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Systems/Circuits

Can Serial Dependencies in Choices and Neural Activity
Explain Choice Probabilities?
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'Research Center Caesar, An associate of the Max-Planck Society, 53175 Bonn, Germany, 2Centre for Cognitive Science, Technische Universitdt Darmstadt,
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During perceptual decisions the activity of sensory neurons covaries with choice, a covariation often quantified as “choice-probability”.
Moreover, choices are influenced by a subject’s previous choice (serial dependence) and neuronal activity often shows temporal corre-
lations on long (seconds) timescales. Here, we test whether these findings are linked. Using generalized linear models, we analyze
simultaneous measurements of behavior and V2 neural activity in macaques performing a visual discrimination task. Both, decisions and
spiking activity show substantial temporal correlations and cross-correlations but seem to reflect two mostly separate processes. Indeed,
removing history effects using semipartial correlation analysis leaves choice probabilities largely unchanged. The serial dependencies in
choices and neural activity therefore cannot explain the observed choice probability. Rather, serial dependencies in choices and spiking
activity reflect two predominantly separate but parallel processes, which are coupled on each trial by covariations between choices and
activity. These findings provide important constraints for computational models of perceptual decision-making that include feedback

signals.
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ignificance Statement

Correlations, unexplained by the sensory input, between the activity of sensory neurons and an animal’s perceptual choice
(“choice probabilities”) have received attention from both a systems and computational neuroscience perspective. Conversely,
whereas temporal correlations for both spiking activity (“non-stationarities”) and for a subject’s choices in perceptual tasks
(“serial dependencies”) have long been established, they have typically been ignored when measuring choice probabilities. Some
accounts of choice probabilities incorporating feedback predict that these observations are linked. Here, we explore the extent to
which this is the case. We find that, contrasting with these predictions, choice probabilities are largely independent of serial
dependencies, which adds new constraints to accounts of choice probabilities that include feedback.
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Introduction
During perceptual decisions humans and animals rely on the
sensory evidence but also leverage the behavioral context, includ-
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ing their previous decisions (Senders and Sowards, 1952; Ver-
planck et al., 1952; Seidemann, 1998; Gold et al., 2008; Busse et
al., 2011; Akaishi et al., 2014; Fischer and Whitney, 2014; Frund et
al., 2014; Abrahamyan et al., 2016; Pape and Siegel, 2016). Such
serial dependence of a subject’s choices persists with extensive
behavioral training (Seidemann, 1998; Gold et al., 2008; Frund et
al., 2014), is tuned to the sensory context (Fischer and Whitney,
2014), and is adaptable (Abrahamyan et al., 2016). It may there-
fore reflect the effect of prior knowledge of statistical regularities
in the environment on the perceptual inference process (Helm-
holtz, 1867; Gregory, 1980; Lee and Mumford, 2003; Yuille and
Kersten, 2006; St. John-Saaltink et al., 2016).

Conversely, spiking activity of sensory neurons shows fluctua-
tions on slow timescales up to several seconds. Such slow fluctua-
tions of spiking activity are observed under anesthesia (Tomko and
Crapper, 1974; Tolhurst et al., 1983; Ecker et al., 2014; Goris et al.,
2014), in awake animals (Ecker et al., 2014), and during task
performance (Bair et al., 2001; Rabinowitz et al., 2015; Engel et
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Conceptual framework, task and psychophysical performance. a, Schematic showing all possible statistical dependencies between choices and spike counts on the preceding and

current trial. b, After the monkey acquired fixation on a central fixation point the stimulus was presented for a fixed duration of 2 s, followed by two choice targets above and below the fixation point.
After a saccade to the correct choice target, the monkey was rewarded with a liquid reward. ¢, The average psychophysical performance of both monkeys across all sessions (n = 75) is shown (black).
Foreach session, a positive and negative choice was defined as a choice toward the neuron’s preferred or null disparity (near or far), respectively. Note the horizontal shift of the psychophysical curves
with respect to each other when they were computed separately for trials preceded by a positive choice (yellow) or negative choice (blue), indicating a systematic bias introduced by the choice on
the preceding trial. Data points are binned averages across sessions. Error bars are SEs. Solid lines represent the mean fits (cumulative Gaussians) across sessions.

al., 2016). Rather than noise, these slow fluctuations are increas-
ingly interpreted to also reflect “meaningful intrinsic signals”
(Rabinowitz et al., 2015), and can be linked to an animal’s cogni-
tive state (Rabinowitz et al., 2015; Engel et al., 2016). It is there-
fore possible that they, at least partially, represent a signature of
the serial dependencies in behavior. Consider, for example, per-
ceptual decision making viewed as probabilistic inference involv-
ing task-related feedback to sensory neurons (Haefner et al.,
2016). If serial dependencies in behavior reflect prior knowledge
in the perceptual inference process (Kok et al., 2014; St. John-
Saaltink et al., 2016), such a framework predicts corresponding
temporal correlations in the neural activity.

Moreover, this view also has important implications for the
observation that the activity of sensory neurons shows correla-
tions with perceptual decisions that are not explained by the sen-
sory stimulus (Logothetis and Schall, 1989; Britten et al., 1996).
These trial-by-trial correlations between the activity of sensory
neurons and perceptual choices in discrimination tasks are often
quantified using “choice probabilities” (CPs; Britten et al., 1996;
Dodd et al., 2001; Uka and DeAngelis, 2004; Liu and Newsome,
2005; Shiozaki et al., 2012; Nienborg and Cumming, 2006, 2014).
CPs have been used to gain insights into decoding strategies
(Haefner et al., 2013; Pitkow et al., 2015; Clery et al., 2017), and
can result from both feedforward and feedback mechanisms
(Nienborg et al., 2012; Cumming and Nienborg, 2016). Impor-
tantly, the decision-related feedback mechanisms that have been
invoked to contribute to CPs (Engel et al., 2015; Nienborg and
Roelfsema, 2015; Wimmer et al., 2015; Haefner et al., 2016) orig-
inate directly from the decision variable that determines the
decision. Because the decision variable, which might be imple-
mented in a higher-order decision circuit (Wimmer et al.,
2015), is the only determinant of the decision, the influence of
past decisions needs to be reflected at this level. Similarly, if
the sensory neurons receive feedback from this decision vari-
able, the influence of past decisions that affects the current
decision will be reflected at the level of these sensory neurons.
In these models this therefore predicts that in the presence of
serial dependencies of behavior, a component of CPs is ex-
plained by past decisions.

