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Gravitational-wave luminosity distance in quantum gravity
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Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by
many theories of quantum gravity (QG). We present the first study of the consequences of QG
dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges
of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic
scaling, largely independent of specific QG proposals. We constrain these effects using two examples
of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated
supermassive black-hole merger event detectable with LISA. We apply these constraints to various
QG candidates, finding that the quantum geometries of group field theory, spin foams and loop
quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our
results complement and improve GW propagation-speed bounds on modified dispersion relations.
Under more model-dependent assumptions, we also show that bounds on quantum geometry can be
strengthened by solar-system tests.

Introduction. Quantum gravity (QG) includes any ap-
proach aiming at unifying General Relativity (GR) and
quantum mechanics consistently, so as to keep gravita-
tional ultraviolet (UV) divergences under control [1, 2].
Any such approach can be either top-down or bottom-up,
depending on whether it prescribes a specific geometric
structure at the Planck scale, or it starts from low ener-
gies and then climbs up to higher energy scales. The
former class includes string theory, nonlocal QG, and
nonperturbative proposals as Wheeler–DeWitt canon-
ical gravity, loop QG, group field theory, causal dy-
namical triangulations, causal sets, and noncommutative
spacetimes. The latter class contains asymptotic safety
and the spectral approach to noncommutative geometry.
Such variety of QG theories leads to many cosmological
consequences which are currently under investigation [3].

Given the recent direct observations of gravitational
waves (GW) [4–10], opening a new era in GW and multi-
messenger astronomy, new opportunities are arising to
test theories beyond GR. In general, QG may affect
both the production [11, 12] and the propagation of GWs
[11, 13–15] in ways that differ from those obtained from
modified-gravity models for dark energy. While QG aims
at regularizing UV divergencies in a framework applying
the laws of quantum mechanics to the gravitational force,
one might hope that yet-to-be developed connections be-
tween UV and infrared regimes of gravity can lead to a
consistent theory of dark energy from QG.

On one hand, one may believe that QG theories can
leave no signature in GWs, arguing that quantum correc-

tions will be suppressed by the Planck scale. Such a con-
clusion is reached by considering the leading-order per-
turbative quantum corrections to the Einstein–Hilbert
action. Since these corrections are quadratic in the
curvature and proportional to the Planck scale ℓPl ≈
10−35 m = 5 × 10−58Mpc, they are strongly subdomi-
nant at energy or curvature scales well above ℓPl. For
instance, for a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe, there are only two scales for build-
ing dimensionless quantities, ℓPl and the Hubble radius
H−1. Therefore, quantum corrections should be of the
form (ℓPlH)n, where n = 2, 3, . . . . Today, quantum cor-
rections are as small as (ℓPlH0)

n ∼ 10−60n, and any late-
time QG imprint is Planck-suppressed and undetectable.

On the other hand, these considerations are not neces-
sarily correct. One may consider nonperturbative effects
going beyond the simple dimensional argument quoted
above. Indeed, in the presence of a third intermedi-
ate scale L ≫ ℓPl, quantum corrections may become
∼ ℓaPlH

bLc with a − b + c = 0, and not all these expo-
nents are necessarily small. Such is the case, for instance,
of loop quantum cosmology with anomaly cancellation (a
mini-superspace model motivated by loop quantum grav-
ity), where quantum states of spacetime geometry may
be endowed with a mesoscopic effective scale [16]. These
and other QG inflationary models can leave a sizable im-
print in the early universe [3]. However, there are very
few and not fully developed models of fundamental-QG
dark energy [3]; such models modify UV physics, but
have also long-range effects.
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e

+
µν+h×e

×

µν

over a background metric g
(0)
µν = gµν − hµν and is de-

scribed by the two polarization modes h+,× (with e+,×
µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure d̺(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g
(0)
µν is

S =
1

2ℓ2Γ
∗

∫

d̺
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓ
Γ
∗
, where ℓ∗ is

a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ̺(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ˜̺(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

˜̺(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS 6= 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓ

Γ
∗
] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso & 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso & 1 are indicated in the
second column.

Given a spacetime measure ̺, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
and Euclidean signature in the absence of curvature is
G(r) = 〈h(r)h(0)〉 ∼ (ℓ2

∗
/r2)Γ. This scaling is consistent
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with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ
, [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
it is based only on the scaling properties of the measure
and the kinetic term.

