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Abstract

Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecol-
ogy was initially neglected, collections of various genotypes revealed a complex population structure, with high levels 
of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways 
mediating phenotypic change. Population genetics studies further demonstrated that this variation generally con-
tributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and 
stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that 
they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue 
that examining traits and the gene that control them within the context of global summary schemes that describe 
major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
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Local adaptation suggests a diversity of eco-
logical specializations within A. thaliana
Arabidopsis thaliana (L.) Heyhn is exceptional within its genus. 
It is the only annual species, it has adapted to open, dry habi-
tats prone to seasonal drought (Ruppert et  al., 2015; Kiefer 
et  al., 2017), and its reproductive success is directly depend-
ent on interannual variation in environmental conditions 
(Segrestin et al., 2018). It also has the widest geographic range 
in the Arabidopsis genus (Clauss and Koch, 2006; Novikova 
et  al., 2016). Natural populations have been found through-
out Europe, from the North of Scandinavia to the South of 
Spain, in the Balkans, in Central Asia, China, and parts of Africa 

(Hoffmann, 2005; He et al., 2007; 1001 Genomes Consortium. 
2016; Durvasula et  al., 2017). It is also naturalized in North 
America and Argentina (Stock et al., 2015; Kasulin et al., 2017; 
Exposito-Alonso et  al., 2018a). This exceptionally wide dis-
tribution range is only limited by very low spring or autumn 
temperatures or by high temperature in regions of low precipi-
tation (Hoffmann, 2002).

The unrivaled genomic resources available for these pop-
ulations have helped demonstrate that the last glacial period 
determined the current distribution of genetic variation 
(reviewed in Koch, 2019). After the last glacial maximum, pop-
ulations have spread towards Northern latitudes, experiencing 
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successive bottlenecks (Durvasula et  al., 2017; Svardal et  al., 
2017). As a result, regional diversity is highest in Africa and 
lowest in Scandinavia. Genetic variation in Eurasia also follows 
a longitudinal gradient (1001 Genomes Consortium, 2016; 
Zou et al., 2017).

The local adaptation of A.  thaliana populations has been 
documented throughout its range, despite a history of pervasive 
gene flow (Fournier-Level et al., 2011; Hancock et al., 2011; 
Agren and Schemske, 2012; Savolainen et  al., 2013; Weigel 
and Nordborg, 2015; Svardal et  al., 2017). Field experiments 
and correlation analyses with climate parameters identified 
numerous genomic regions associated with local climatic con-
ditions. Association studies correlating single nucleotide poly-
morphism (SNP) variants with climatic variation showed that 
non-synonymous SNPs were enriched among SNPs associat-
ing with environmental variance (Hancock et al., 2011; Lasky 
et al., 2014). Among them, SNPs associating with fitness differ-
ences in the field were also over-represented (Hancock et al., 
2011). Furthermore, alleles associating with fruit production 
are more frequent in populations closer to field sites where the 
selective advantage was expressed (Fournier-Level et al., 2011). 
Therefore, it is now clear that much of the variation found in 
this species has played a role in optimizing plant performance 
to local environmental conditions.

A combination of development traits 
underpins local adaptation in A. thaliana

Flowering time is one of the development traits underpin-
ning adaptation in A. thaliana. It has been extensively studied, 
and elevated levels of variation have been observed in the lab 
(Koornneef et  al., 2004). The adaptive relevance of its gen-
etic variation is supported by multiple independent studies. 
Variation in flowering time follows climatic clines, at both 
the regional and species levels (Mendez-Vigo et  al., 2011; 
Montesinos-Navarro et al., 2011; Debieu et al., 2013; Li et al., 
2014; Sasaki et  al., 2015). Warmer climates appear to favor 
earlier flowering time, a pattern that has been documented 
for a great number of species (Austen et al., 2017; Whittaker 
and Dean, 2017). Strong selection for early flowering was 
detected in Italy but was weaker in Sweden (Ågren et  al., 
2017). Population genetics studies also uncovered signatures 
of natural selection on genes controlling flowering time (Le 
Corre, 2005; Toomajian et  al., 2006). Finally, the analysis of 
co-variation between environmental and phenotypic variance 
consolidated evidence for the adaptive distribution of this trait 
(van Heerwaarden et al., 2015).