Here, we test this prediction in single-unit recordings from
macaque visual area V2 while two animals performed a disparity
discrimination task. First, we explore the effect of choice history
on behavior and on neural activity using generalized linear mod-

els (GLMs). Consistent with previous studies (Senders and So-
wards, 1952; Verplanck et al., 1952; Seidemann, 1998; Gold et al.,
2008; Busse et al., 2011; Akaishi et al., 2014; Fischer and Whitney,
2014; Frund et al., 2014; Abrahamyan et al., 2016; Pape and Sie-
gel, 2016) we find substantial predictive effects of choice history
on the animals’ choices, with choice-history having a higher CP
than single neurons in V2. We also identify strong temporal cor-
relations in spiking activity, as well as a modest predictive effect of
choice history on neural spiking activity. We then investigate
which covariates of the previous trial are statistically significant
predictors of choices and spiking in the next trial (Fig. la). Fi-
nally, we use semipartial correlation analysis to examine the role
of choice history on CPs. In contrast with the above prediction,
we find that the serial dependencies of choices and spiking activ-
ity cannot explain CPs. Rather, they reflect two largely indepen-
dent parallel temporal processes. This suggests that the feedback
contribution to CPs is less pronounced or reflects a more com-
plex process than previously thought.

Materials and Methods

We performed novel analyses of previously published data (Nienborg
and Cumming, 2009). The details of the stimulus, and the behavioral and
neurophysiological procedures have been described in detail previously
(Nienborg and Cumming, 2009). Here, we briefly summarize the exper-
imental methods.

Electrophysiology. All procedures were performed in accordance with
the U.S. Public Health Service policy on the humane care and use of
laboratory animals, and all protocols were approved by the National Eye
Institute Animal Care and Use Committee. Extracellular activity from
disparity-selective V2 single units was recorded while two male monkeys
(Macaca mulatta) performed a coarse disparity discrimination task. For
each session the signal disparities (one “near”, one “far”) were tailored to
the tuning preference of the simultaneously recorded neuron such that
one disparity was close to the neuron’s preferred disparity and the other
at a trough of the neuron’s tuning curve.

Behavioral task. Once the animals acquired fixation, the stimulus was
presented for a fixed duration of 2 s, followed by the presentation of two
choice targets 3° above or below the fixation marker. If the monkeys
made a saccade to the correct choice target, they received a liquid reward.

Visual stimuli. The stimuli were circular dynamic random dot patterns
consisting of a disparity-varying center (typically 2—4° in diameter) sur-
rounded by an annulus at zero disparity (1-2° wide). The center disparity
changed randomly on each video frame (96 Hz frame rate) chosen from
an evenly spaced set of disparity centered around 0° disparity, encom-
passing the tuning preferences of the recorded neuron. For “no-signal
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trials” (randomly interleaved) all disparities were drawn from a uniform
distribution of probabilities. On other trials (“signal” trials) we increased
the probability of occurrence (typically by 25, 12.5, and 6%) of one
disparity (the “signal disparity”), whereas for the remaining video frames
the disparities were drawn from the same uniform distribution as used
for the no-signal trials. For each recording session we used two signal
disparities, one near disparity and one far disparity, which approximated
the neuron’s preferred and null disparities.

Analysis. To avoid that neural variability on no-signal trials (i.e., for
which disparities occurred with equal probability) reflected systematic
choice-dependent stimulus differences, we corrected spike counts on
no-signal trials for stimulus-induced variability as described previously
(Nienborg and Cumming, 2009). The analyses here were performed on
the same core dataset of n = 76 neurons as used by Nienborg and Cum-
ming (2009), but restricted to trials which were immediately preceded by
atleast one complete trial. This reduced the number of included trials per
neuron and we required an additional inclusion criterion of at least four
near and far choices each for the no-signal trials, which 75/76 neurons
passed. These represent the main dataset analyzed here. In all but four
sessions, only one unit was recorded per session.

Choice correlations. We converted choice prediction performance
(analogous to CP computed as the area under a receiver-operating curve
(ROQ); cf. Britten et al., 1996) into choice correlations (Haefner et al.,
2013; Pitkow et al., 2015).

Based on the results from Haefner et al. (2013), we calculated choice
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al. (2015) used a linear approximation to this quantity.

Statistical modeling. We fit GLMs (Park et al., 2014) to predict neural
spiking and behavioral decisions from experimental covariates via max-
imum likelihood estimation using MATLAB (MathWorks) to determine
the weights (3) for each of the covariates. Separate fits were performed
for each neuron. For predicting choices, we used a probit-GLM with lasso
regularization (biasing weights toward 0). The value for the regulariza-
tion hyper-parameter A was chosen such that the cross-validated predic-
tion performance across the population was maximized (A = 0.025). To
fit single-trial spike counts (i.e., total number of spikes in a 2 s trial) from
experimental covariates, a Poisson GLM with exponential nonlinearity
was used. For some of the models predicting spike counts, we in-
cluded a Gaussian process (Rabinowitz et al., 2015) to model slow
fluctuations in spike counts (Rasmussen and Williams, 2006; Park et
al., 2015). We used a squared exponential kernel for the Gaussian Pro-
cess prior, exp( — (1/7)?). The value for its hyper-parameter Twas chosen
such that the cross-validated prediction performance across the popula-
tion was maximized (7 = 35 trials). We did not use a sparsity penalty
when predicting spike counts, because including it did not lead to an
improvement in prediction performance. To ensure that estimates of
choice- and spike-prediction performance were free of bias from overfit-
ting, we cross-validated the model fits (Hastie et al., 2009). The models
were fit to all signal trials of a session and tested only on no-signal trials.
For each session, the sign of the choices was defined by the preferred
disparity of the simultaneously recorded neuron. Choices of the pre-
ferred and null disparity of a neuron were defined as positive and zero,
respectively. We typically evaluated model performance by including
parameters cumulatively (see Results) to test different hypotheses. Be-
cause we cross-validated the models, including more parameters does
not necessarily improve performance. In addition, lasso-regularization
biases weights on nonpredictive covariates to 0, which means that not all
covariates contribute to the prediction. However, we explored all permu-
tations of covariates to verify that there was no combination of covariates
that substantially exceeded the prediction performance of the model that
was fit to all covariates.

To predict behavioral choices, we used a generalized linear classifica-
tion model with a probit function as link function (Hastie et al., 2009).
This means that a weighted sum of covariates was computed and then
passed through the probit function (i.e., the cumulative distribution
function of a Gaussian) to predict the probability of a positive choice
(C,, = 1): for example, when predicting choice from the current stimulus

correlations as corry, =
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S, and the current choice spike count,m, = B, + B,,C, + Bs, S,and
Prob(C, = 1) = normcdf(m,). We quantified GLM performance on
cross-validated data by fitting the model on signal trials and computing
the area under the ROC of the output of the GLM on no-signal trials. The
experimental covariates (z-scored before fitting) for GLM fits predicting
behavior were as follows:

C,._,» choice on the preceding trial

T,.,, target on the preceding trial

W,,_,, whether the preceding trial was rewarded (win)

I, stimulus (image) on the current trial

S,» spike count on the current trial

S,..1> spike count on the preceding trial (the stimulus-induced effect is
regressed out).

