;3:17018.
2. Ziegler G, Grabher P, Thompson A, et al. Progressive neurodegeneration fol-

lowing spinal cord injury: implications for clinical trials. Neurology 2018;90:
1257–1266.

3. Calancie B, Lutton S, Broton JG. Central nervous system plasticity after spinal cord
injury in man: interlimb reflexes and the influence of cutaneous stimulation. Elec-
troencephalogr Clin Neurophysiol 1996;101:304–315.

4. Calancie B, Alexeeva N, Broton JG, Molano MR. Interlimb reflex activity after spinal
cord injury in man: strengthening response patterns are consistent with ongoing
synaptic plasticity. Clin Neurophysiol 2005;116:75–86.

5. Dietz V. Degradation of neuronal function following a spinal cord injury: mechanisms
and countermeasures. Brain 2004;127:2221–2231.

6. Courtine G, Song B, Roy RR, et al. Recovery of supraspinal control of stepping via
indirect propriospinal relay connections after spinal cord injury. Nat Med 2008;14:
69–74.

7. Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and
locomotor activity after a complete spinal cord injury: a common mechanism. Brain
2009;132:2196–2205.

8. Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human
spinal cord. Brain Res Rev 2008;57:255–264.

9. Asboth L, Friedli L, Beauparlant J, et al. Cortico–reticulo–spinal circuit reorganization
enables functional recovery after severe spinal cord contusion. Nat Neurosci 2018;21:
576–588.

10. Huber E, David G, Thompson AJ, et al. Dorsal and ventral horn atrophy is associated
with clinical outcome after spinal cord injury. Neurology 2018;90:1510–1522.

11. Yiannakas MC, Kakar P, Hoy LR, Miller DH, Wheeler-Kingshott CAM. The use of
the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey
matter and white matter cross-sectional area measurements using MRI at 3T. PLoS
One 2014;9:e105544.

12. Yiannakas MC, Grussu F, Louka P, et al. Reduced field-of-view diffusion-weighted
imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal
cord at 3T. PLoS One 2016;11:1–15.

13. Kirshblum SC,WaringW, Biering-Sorensen F, et al. Reference for the 2011 revision of
the international standards for neurological classification of spinal cord injury. J Spinal
Cord Med 2011;34:547–554.

14. Catz A, Itzkovich M, Steinberg F, et al. The Catz-Itzkovich SCIM: a revised version of
the spinal cord independence measure. Disabil Rehabil 2001;23:263–268.

15. Yiannakas MC, Kearney H, Samson RS, et al. Feasibility of grey matter and white
matter segmentation of the upper cervical cord in vivo: a pilot study with application
to magnetisation transfer measurements. Neuroimage 2012;63:1054–1059.

16. Huber E, Lachappelle P, Sutter R, Curt A, Freund P. Are midsagittal tissue bridges
predictive of outcome after cervical spinal cord injury? Ann Neurol 2017;81:740–748.

17. Horsfield MA, Sala S, Neema M, et al. Rapid semi-automatic segmentation of the
spinal cord from magnetic resonance images: application in multiple sclerosis. Neu-
roimage 2010;50:446–455.

18. Grabher P, Mohammadi S, David G, Freund P. Neurodegeneration in the spinal
ventral horn prior to motor impairment in cervical spondylotic myelopathy.
J Neurotrauma 2017;34:2329–2334.

19. David G, Freund P, Mohammadi S. The efficiency of retrospective artifact correction
methods in improving the statistical power of between-group differences in spinal
cord DTI. Neuroimage 2017;158:296–307.

20. Mohammadi S, Freund P, Feiweier T, Curt A, Weiskopf N. The impact of post-
processing on spinal cord diffusion tensor imaging. Neuroimage 2013;70:377–385.

21. Tustison NJ, Avants BB. Explicit B-spline regularization in diffeomorphic image
registration. Front Neuroinform 2013;7:1–13.
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