Gravitational waves. We now apply these results fo-
cussing on the specific case of gravitational waves prop-
agating over cosmological distances. To investigate the
propagation of GWs on a flat FLRW background, we
work on a conformally flat metric, where t → τ is con-
formal time and r is the comoving distance of the GW
source from the observer. Therefore, we multiply r by the
scale factor a0 = a(τ0) in the right-hand side of Eq. (3).
In order to express Eq. (3) in terms of a physical observ-
able, we assume that the source has an electromagnetic
counterpart. Recall that the luminosity distance of an
object emitting electromagnetic radiation is defined as
the power per flux unit, demL :=

√

L/(4πF) and, on a flat
FLRW background, demL = (1+z)

∫ τ0
τ(z) dτ = a20r/a, where

z = a0/a − 1 is the redshift. We assume that QG cor-
rections to demL are negligible at large scales. Absorbing
redshift factors into fh, we express Eq. (3) as

h(z) ∼ fh(z)

[

ℓ∗
demL (z)

]Γ

. (4)

The details (chirp mass, spin, etc) of the source are all
encoded into the dimensionless function fh(z).
The final step is to generalize relation (4), which is

only valid for a plateau in dimensional flow, to all scales.
We argue that the correct expression to adopt is

h ∝
1

dgwL
, dgwL = demL

[

1 + ε

(

demL
ℓ∗

)γ−1
]

, (5)

with ε = O(1), and γ 6= 0 is a scale parameter.
In fact, suppose that QG introduces only one funda-

mental length scale ℓ∗ close to the Planck scale. This
is sufficient to trigger a nontrivial dimensional flow and
the scaling of distances takes a universal form of the type
of Eq. (5). In this case, γ = ΓUV. For a scale close to
the end of the flow, the modified relation has again two
contributions [44]: however, in this case γ = Γmeso is a
mesoscopic-scale parameter close to one.

Although the structure of Eq. (5) is expected to be
generic in QG, the coefficient ε cannot be determined uni-
versally, since it depends on the details of the transient
regime. In general, it can be either a random variable
with zero average (in “fuzzy” spacetimes with intrinsic
measurements uncertainty) or a number. Suppose it is
a number: since also ℓ∗ is a free parameter, we can set
the coefficient to be ε = O(1) without loss of general-
ity. However, the case with γ ≈ 1 is subtle since we can
not recover GR unless ε vanishes. This implies that ε
must have a γ dependence: the simplest choice such that
ε(γ 6= 1) = O(1), ε(γ = 1) = 0, and recovering the pure
power law Eq. (4) on any plateau with γ = Γ, is ε = γ−1.
If we also allow for a sign ambiguity for ε, we are able
to encompass also the case of fuzzy spacetimes where ε
randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest
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QG scales, the bound saturates to

0 < Γmeso − 1 < 0.02 . (6)

Examining Eq. (2), we conclude that case (c) is realized

BNS ε > 0

BNS ε < 0

SMBH ε > 0

SMBH ε < 0

10-59 10-49 10-39 10-29 10-19 10-9

1.02

1.03

1.04

1.05

1.06

1.07

1.08

*/Mpc

γ

FIG. 1. Upper bounds on γ for ℓ∗ fixed between 1Mpc and
the Planck scale ℓPl = 5 × 10−58 Mpc for the LIGO-Virgo
observed binary neutron-star merger GW170817 (BNS) and
a simulated LISA supermassive black hole (SMBH).

only for geometries with a spectral dimension reaching
dS → 4 from above. The only theories in our list that do
so are those where ΓUV > Γmeso > 1 (the last three
in Tab. I: κ-Minkowski spacetime with ordinary mea-
sure and bicross-product or relative-locality Laplacians
and Padmanabhan’s model [24]) or Γmeso > 1 > ΓUV

(GFT/SF/LQG [30]). However, we exclude observability
of the models with ΓUV > Γmeso > 1, since they predict
Γmeso − 1 ∼ (ℓPl/d

em

L )2 < 10−116 [24]. Thus, only GFT,
SF or LQG could generate a signal detectable with stan-
dard sirens. Here dS runs from small values in the UV,
but before reaching the limit dIRS = 4 it overshoots the
asymptote and decreases again: hence Γmeso > 1 > ΓUV.
It would be interesting to find realistic quantum states of
geometry giving rise to such a signal, with the construc-
tion of simplicial complexes as in Ref. [30].

Complementary constraints. Dimensional flow is also
influenced by modifications of the dispersion relation

K(−k2) = −ℓ
2−2dk

H
/dS

∗ k2 + k2d
k

H
/dS of the spin-2 gravi-

ton field, and this fact has been used to impose con-
straints on QG theories exhibiting dimensional flow us-
ing the LIGO-Virgo merging events [11, 13, 14]. How-
ever, the limits obtained this way are weaker than the
ones we have found here because the GW frequency is
much lower than the Planck frequency. One gets either
very weak bounds on ℓ∗ or, setting ℓ−1

∗
> 10TeV (LHC

scale), a bound n = dH−2−2Γ < 0.76 [14], for dmeso
H ≈ 4

corresponding to Γmeso − 1 > −0.38. This can constrain
models such as the second and third in Tab. I, but not
those such as GFT/SF/LQG for which Eq. (6) holds.