We refer to the covariates, C,_, T, ; W,_, together as choice history,
abbreviated as H,, . We quantified the decrease in psychophysical per-
formance attributable to choice history using the approximation derived

T
by Frund et al. (2014) as RO'Z where o7 is the choice history-induced

variance of the behavior. To control for the effect of the stimulus on the
previous trial, I,, ;, on the previous spike count, S, _;, we regressed out the
stimulus-induced effect. To this end we used the residual spike count
obtained after linearly regressing S,,_; on I, ; (without a constant inter-
cept term; including one does not affect our results significantly).

The performance of the GLM-fits predicting spike counts was evalu-
ated by computing the Pearson correlation coefficient between the pre-
dicted and measured spike counts on no-signal trials. The covariates for
GLM fits predicting spike counts were as follows:

C,,» choice on the current trial

C,,.1> choice on the preceding trial

T,.,, target on the preceding trial

W,,.;, whether the preceding trial was rewarded (win)

I, stimulus (image) on the current trial

S,..1> spike count on the preceding trial (the stimulus-induced effect is
regressed out)

SE, slow fluctuation across multiple trials.

In addition, for each unit, we fit a constant intercept term which
controls the firing rate of the unit.

For the Poisson GLMs predicting time-resolved neural activity additional
covariates were used. To account for the temporal structure of firing within
trials, we introduced peristimulus time histogram (PSTH) basis functions, as
well as time-varying features for C,, C, |, T,,_,,and W, . To find PSTH basis
functions we performed PCA on the PSTHs after correcting for response
latency, across all units. Two basis functions were sufficient to describe
>99% of the variance of the PSTHs of all units across all stimuli. These two
basis functions (minus the mean PSTH of the respective unit) were included
in the GLM fit for each unit. The covariates for GLM fits predicting time-
resolved spike counts were as follows:

C,,» choice on the current trial (4 predictors)

C,,.,> choice on the preceding trial (4 predictors)

T, target on the preceding trial (4 predictors)

W,,_;, whether the preceding trial was rewarded (4 predictors)

S,..1> spike count on the preceding trial (the stimulus-induced effect is
regressed out)

I, stimulus (image) on the current trial

PSTH, PSTH basis functions (2 predictors)

Intercept term (per unit).

Each trial was split into 20 bins of 100 ms each (which corresponds to
the resolution of the PSTH basis functions included). For choice and
choice history covariates, we included four predictors each into the de-
sign matrix of the full model: those four predictors were chosen to dis-
tinctly account for effects between 0 and 500, 500 and 1000, 1000 and
1500, and 1500 and 2000 ms of trials. The GLMs were fit on signal trials
and the resulting weights used to predict the time-varying spike counts
(100 ms resolution) for each no-signal trial.

Independent observer model. To verify that the measured behavioral
strategies by the animals were not confounded by the weak intertrial depen-
dence in stimulus induced by pseudorandomization, we also analyzed the
responses of a model without choice history (independent observer model).
We first fitted psychometric functions with a cumulative Gaussian to match
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the model’s performance for the stimulus on the current trial to the psycho-
physical performance of the animals. Next, we generated model responses
based on the stimulus on the current trial assuming a binomial distribution
defined by the model parameters of the psychometric functions. Therefore,
in this simulation, the stimulus sequence and the association between cur-
rent stimulus and response were exactly as in the actual experiment, but
choices were not influenced by experimental history. When we performed
our analysis on these data, it did not identify any significant or systematic
components in the behavioral strategies (see Fig. 3b—c). For this analysis, one
session was excluded for having less than four near and four far choices on
no-signal trials due to random sampling.

Semipartial correlations. We computed correlations between the
residuals of the spike counts obtained after linearly regressing S, on
H, _,, and the animals’ choices (for no-signal trials). In contrast to the
above GLM-analysis, no cross-validation was used when calculating
residuals for the correlation analysis. The semipartial correlation is
then defined to be the correlation between the choices and the spike-
count residuals.

The absolute value of a semipartial correlation constitutes a lower
bound (Cohen et al., 2003) on the absolute values of partial correla-
tions between spike counts and choices, i.e., the correlation one
would obtain after removing the effects of choice history from both.
In the case of partial correlations, we decompose choices ¢ into a
predicted part ¢ and a choice residual ¢, such that ¢ = ¢ + ¢. Similarly,
for spike counts, s = § + 3. The absolute value of the semipartial
correlation corr(c,3) is a lower bound to the partial correlation cor-
r(¢,3), i.e., lcorr(,5)|=lIcorr(c,3)!: this can be seen to hold true writing
the inequality as follows:

cov(c,3) cov(&,3)
\/var(c) \var(3s) a ‘ \var(c) \Jvar(s) ’
‘ cov(c,3) cov(&,3) — cov(,3)
\/Vtzr(é) + var(¢) \/var(§) - \var(e) \var(s) ’
cov(c,3) cov(c,3)
\/var(é) + var(e)| \var(e) ’

because cov(é,s) = 0.

Autoregressive models. We performed simulations to test the statistical
power of our analyses. Specifically, we defined two autoregressive models
that are compatible and two models that are incompatible with our con-
clusions. In the compatible models (CMs) CPs arise from instantaneous
feedforward (CM 1) or postdecision feedback (CM 2) correlations,
whereas in the incompatible models (ICMs) they result from the effect of
preceding choices on current neural activity (ICM 1) or of preceding
neural activity on current choices (ICM 2), respectively.

CM 1:

_ [Flifac, + ws, + 016, =0
G = —lif ac,o; + ws, + 016, <0

St = BS,,I + 0,8

where € and € are Gaussian noise, ¢, and s, the choice and spike count
on trial t, respectively. We note that CM 1 can be easily extended to
populations of (potentially) correlated neurons: in that case, the term
ws, instead consists of the average activity of a population of neurons,
and the weights and the strength of the “decision noise” o, would
have to be adjusted such that the model remains consistent with the
observable single-neuron statistics. However, as our analyses are
based on (temporal) correlations between single-neuron spiking and
choices, our results hold regardless of the population size and the size
of these noise correlations.
CM 2

_ [Flifac,; + 06,=0
€= —lif ac,-; + 0,6, <0

5= Bse1 + ye + 08,
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ICM 1
|+ lifag , +06=0
G —lifac,_, + o6, >0
5= Bsioy + ye T 0ae,
ICM 2

[ors

+1lifac_, +ws,_, +o0,6=0
—lifac,_, + ws,_, + o6, >0

5= Bsiy T oaE,

In analogy to CM 1, ICM 2 can be easily extended such that ws, , is
replaced by a population of weakly correlated neurons, and our results
are robust to population size and the size of these noise correlations
within empirical ranges.