Much of the flowering time variation measured in the lab, 
however, does not manifest as variation in flowering phe-
nology in the field (Wilczek et al., 2009; Brachi et al., 2010; 
Hu et al., 2017). It is indeed tightly dependent on the envi-
ronmental conditions prevailing during seedling establish-
ment, and hence on another developmental trait: the timing 
of germination (Donohue, 2002; Wilczek et al., 2009). Both 
field experiments and theoretical models integrating seed and 
flowering phenology have shown that seed dormancy is often 
decisive for controlling the life cycle across environments 

(Chiang et  al., 2013; Burghardt et  al., 2015). Therefore, the 
adaptive relevance of variants modulating flowering time 
control must be examined in the context of variation for the 
timing of germination.

There is indeed consistent support for the adaptive rele-
vance of traits determining the timing of germination. Seed 
dormancy has a strong fitness advantage before the hot sea-
son, but can impair fitness if it delays plant growth before 
winter (Donohue, 2002; Donohue et al., 2005; Chiang et al., 
2013). Population genetics analysis of seed dormancy and 
its major quantitative trait locus (QTL) DOG1 supported 
the adaptive importance of strong dormancy in Southern 
regions, to escape dry and hot summers, whereas weaker 
dormancy was reported in Norway, where the season is 
shorter (Kronholm et  al., 2012; Postma and Ågren, 2016; 
Kerdaffrec et al., 2016).

Since flowering time determines the maternal environment 
the seeds experience during their maturation, it also impacts 
life history traits expressed by the next generation (Chiang 
et al., 2013; He et al., 2014; Postma and Ågren, 2015). Light, 
temperature, nutrient availability, and water status have all been 
identified as significant environmental factors influencing the 
maternal inheritance of seed dormancy (Footitt et  al., 2013; 
He et al., 2014; Morrison and Linder, 2014; Kerdaffrec et al., 
2016). Germination can also be distributed over more than 
one seasonal window. For example, maintaining a spring ger-
minating cohort is important for the maintenance of popula-
tions exposed to low winter temperature (Picó, 2012; Akiyama 
and Ågren, 2014). Furthermore, later flowering can lead to late 
seed dispersal, which can result in overwintering at the seed 
stage (Hu et al., 2017).

Flowering time and seed dormancy are therefore jointly 
subject to fluctuating seasonal selective forces. They can 
evolve as a syndrome, defining distinct life history strate-
gies that have diversified across environments (Chiang et al., 
2013; Vidigal et  al., 2016; Marcer et  al., 2018). An analysis 
of seed dormancy and flowering time co-variation revealed 
that the optimization of the two traits probably depends on 
latitudinal differences in climate. Late flowering (i.e. vernal-
ization requirement) and strong dormancy are more frequent 
in regions where summer drought is typically more severe, 
whereas late flowering in Northern latitudes co-varies nega-
tively with dormancy (Debieu et  al., 2013). Co-variance 
between flowering time and dormancy is also detected at a 
much smaller scale, along steep altitudinal gradients (Vidigal 
et  al., 2016). Normally, diverse life history trait combina-
tions can allow comparable population growth rates in field 
conditions (Taylor et al., 2017). In some years, however, early 
winter frost can wipe out genotypes expressing inadequate 
life histories (Hu et al. 2017). Minimum winter temperature 
and precipitation, in fact, were also the main climatic factors 
that acted as selective pressures on flowering time and their 
underpinning genes in a set of Iberian A.  thaliana geno-
types (Méndez-Vigo et al., 2011). This suggests that extreme 
deviation from seasonal averages may be important drivers 
of the allelic combination of life history variants adjusting 
development to the optimal growth season throughout the 
species range.
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Patterns of co-variation between growth 
rate and developmental traits suggest the 
existence of trait syndromes