Additional constraints on the spin-2 sector can arise
from observations of the Hulse–Taylor pulsar [52]. If the
spacetime dimension deviates from four roughly below
scales lpulsar = 106 km ≈ 10−13Mpc, then the GW emis-
sion from this source is expected to be distinguishable
from GR. However, it is difficult to analyze the binary
dynamics and GW emission in higher-dimensional space-
times [53] and it is consequently more complicated to set
bounds from binary pulsar systems. We will thus leave
these investigations for future work. We point out, how-
ever, that at scales below ℓ∗ = lpulsar (the vertical line in
Fig. 1), our results could be largely improved by stronger
constraints from the dynamics of compact objects.
Finally, stronger but model-dependent bounds can

arise in scenarios that affect other sectors besides the
dynamics of the spin-2 graviton field. To have an idea of
the constraints that can arise when other sectors become
dynamical in QG, we consider a case where the effective
scalar Newtonian potential Φ ∼ h00 experiences QG di-
mensional flow: then the bound (6) can be strengthened
by solar-system tests. In fact, Eq. (3) can describe Φ in a
regime where Γ is approximately constant, while choos-
ing subhorizon distances demL = r in Eq. (5) we get a
multiscale expression. Thus, in four dimensions

Φ ∝ −
1

r

(

1±
∆Φ

Φ

)

,
∆Φ

Φ
= |γ − 1|

(

r

ℓ∗

)γ−1

. (7)

This result, different from but complementary [24] to
what found in the effective field theory approach to QG,
applies to the nonperturbative GFT/SF/LQG theories
with γ > 1 at mesoscopic scales. Assuming that pho-
ton geodesics are not modified at those scales, GR tests
within the solar system using the Cassini bound impose
∆Φ/Φ < 10−5 [48, 49], implying

0 < Γmeso − 1 < 10−5, (8)

which is stronger than the limit obtained from GWs.
However, this result relies on model-dependent assump-
tions on the scalar sector, independent of our previous
arguments on the propagation of spin-2 GWs, and should
be taken cum grano salis. We emphasize that in QG the
dynamics of spin-0 fields and the Newtonian potential Φ
can be far from trivial. Precisely for GFT/SF/LQG, the
classical limit of the graviton propagator is known [50],
but corrections to it and to the Newtonian potential are
not [51]. Therefore, we cannot compare Eq. (7) with the
full theory, nor do we know whether quantum states exist
giving rise to such a correction.

Conclusions. Quantum gravity can modify both the
production and the propagation of gravitational waves.
We derived the general equation (5) describing model-
independent modifications due to nonperturbative QG
on the GW luminosity distance associated with long dis-
tance propagation of GWs. We have then shown that
departures from classical GR due to QG effects can be
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in principle testable with LIGO and LISA detections of
merging events. Solar-system tests of the Newtonian
potential Φ lead to stronger constraints than the ones
imposed from GW data, but rely on model-dependent
assumptions on the dynamics of the scalar Newtonian
potential Φ. Focussing on the spin-2 field only, there
are several directions that remain to be explored. For
instance, time delays in gravitational lensing might be
another place where to look for propagation effects be-
yond GR within LISA sensitivity. Moreover, also the
details of the astrophysical systems giving rise to GW
signals should be studied, in order to understand the con-
sequences of a QG geometry on the production of GWs in
the high-curvature region surrounding compact objects.
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dimensions in gravitational waves, J. Cosmol. Astropart.
Phys. 06 (2017) 048 [arXiv:1704.07392].

[48] B. Bertotti, L. Iess, and P. Tortora, A test of general
relativity using radio links with the Cassini spacecraft,
Nature 425, 374 (2003).

[49] C.M. Will, The confrontation between general relativ-
ity and experiment, Living Rev. Rel. 17, 4 (2014)
[arXiv:1403.7377].

[50] E. Bianchi, L. Modesto, C. Rovelli, and S. Speziale,

Graviton propagator in loop quantum grav-
ity, Classical Quantum Gravity 23, 6989 (2006)
[arXiv:gr-qc/0604044].

[51] J.D. Christensen, E.R. Livine, and S. Speziale, Numerical
evidence of regularized correlations in spin foam gravity,
Phys. Lett. B 670, 403 (2009) [arXiv:0710.0617].

[52] J.M. Weisberg and J.H. Taylor, Relativistic bi-
nary pulsar B1913+16: thirty years of observa-
tions and analysis, ASP Conf. Ser. 328, 25 (2005)
[arXiv:astro-ph/0407149].
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