For each of the 75 units from our dataset, we fit models (i.e.,
o, B, v, 0y, 0y, 0r @, 3, w, 0}, 0,, respectively) using empirically ob-
served statistics: CPs, auto-covariance between choices on subsequent
trials, and auto-covariance between spike counts on subsequent trials.
Models were fit using the CMA-ES algorithm (evolution strategy using
covariance matrix adaptation; Hansen and Ostermeier, 2001).

After finding model parameters of best fit for each unit, we simulated
the same number of trials as there were no-signal trials for this in our
dataset. This was done repeatedly (500 repetitions). For each repetition
we then computed the semipartial CP (regressing out spike history and
choice history) and performed a one-sample ¢ test with the null hypoth-
esis that the mean semipartial CP across the population of units is equal
0.5. This recapitulates our semipartial correlation analysis in simulated
data.

Results

We analyzed behavioral and neuronal data from 75 disparity se-
lective single units in V2 recorded from two monkeys performing
a coarse disparity discrimination task as described previously
(Nienborg and Cumming, 2009). In this task, schematically sum-
marized in Figure 1, the fixating monkeys were presented with a
dynamic random dot pattern positioned inside the receptive field
of the simultaneously recorded neurons for a fixed 2 s duration.
The stimulus was a circular random dot stereogram defining a
central circular disk surrounded by an annulus. The monkeys’
task was to judge whether they perceived the central disk as pro-
truding (near) or receding (far) relative to the surround by mak-
ing a saccade to one of two choice targets. Correct choices were
rewarded. The disparity of the stimulus center was spatially uni-
form on each video frame but changed probabilistically between
frames to control the difficulty of each trial (see Materials and
Methods). On a subset of trials, defined as no-signal trials, dis-
parities were drawn from a uniform distribution centered on 0
degree disparity. On these trials there was no correct answer and
the monkeys were rewarded randomly on 50% of the trials. For
discrimination tasks, the dependence of an observer’s choices on
the stimulus can be captured by a sigmoidal function (psycho-
metric function). For example, for the disparity discrimination
task used here, the psychometric function maps the probability of
a far choice as a function of the far signal in the stimulus (Fig. 1¢).
Note that for each session we define the sign of the stimulus based
on the tuning preference of the simultaneously recorded neuron:
positive and negative values correspond to signal strength at the
neuron’s preferred and nonpreferred disparity, respectively. Typ-
ically, the psychometric function includes a stimulus indepen-
dent term to account for an observer’s bias. As shown in Figure
Lc, this psychophysical bias differed between trials following a
choice to the preferred (positive) and nonpreferred (negative)
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Figure2. Choice history is systematically associated with the monkeys’ current behavior. a, We use a GLM to analyze the statistical effect of different covariates on the monkeys’ choices forn =
75 sessions (n = 41 for Monkey 1; n = 34 for Monkey 2). b, The choice prediction performance (aROC; see Materials and Methods) evaluated only for no-signal trials for different covariates: the
choice on the previous trial (C,,_,, mean CPP 0.609, p << 10 ~8);target on the previous trial (T, mean CPP0.525, p < 0.001); whether the preceding trial was rewarded (win, ¥, _,, mean CPP 0.522,
p < 0.01), the spike count on the current trial (S, mean CPP 0.564, p << 10 ~); the spike count on the previous trial (S,, ,, mean CPP 0.504, p = 0.378). For the full model, CPP is 0.666,p << 10 ~™°.
The p values indicate whether CPPs were significantly different from chance performance (0.5) using Wilcoxon signed rank tests. ¢, The weights for the target on the previous trial (T, ;) are plotted
against those of the previous choice (C,,_,) forall n = 75 sessions (circles: Monkey 1,n = 41; squares: Monkey 2, n = 34). Green symbols represent means across all sessions for each monkey. d, The
mean choice prediction performance converted to correlation coefficients (choice correlation; see Materials and Methods) are plotted for models incorporating the variables on the x-axis cumula-
tively. From left to right the variables used are as follows: (C,;); (C,o1, Tpt); (Cos Tots Wi (Gt Tots Wopis Sia)i (G Toas Woas S Si)- The height of each bar reflects the incremental
improvement of the model prediction caused by the variable plotted on the x-axis. Significant increments are caused by C,_, (p << 10 Y, T4(p<10 ), W, (p=10.046),5,(p<10 4, but

not additionally by S,, , (p = 0.954), Wilcoxon signed rank tests for all. The horizontal dashed line marks the value for a model incorporating only S,,. Error bars are =1 SE; Colors as in b.

disparity target. To examine any systematic effect of previous
choices on the decision in the current trial in more detail, we used
a statistical model that, in addition to the stimulus, took into
account the influence of previous choices on the animal’s present
choice (Fig. 2a). In this model, the psychophysical bias-term was
different for each trial, and depended linearly on the recent ex-
perimental history (Seidemann, 1998; Gold et al., 2008; Frund et
al., 2014).

Predictive effect of choice history on choice

Conceptually, the contribution of the previous choices can be
viewed as the subject’s bias that changes from trial to trial de-
pending on the choice history. We used penalized maximum
likelihood estimation (Hastie et al., 2009) to fit the weights for
both the stimulus and the effect of previous choices. We charac-
terized the monkeys’ strategy, i.e., how they were influenced by
the previous choice and how this influence depended on whether
the previous choice was rewarded, with two covariates, the pre-
vious target (T,_,) and the previous choice (C,,_,). Different strat-
egies can be identified by plotting the weights of the model for
C,., against those for T, , (Fig. 2¢; Frund et al., 2014; Abra-
hamyan et al., 2016). The weight for the previous choice (C,,_;,
abscissa) quantifies in which direction, on average, the monkeys
are influenced by the previous choice: positive values indicate
that they tend to repeat their previous choice (a near choice fol-
lowing a near choice, or far following far), whereas negative val-
ues indicate that they tend switch their answer (a near choice
following a far choice or vice versa). In contrast, the weight for the
previous target (T,,_;, ordinate, i.e., the choice that would have
been rewarded; note that if the preceding trial had no signal T,,_,
is defined as the randomly rewarded target) measures how