Beyond the combination of life history traits to target the best 
season for growth, A. thaliana also displays considerable genetic 
variation in its growth rate (Debieu et  al., 2013; Marchadier 
et  al., 2018, Preprint). The pattern of co-variation linking 
growth rate with flowering time and seed dormancy is inde-
pendent of population structure, and changes from Southern 
to Northern latitude (Debieu et al., 2013). This suggests that 
trade-offs between growth rate and life history change across 
the distribution range of the species (Debieu et al., 2013). It 
further implies that complex multitrait combinations (i.e. trait 
syndromes) are necessary to adjust to the changing trade-
offs imposed by regional differences in climatic conditions. 
Co-variation between flowering time, final biomass, and aver-
age rate of biomass accumulation before flowering also suggests 
that genetic adaptation to local climate conditions is mediated 
by a trait syndrome (Vasseur et al., 2018a).

Genetic variation for tolerance to drought stress, just like that 
for life history, displays signatures of local adaptation. Many gen-
etic variants have been identified that also affect either root or 
rosette growth in the face of severe drought stress (El-Soda et al., 
2015; Clauw et al., 2016; Davila Olivas et al., 2017). Several stud-
ies highlighted the adaptive relevance of variation in the ability 
to maintain growth and photosynthesis when water is limited. 
After accounting for the demographic history of the species, 
stomatal size variation was found to correlate with water-use 
efficiency (i.e. rate of carbon fixation to water loss) and both 
air humidity and the local probability of spring drought sever-
ity (Dittberner et al., 2018), in agreement with field measure-
ments (Mojica et al., 2016). The molecular evolution of the gene 
P5CS, which contributes to the synthesis of proline, a potent 
osmoprotectant in A.  thaliana, suggests that it contributed to 
local adaptation (Kesari et al., 2012). Nucleotide variants within 
genes displaying stress-dependent expression were also shown 
to be over-represented among variants correlating with climatic 
parameters (Lasky et al., 2014; Exposito-Alonso et al., 2018c).

In fact, genetic variation for stress tolerance not only is 
involved in local adaptation, but it also appears to be part of 
a trait syndrome, because it is often reported to coincide with 
variation in life history. Early flowering individuals, which 
sometimes complete their life cycle within a few weeks, can 
escape conditions causing high pre-reproductive mortality 
(Franks, 2011; Fournier-Level et al., 2013; Riboni et al., 2013). 
In addition, the major flowering time QTL FRIGIDA controls 
not only the timing of flowering but also water-use efficiency 
(Johanson et al., 2000; Lovell et al., 2013). Improved perform-
ance in plants exposed to moderate drought stress is correlated 
with the ability to flower early (Bac-Molenaar et al., 2016), but 
genotypes with a strong vernalization requirement tend rather 
to avoid the effect of drought by maintaining their internal 
water level (McKay et al., 2003; Des Marais et al., 2012; Lovell 
et al., 2013; Easlon et al., 2014; Davila Olivas et al., 2017). The 
most stress-tolerant individuals actually appear to be either 
early flowering or slow growing (Davila Olivas et  al., 2017; 
Vasseur et al., 2018a).

Because of its co-variation with life history, adaptation to 
drought stress can show counter-intuitive patterns. In A. thali-
ana, local adaptation for increased tolerance to drought stress 
is not found in the driest regions, because, in these areas, nat-
ural selection promoted genotypes with the ability to escape 
the stress (Kronholm et  al., 2012; Vidigal et  al., 2016, Mojica 
et  al., 2016; Tabas-Madrid et  al., 2018). Genotypes showing 
smaller stomata, higher water-use efficiency, and longer photo-
synthetic activity in the face of terminal drought have in fact 
evolved in Southern Scandinavia, where the growth season is 
too short to allow an escape from the drier season but dry 
enough to require improved drought tolerance (Mojica et al., 
2016; Dittberner et  al., 2018; Exposito-Alonso et  al., 2018c). 
Genotypes with a strong vernalization requirement are in 
fact more frequent in this region, limiting the possibility to 
escape drought during the growing season (Li et  al., 2014). 
Non-monotonic patterns of co-variation between flowering 
time and temperature have also been reported in Spain (Tabas-
Madrid et  al., 2018), suggesting that the selective advantage 
of early flowering for persisting in dry regions depends on a 
broader ecological context, and thus presumably on the possi-
bility to rely on earlier flowering to escape stressful conditions. 
The evolution of the response to abiotic stress in A. thaliana is 
therefore not independent of the evolution of the timing of life 
history transitions.