strongly this overall choice strategy depends on whether the pre-
vious choice was rewarded. That is, a “win stay, lose switch”
strategy would be reflected by positive weights for T, , and
weights for C,_; close to 0, whereas a “win switch, lose stay”
strategy would be captured by negative weights for T,_;, and
weights for C,,_, close to 0 (Fig. 2¢, labels along the vertical axis).
Together, C,_, and T,,_, therefore quantify the behavioral strate-
gies (“lose switch”, “win switch”, “lose stay”, “win stay”; Fig. 2c,
diagonals). We examined the weights for T,_; and C,_, for indi-
vidual sessions in the two monkeys and found that both monkeys
were more likely to switch their choices, i.e., that weights for C,,_;
were negative (Monkey 1: mean C, , = —0.371,p < 10 >, n =
41; Monkey 2: mean C,_, = —0.159, p < 10 ™% n = 34; average
across monkeys: mean C,_, = —0.275, n = 75; p < 10" Wil-
coxon signed-rank tests). This tendency was slightly stronger
after errors, corresponding to positive weights for T, ; (mean
T,.1=0.054,p<0.01,n=75Monkey l: mean T, ; = 0.071,p =
0.017, n = 41; Monkey 2: mean T,_; = 0.032, p = 0.012, n = 34).
Intriguingly, the monkeys” highly consistent behavioral strategy
to switch their choices between consecutive trials likely reflects a
learned strategy to adapt to the statistics of the task. Indeed, be-
cause we presented a fixed number of stimulus presentations in a
random sequence, alternating trial types were slightly more likely
(~52% rather than 50%). Note that this did not affect the 50%
probability with which no-signal trials were rewarded. In Figure
3a probabilities for stimulus sign alternations (left) and choice
alternations (middle) across all sessions are shown. For Monkey 2
the choice alternation rate (solid black line) closely matched that
of the stimulus, whereas Monkey 1 overshot (dashed black line).
For Monkey 2 the strategy was therefore beneficial on (weak)
signal trials. Across sessions, there was no systematic relationship
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Figure3. Controls. a, Stimulus statistics and choice alternation rate. Left, We plot the probabilities of alternation of the stimulus sign for each session as a function of session duration (in number
of trials) across all sessions (red line: running mean alternation rate across all sessions). To explore whether the animals’ strategy depended on the duration of the session we also plot the animal’s
choice-alternation rate as a function of session duration (middle), and stimulus sign alternation rate (right) and do not observe a systematic relationship. b, The weights of the analysis of the
independent observer model for the preceding choice (C, ;) are plotted against those for the preceding target (7,,_,) forn = 74 sessions. For both covariates the weights do not significantly differ
from 0 (C,,;: mean = 0.000, p = 1.0; T,,_:0.006, p = 0.297; Wilcoxon signed rank tests). ¢, d, We compared the choice prediction performance (in choice correlation) as in Figure 2d: the height of
the bars corresponds to the incremental improvement by the corresponding covariates on the x-axis. ¢, The ability to predict choices based on (4, T, W,,_, or S, is at 50% chance level,
corresponding to 0 choice correlation (covariates vs 0: all p > 0.05; Wilcoxon signed rank tests). Format and colors in b as in Figure 2¢, in cas in Figure 2d. d, The effect of choice history beyond the
preceding trial is small. For this analysis, we included only 50 sessions (30 for Monkey 1; 20 for Monkey 2), which met our inclusion criteria: at least four near and four far choices on no-signal trials,
and selecting only those segments with at least three consecutive trials completed. The baseline model includes the covariates pertaining to the preceding trial (C,_,, T4, W1, 5,,.,). Adding the
choice on trial n-2 (C,,.,), yields a nonsignificant increase (p = 0.405; Monkey 1: p = 0.501; Monkey 2: p = 0.583; Wilcoxon signed rank tests). Similarly, the covariates T, ,, W, _,, and S,,_, do not
increase the choice correlation. Error bars are == 1SE.

between the animals’ choice alternation rate and that for the  studies and highly statistically significant (Britten et al., 1996;
stimulus sign (Fig. 34, right). We note that the monkeys’ switch- ~ Dodd et al., 2001; Uka and DeAngelis, 2004; Shiozaki et al., 2012;
ing strategy contrasts with the finding in human subjects that =~ Nienborg and Cumming, 2006, 2014). For this comparison, we
perceptual judgments are biased toward the preceding stimulus  fit models incorporating different sets of parameters to all signal
(Fischer and Whitney, 2014). This suggests that this effectis mal-  trials. Using the output of the models, we then predicted the

leable by learning depending on the task or stimulus statistics. monkeys’ choices on no-signal trials and quantified the choice
In control analyses using a model observer that is not influ-  prediction performance (CPP) for the different models as the

enced by trial history, we verified that our results here could not  area under the ROC curve (see Materials and Methods).

be explained by the statistics of the trial sequence (Fig. 3b,c). For Figure 2b compares choice prediction performance for five

such an observer the weights in Figure 2b would not exhibit a ~ models. For the spike count alone, the mean choice prediction
systematic pattern, exactly as found in our control analysis. Ina  performance was 0.56 (significantly exceeding chance perfor-
subset of n = 50 sessions for which we had a sufficient number of ~ mance, p < 10 7, n = 75; Monkey 1: 0.565, p < 0.001, n = 41;
segments with at least three consecutive successfully completed ~ Monkey 2: 0.563, p < 10 ~*, n = 34; Wilcoxon signed rank tests),
trials, we also explored the effect of trials going further back to  very similar to the values obtained when quantifying neuron-
trial n-2. We found that the additional effect was small and not ~ behavior correlations as CP (Britten et al., 1996) directly from the
significantly larger than that of choice history only including trial ~ spike count as done in previous studies (Nienborg and Cum-
n-1 (Fig. 3d). We therefore restrict our analysis presented hereto ~ ming, 2009). This effect exceeds that of the previous target (mean

the effect of trial n-1. CPP for T,_; = 0.525, p < 0.001; Monkey 1: 0.519, p = 0.046;
Monkey 2: 0.533, p < 0.01) but is smaller than that of the previ-
Predictive effect of spiking activity on choice ous choice (mean CPP for C,_, = 0.609, p < 10 % Monkey 1:

We next compared the predictive effect of choice history with  0.645, p < 10~ Monkey 2: 0.566, p < 10 ~*). This indicates that
that of other experimental covariates. First, we compared ittothe =~ on no-signal trials, choice history explains a substantially larger
choice-predictive effect of the spike counts of single disparity — proportion of the monkeys’ choices than the single-neuron

selective neurons (Nienborg and Cumming, 2006, 2007, 2009). spike-count on the current trial alone. Indeed, when measuring
Choice predictive effects of sensory neurons, frequently quanti-  the cumulative contribution of different covariates (the previous
fied as CPs (Britten et al., 1996), have been observed in a substan-  choice, C,_;, the previous target T,,_,, whether the previous trial

tial number of studies, are typically modest but consistent across ~ was rewarded, “win” W, _,, the spike count on the previous, S,, |,
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spike counts on no-signal trials for models incorporating different variables across all n = 75 neurons. The mean values, and p values (Wilcoxon signed rank tests) for significant deviation from 0 were
as follows: 0.072 (p < 10 ~*) for the choice on the previous trial (€, ;); 0.046 (p < 0.01) for the target on the previous trial (T, ,); 0.142 (p << 10 %) for whether the previous trial was rewarded
(W,1);0.372 (p < 10 ~") for the spike count on the previous trial (S,, ,); 0.461 (p << 10 ~ ) for Sfs across several trials; 0.126 (p < 10 %) for the choice on the current trial (C,); and 0.529 (p <
10 ~ %) for the full model incorporating all these covariates. ¢, Evaluating the model performance for one cell. The models were fit on signal trials and evaluated only on no-signal trials. Only no-signal
trials are shown. The predicted (colored) and the measured (gray) spike counts are superimposed for each model. The performance was quantified as the Pearson’s cc between the measured and
predicted spike count, colorsasin b. d, The mean correlation coefficients are plotted for models cumulatively incorporating the variables on the x-axis. From left to right these variables are as follows:
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caused by the variable plotted on the x-axis. P-values (Wilcoxon signed rank tests) for the increments were p < 10 ~*for C, ,,p <10 —>for W, ,,p <10 ~"°forS, ,,p <10 ~for SF,and p <
0.01for C,, although not significant (p = 0.123) for T, ;.. Error bars are =1 SE. Colors as in b.

and current trial, S,) to choice prediction performance, choice  formance as the correlation coefficient between the predicted and
history had the largest contribution to choice-prediction (Fig.  measured spike count on all no-signal trials (Fig. 4¢; for one
2d). For this comparison, we converted choice prediction perfor- ~ example unit). When fit as the only covariate, the preceding spike
mance into Pearson correlation coefficients and termed these  count had a substantial predictive effect [correlation coefficient
“choice correlations” (Haefner et al., 2013; Pitkowet al., 2015).In ~ (cc) = 0.372, p < 10 10 cc = 0.417, p <107%and cc = 0.317,
this analysis, we incorporated covariates cumulatively in the  p < 10~ °for Monkeys 1 and 2, respectively], as expected for known
model fits to account for correlations, and thus redundant infor-  non-stationarities in neuronal spiking activity. Indeed, for slow fluc-
mation, between covariates [compare, for instance, the choice  tuations across several trials the prediction performance improved
correlation of the spike count S,, when fit alone (Fig. 2d, red  further (SFalone: mean cc = 0.461,p < 10~ '%cc = 0.477,p <107
dashed line), versus the gain in choice correlation when it is in-  and cc = 0.442, p < 10 ~° for Monkeys 1 and 2, respectively). These
cluded as a last covariate]. We note that since we cross-validated  substantial temporal correlations of spiking activity combined with
the model (fitting on signal trials, evaluating on no-signal trials),  the serial dependencies of the animals’ choices during this task may

including more parameters does not necessarily improve perfor-  therefore contribute to the trial-by-trial correlations between the
mance (see Materials and Methods). animal’s choices and spiking activity.

Predictive effect of spiking history on spike counts in the Testing for interactions between serial dependencies in
current trial choices and spiking activity

Spiking activity of sensory neurons is known to fluctuate onlong  Before more directly investigating whether decision-related ac-
timescales independently of the stimulus (Tomko and Crapper,  tivity during this task results from the serial dependencies in
1974; Tolhurst et al., 1983; Bair et al., 2001; Ecker et al., 2014;  choices and spiking activity, we examined the predictive effect of
Goris et al., 2014; Rabinowitz et al., 2015; Engel et al., 2016).  behavioral covariates on spiking activity. Specifically, we ex-
Given the serial dependencies of the animals’ behavior, we  plored the effect of the animal’s preceding choice (C,_,), the pre-

wanted to investigate the relationships between temporal corre-  ceding target (T,,_;), whether the preceding trial was rewarded,
lations in spiking activity and behavior, as well as their impacton  i.e., a win (W,_;) and the current choice (C,) using a GLM pre-
trial-by-trial correlations between neuronal activity and an ani-  dicting the spike counts (S,,).

mal’s choices. We therefore first quantified the degree to which Choice history had a small but significant predictive effect (the

neuronal activity could be predicted by the activity on the pre-  valueswere cc = 0.072,p < 10 *for C,_,, cc = 0.046, p < 0.01 for
ceding trial, to compare it to the predictive effect of choice history T, , cc = 0.142, p < 10~ for W,_,, respectively, and cc = 0.159,
using GLMs (Fig. 4a). To additionally explore the effect of slow  p < 107 for the covariates reflecting choice history, C,_; T,.;.
fluctuations (SFs) across multiple trials, we also used a Gaussian ~ W,_; together). When including covariates camulatively (Fig. 4d)
Process latent modulator (cf. Ecker et al., 2014; Rabinowitz etal.,,  we found that only Wn-1, but not T, _,, yielded an improvement
2015) within the GLM (Fig. 4a). We quantified prediction per-  in prediction that was independent of C,,_, (note the nonsignifi-
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cant change when adding T,,_; as a predictor, but the improve-
ment when additionally including W, _,, p < 10 ~°). Conversely,
C,.1, did not improve prediction performance over W, (p =
0.09, data not shown). Indeed, choice history excluding past wins
(C,-1, T,.1) was less predictive of the spike count than the choice
on the current trial. Conversely, when including past wins (C,,_,
T,.., W,.1), it was more predictive of the spike count than the
choice on the current trial. The predictive effect of choice history
was therefore of sufficiently large magnitude to fully account for
the effect of choice in principle. However, we find that a compo-
nent of the predictive contribution of C, was statistically inde-
pendent of choice and spiking history: even when included as the
last predictor it provided a small but significant improvement in
prediction performance (Fig. 4d; p < 0.01; p = 0.026 for Monkey
1, p = 0.045 for Monkey 2; Wilcoxon signed rank tests).

Note also the substantial component in variability that can be
predicted by slow fluctuations alone (Fig. 4d). Interestingly, this
effect is comparable to the combined predictive information in
spiking-activity and behavior on the previous trial (Fig. 4d, com-
pare H, ;, S,..;). This is consistent with the view that these slow
fluctuations reflect meaningful signals, such as those related to
choice history, as previously proposed (Rabinowitz et al., 2015).
We also examined the dynamics of how these covariates pre-
dicted the neural activity during a trial. To do so, we fitted GLMs
to predict the time-varying spiking activity of each neuron, and
quantified the prediction performance during four nonoverlap-
ping 500 ms wide time bins (Fig. 5). We find that prediction
performance of choice history (C,_;, T,.;, W,_;) is most pro-
nounced at the beginning of each trial, while the other predictors
show little variation in prediction performance throughout the
trial.

We systematically varied the order with which we included
covariates in GLMs predicting choices or spike counts (Fig. 6), to
investigate which statistical interactions are necessary to explain the
statistics of the data. In this visualization, potential interactions that
have not been statistically evaluated are depicted by a dashed line.
We then define a statistical interaction (solid connection) between a
covariate and a prediction target (i.e., C, or S,,) to be necessary if the
predictive effect of the covariate cannot be explained by alternative
covariates. For interactions that are not needed (i.e., including the
covariate does not yield a significant improvement over alternative
covariates) we remove the dashed connection. Note that this analy-
sis, while related, differs from that of causal interactions in directed
graphical models (see Discussion).