The ability of plants to face biotic stresses is also depend-
ent on life history variation. Alleles accelerating flowering 
were shown to be often combined with alleles decreasing the 
expression of plant defense genes throughout natural A. thali-
ana populations (Glander et al., 2018). An indication that this 
assortment coincides with differential fitness suggests that it has 
been driven by natural selection. In addition, plant growth in 
response to the specialist herbivore Pieris rapae was enhanced 
in fast-flowering individuals but showed a trade-off with the 
drought response (Davila Olivas et al., 2017). Here again, this 
hints at the evolution of a trait syndrome, where early flower-
ing genotypes may have been selected for their ability to allo-
cate fewer resources into defense, in order to maximize their 
growth rate or to reshuffle energetic priorities and ensure 
survival.

Arabidopsis thaliana thus displays significant levels of genetic 
variation in traits controlling life history, growth rate, or toler-
ance to diverse stresses, all of which co-vary with each other 
and with climatic conditions at the location of origin. This 
suggests that adaptation to novel environments after the last 
glaciation has allowed the evolution of trait syndromes (i.e. a 
combination of multiple traits). These combinations probably 
reflect both adaptive synergies and global trade-offs imposed 
by resource limitations. Identifying the exact composition of 
trait syndromes and their variation requires a careful monitor-
ing of life history transitions, growth rates, stress tolerance, and 
plant fitness in natural conditions. We argue below that inter-
preting trait variation and co-variation in the global context of 
plant ecological strategies, within summary schemes developed 
by ecologists to describe the major dimensions determining 
variation in form and function within and across habitats, may 
help resolve the ecological significance of traits and their com-
binations (Fig. 1).
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Interpreting A. thaliana trait syndromes in 
the context of major ecological strategies

Not all possible trait combinations are viable in natural envi-
ronments: natural selection indeed limits the diversity of forms 
and functions in plants as a result of trade-offs among the 
diverse options for resource allocation (Reich, 2014; Díaz et al., 
2016). This major constraint has motivated several attempts 
to classify plants with respect to their ecological strategies 
(reviewed in Westoby et  al., 2002; Díaz et  al., 2016). Among 
them, Grime’s CSR theory (Grime, 1974, 1977) is a promin-
ent strategy scheme (Pierce et al., 2017). It distinguishes three 
primary strategies, namely competitive (C), stress-tolerant (S), 
and ruderal (R). The first two strategies evolve in rather con-
stant environments, which differ in the severity of resource 
shortage (light, water, and/or nutrients). The third one prevails 
in disturbed environments, and involves investment of a large 
proportion of resources in propagules from which the popula-
tion can regenerate in the face of repeated biomass destruction 
events. Distinct strategies may also co-occur within a given 
environment, enhancing local niche separation between spe-
cies (Kraft et  al., 2008). The multivariate and complex traits 
that form the basis of ecological strategies are often difficult to 

measure. Yet, a small number of plant functional traits related to 
growth, survival, and reproduction have been shown to sum-
marize efficiently the overall diversity of plant life form and 
functions (Díaz et  al., 2016). Among them, as many as three 
leaf traits—leaf area, leaf dry matter content, and specific leaf 
area—can be used as surrogate to describe a species’ CSR strat-
egy (Pierce et al., 2017).