The substantial improvement (cc = 0.358 vs 0.143, p < 10 ~?) in
prediction when including choice history after the preceding and
current spike count (S,, ;, S,,) supports a significant statistical inter-
action between choice history and choice, independent of S,,_; and S,
(Fig. 6a). Similarly, adding the covariate S,,_; to a model that includes
choice history and the current choice (C,) substantially improves the
prediction of the spike count on the current trial (S,, data not
shown), establishing an interaction between S, ; and S,, indepen-
dent of choice history and C,,. Additionally, the statistically signifi-
cant interaction between S, and C, (and by analogy H, , and S, _;,
Fig. 6a—c) can be inferred from the results in Figures 2d and 4d:
adding S, or C,, respectively, to the model that includes choice his-
tory and S,,_;, improved the prediction of C, (Fig. 2d) and S,, (Fig.
4d), respectively. (We note that for a model predicting spike counts
without SF, as in Fig. 6¢, the gain due to C, is only marginally signif-
icant: p = 0.036 for both animals and p = 0.121, p = 0.096 for
Monkeys 1 and 2, respectively, Wilcoxon signed rank tests, and non-
significant for paired ¢ tests.)
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Figure 5.  Dynamics of spike count prediction throughout the trial. For the GLM predicting

time-resolved neural activity additional covariates were included: to account for the temporal
structure of firing within trials, we introduced PSTH basis functions, as well as time-varying
features for choice history (previous choice, previous target, previous win) and choice on current
trial (see Materials and Methods). a, Prediction performance across 75 units when cumulatively
adding predictors for the four quartiles of the trial. The gain due to choice history decreases
throughout the trial, while the gain due to choice (same trial) increases, as seen in b. The grand
mean prediction performance of the time-resolved model is 0.442, very similar to the prediction
performance of a model that does not include additional covariates for time-resolved predic-
tion. b, Alternative order of covariates, with choice (same trial) included in the first model.

In contrast, prediction performance is not significantly in-
creased when including the preceding spike count (S, ;) after
choice history and the current spike count (Fig. 6b). The interac-
tion between S, ; and C, independent of choice history and S,
therefore lacks statistical support. Moreover, choice history pro-
vides an improvement in predicting S,,, independent of S,,_; and
C, resulting in a significant statistical interaction between choice
history and S,, (Fig. 6¢). We note however that the incremental
improvement in prediction is small and only owed to the predic-
tive effect of C,,_, and W, _,. Interestingly, our time-resolved anal-
ysis reveals that this weak improvement in prediction is only
present early in the trial (Fig. 5b). Although weak, such an effect
over time is compatible with a framework of perceptual inference
(Haefner et al., 2016) in which a top-down belief (or expectation)
based on choice history influences the neuronal response, and is
most pronounced at trial onset. Moreover, the weak increment in
prediction performance resulting from W,,_; remains statistically
significant even when incorporating the contribution of slow
fluctuations, which substantially improve prediction perfor-
mance (note the increased prediction performance to 0.53 of the
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Covariates are represented by the circles: spike count on the previous trial (S,,.;), spike count on the
current trial (S,), choice history (H,,_,) and the choice on the current trial (C,). Potential (dashed lines)
and statistically significant (black lines) interactions between the covariates are depicted. Right, a, A
model that includes choice history (H, ;) in addition to the previous and current spike count (S,,.,, 5,,)
predicts choices significantly better (p << 10 ~°), supporting a significant direct interaction between
choice history and the current choice. b, A model including S, ; in addition to C,,,, T, W,,; and S,
does not improve choice prediction performance (p = 0.976; Wilcoxon signed rank test). The direct
interaction between S, ; and C, is therefore not statistically supported. ¢, The model incorporating
choice history (C, 4, T, W) in addition to the previous spike count (S, ;) and current choice (C,)
predicts the current pike count weakly but significantly better (p << 10 ). d, The predictive effect of
choice history remains significant when including SFs (average cc = 0.506 vs 0.529; p << 10 %
Wilcoxon signed rank test).
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full model in Fig. 6d compared with 0.44 in 6¢). The predictive
effect of W,_; may therefore reflect a transient boost in arousal
following a reward, leading to a modulation of the neuronal re-
sponse independent of S, ; and C,. Nonetheless, this effect is
small, although statistically significant, the statistical interactions
along the diagonal are therefore weak (Fig. 6¢,d). This suggests
that the serial dependencies in choices and spiking activity result
from two largely separate processes. This should imply that trial-
by-trial correlations between choices and neural activity are
largely unaffected by these serial dependencies: CPs are a conse-
quence of interactions on the single trial, rather than a conse-
quence of correlations that are carried over from previous trials.

Effect of choice and spiking history on CPs

To test the prediction that CPs are largely independent of serial
dependencies directly, we measured the residual CPs after re-
moving the component of the spike count that could be explained
by history. As choices are binary, computing and interpreting
“choice residuals” by regressing out history effects is difficult;
however, we circumvent these difficulties by only regressing out
experimental history from spike-counts. As a result, we obtain
semipartial correlation between spike counts and choice, rather
than partial correlation coefficients. We found that the residual
CPs were largely unchanged compared with the raw CPs (Fig. 7;
r = 0.837, p < 10 '°). Because semipartial correlations mathe-
matically provide a lower bound to the absolute value of the
partial correlations (Cohen et al., 2003), this supports the view
that the contribution of choice history to CPs was at most very
small. Additionally, we found that the size of the change in be-
havioral performance that was attributable to choice history (see
Materials and Methods) was uncorrelated with choice probabil-
ity (Spearman’s rank r = 0.023, p = 0.848).

Given that CPs are overall small one might wonder whether
our inability to identify an appreciable contribution of serial de-
pendencies merely results from a lack of statistical power of our
analysis. To determine the sensitivity of our analysis in our data-
set, we therefore repeated the semipartial correlation analysis on
models that are compatible (Fig. 8a,b) or incompatible (Fig. 8c¢,d)
with our conclusions. In the compatible models CPs reflect in-
stantaneous, i.e., trial-by-trial, feedforward (CM 1; Fig. 8a) or
feedback (CM 2; Fig. 8b) correlations between choices and spike
counts. Conversely, in the incompatible models, CPs result from
influences of preceding choices on current spiking activity (ICM
1; Fig. 8¢) or of preceding spiking activity on the current choice
(ICM 2; Fig. 8c). We fit each model to the data from each unit
while matching the number of no-signal trials to those in our
dataset (see Materials and Methods). Based on these model fits we
then generated artificial model responses for no-signal trials and
computed the semipartial CPs (regressing out choice history and
spiking history). For the compatible models, the comparison of
these semipartial CPs with the empirical CPs mirrors the animals’
data (compare Figs. 7b, 8e,). Indeed, as in our data, CPs and
semipartial CPs are highly significantly correlated (average r
across repetitions: r = 0.78 for CM 1; r = 0.68 for CM 2; p < 0.01
for all 500 repetitions for both). In contrast, for the incompatible
models, choice probability is largely explained by history (Fig.
8g,h). Asa consequence, CPs and semipartial CPs when removing
history are not correlated (average r across 500 repetitions: r =
0.024 for ICM 1; r = 0.009 for ICM 2; p =0.05 in 93% and 88% of
repetitions for ICM 1 and ICM 2, respectively). Moreover, semi-
partial CPs when removing history are 0.5 on average (Fig. 8k,1).
In contrast, in compatible models we reject the null hypothesis
that semipartial CPs when removing history are 0.5 in close to all
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cases (Fig. 81,). This is similar to our em-
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both choices and spiking activity were
substantial, and past choices and neural
firing were correlated with both choices
and spiking activity, these reflected two
largely separate processes in our data:
there was no statistical support for a direct
interaction between the preceding spike
count and the current choice, whereas the
interaction between choice history and the current spike count
was weak. This latter interaction resulted largely from “wins”, i.e.,
whether or not the preceding trial was successful and thus yielded
a reward, compatible with a transient reward-dependent boost
in arousal that modulated spiking activity, as well as with
fluctuations in arousal that affect both firing rates and the
probability of success. Importantly, when removing the effect
of choice history, CPs remained essentially unchanged. The
serial dependencies of choices and spiking activity therefore
reflect two largely parallel processes that are correlated through
instantaneous covariations between choices and spiking activity.

Our analysis based on using GLMs to determine which statistical
interactions are necessary to account for the structure of the data is
reminiscent of the analysis of (statistically) causal interactions in
directed graphical models (Pearl, 2003). Note however that our anal-
yses here are based on limited data such that we may not have been
able to detect weak statistical interactions. In contrast, causality anal-
yses are typically based on a “faithfulness” assumption, which states
that there are no (conditional) independences other than those in
the underlying graph, i.e., which interprets absence of evidence as
evidence for absence. However, given limited data as in this study,
such interpretation is not justified. In addition, whereas conditional
dependence tests (as typically used in causality analysis) and in-
creases in prediction performance in GLMs (as we used here) are
conceptually related, they are not equivalent. In particular, our
method relies on cross-validation to account for model complexity.
Thus, the absence of a connection in the schematic models indicates
that adding the respective covariate does not lead to a significant
increase in prediction performance beyond what we can obtain by
those predictors that share a direct connection.

That choice probability is independent of choice history is
surprising for several reasons: first, it seems to contrast with a
recent study using fMRI in humans performing a visual task that
identified a signature of past choices in BOLD signals from V1
(St. John-Saaltink et al., 2016). However, apart from the different
signals between studies, St John-Saltink et al. (2016) did not ex-
plore the effect of choice history independent of the current
choice, which may account for this seeming discrepancy.

Second, if CPs reflect only the effect of correlated noise in the
sensory representation (feedforward account), it suggests that the

subtracting from each measured spike count that predicted by a regression that included the current choice (C,; @) or that included
choice history (H, ; b) as covariates. In a second step, we then computed the “semipartial CPs” from these residual spike counts
and the monkeys’ choices on the current trial. a, To verify the validity of this approach we first removed the component predicted
by choice. As expected, this removes CPs deviating from 0.5. b, Semipartial CPs for the residual spike counts after the contribution
predicted by choice history was removed and the animals’ choices, are plotted against the raw CPs (circles: Monkey 1, n = 41;
squares: Monkey 2, n = 34). The values changed little and are highly correlated, supporting the view that choice probability are
largely unaffected by choice history.

effect of this noise on choice is independent from trial to trial.
This is interesting given the substantial slow fluctuations of the
neuronal activity across trials. However, if, for example, the de-
cision variable is computed as a difference between two pools
with similar temporal correlations, then the temporal correla-
tions could cancel when computing the decision variable, reduc-
ing or abolishing temporal correlations in the decision variable. If
this is the case, it is surprising that the brain removes temporal
correlations at the level of the readout of the relevant sensory
information, but not temporal correlations at the decision stage.

Finally, contrasting with this pure feedforward account,
CPs are increasingly thought to reflect, in part, a feedback
component (Nienborg and Cumming, 2009; Wimmer et al.,
2015; Haefner et al., 2016); i.e., a signal that is correlated with
the animal’s perceptual decision and influences the activity of
the sensory neurons and thereby introduces a component of
this neuron-behavior correlation. Indeed, recent work in an
analogous task as the one used here supports the view that this
feedback component accounts for nearly all of choice proba-
bility (Bondy and Cumming, 2018). A number of computa-
tional accounts have modeled such feedback as a signal arising
from the decision variable or circuit (Wimmer et al., 2015;
Haefner et al., 2016). In these models, any influence on the
decision variable, such as choice history, should therefore also
be fed back to sensory neurons and thus contribute to choice
probability. The fact that we are unable to identify an appre-
ciable component of choice history on choice probability
therefore could imply that the feedback component to choice
probability is negligible, in contrast with other findings. Alter-
natively, it suggests that choice history affects the decision
independent of the decision-related signal that generates the
feedback to the sensory neurons. Indeed, it may be that rather
than relying on a single decision-variable or integrator the
decision process is able to keep some influences independent.
For example, the decision formation could reflect a multistage
process in which a lower stage integrates the sensory evidence
to form a decision variable and provide feedback to sensory
neurons, and a later stage additionally incorporates the influ-
ence of choice history. Indeed, previous work identified a sig-
nature of choice history on neuronal spiking activity in the
motor and frontal cortex (Pouget et al., 2011; Marcos et al.,
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Figure8. Sensitivity of semipartial correlation analysis in simulated data. a—d, CM 1and (M 2 are two models that are compatible with our results, whereas ICM 1and ICM 2 are incompatible with

our conclusion. We fit these models to statistics of our dataset and for each unit repeatedly simulated as many trials as no-signal trials were recorded for this unit (9522 trials across all units). e—h,
Semipartial CPs are plotted against empirical CPs but for simulated data (see Materials and Methods) for a single repetition. The data points are scattered along the identity line for the compatible
models, similar to the empirical results (compare Fig. 7b). In contrast, semipartial CPs are reduced to ~0.5 on average for incompatible models. i1, For each of 500 repetitions, we performed
one-sample ¢ tests with the null hypothesis (H,) that the mean semipartial CP is equal to 0.5. For nearly all of the simulations the null hypothesis is rejected for the compatible models (7, j). As

expected, we observe the opposite for incompatible models (k, /).

2013), contrasting with our results for sensory cortex. It is compat-
ible with the notion of a multistage process in which choice history
affects neuronal activity only downstream of the sensory stage and of
the decision circuits providing feedback to the sensory neurons. Re-
gardless of the neuronal implementation, these results suggest that
even for simple perceptual decisions models incorporating decision-
related feedback require a more complex decision-formation pro-
cess than current decision variables. Scrutinizing the temporal
structure in neural population activity and behavior promises to
provide insights into the mechanisms and computations underlying
these processes.
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