Like many other annuals in the Brassicaceae family, these 
leaf traits position A. thaliana as a typical R-strategist (Pierce 
et al., 2017). It is typically encountered in regularly disturbed 
habitat patches, such as urban, ruderal, or mountainous habi-
tats, and its seedlings are directly exposed to seasonal climatic 
fluctuations (Picó et  al., 2008; Bomblies et  al., 2010; Svardal 
et al., 2017). However, the past years have shown that plant spe-
cies are far from having a fixed CSR strategy. On the contrary, 
strategy classifications at the species level have been more and 
more challenged by the large spectrum of intraspecific vari-
ation (Des Roches et al., 2018; Volaire, 2018). For this reason, it 
is now increasingly acknowledged that trade-offs in life history 
and growth strategies can also occur at the level of genotypes 
and populations, and that more attention should be devoted 
to interindividual and interpopulation variation of the CSR 
strategy (Astuti et al., 2018). Intraspecific trade-offs have been 

Fig. 1.  Hypothetical contribution of adaptive traits to ecological diversification within Arabidopsis thaliana. The diversity of ecological strategies can be 
summarized in Grime’s C–S–R strategy triangle which reflects a major trade-off between competitive, stress-tolerant, and ruderal strategies. Large arrows 
represent the major evolutionary trajectories. Intraspecific variation along the R–S axis has been documented in A. thaliana. Fewer studies document 
intraspecific variation along the R–S and C–S axes. Small arrows represent the contribution of individual traits (green, contribution to increased ruderality; 
red, contribution to increased stress tolerance; orange, contribution to increased competitive ability). The position of the trait along the vertical axis is 
dictated by graphical constraints only. The gray dot symbolizes a genotype with a given strategy. Large arrows point to possible ecological shifts that 
populations can evolve. These shifts can be operated by concomitant trait shifts.
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found along the S–R axis of Grime’s CSR strategy scheme 
(Bilton et al., 2010; May et al., 2017), but also along the C–S 
axis (Ravenscroft et al., 2014; Astuti et al., 2018). These trade-
offs are commonly explained as a mechanism of local adap-
tation, for example in response to different levels of resource 
stress. It is thus not surprising that considerable intraspecific 
variation has also been found for A. thaliana. A study with 16 
individual accessions sampled along a steep altitudinal gradi-
ent revealed that populations from hotter climates clustered 
towards the stress-tolerant end of the observed strategy spec-
trum, implying pronounced intraspecific variation along the 
S–R axis (May et al., 2017). The extent of variation along the 
S–R axis was recently confirmed by a comprehensive analysis 
of variation in CSR positioning in some 300 genotypes in 
A.  thaliana (Vasseur et al., 2018b). As for other annual plants, 
we could thus assume that A. thaliana populations growing in 
water- or temperature-limited habitats may be well adapted 
to high levels of stress and thus characterized as stress tolerant 
(Volaire, 2018). In contrast, genotypes that grow fast and com-
plete their life cycle within a few weeks may be described as 
extreme ruderals (Fig. 1). In A.  thaliana, genotypic variation 
covers the whole S–R strategy spectrum. The geographical 
distribution of this variation contrasts with that of genome-
wide patterns of variation, suggesting a role in local adaptation 
(Vasseur et al. 2018b).

Intraspecific variation along the S–C or R–C axes involves 
traits that have not been intensively investigated in A.  thali-
ana (Fig. 1). The ability to compete with other species plays a 
presumably minor role for a pioneer species that only subsists 
in disturbed environments. Yet, the few studies that investi-
gated this aspect (e.g. Masclaux et al., 2010; Baron et al., 2015; 
Frachon et  al., 2017) suggest that intraspecific variation in 
C-strategic features will also be significant (Fig. 1). The dis-
turbed environments in which A.  thaliana can be found are 
sometimes densely populated (G. Schmitz, personal communi-
cation; see also the population studied in Frachon et al., 2017). 
Interspecific competition has been shown to modify the pat-
tern of natural selection operating on flowering traits in a col-
lection of recombinant inbred lines (Brachi et al., 2012). Some 
A. thaliana genotypes, initially collected in a densely populated 
habitat patch, displayed the ability to decrease the biomass of 
some of their interspecific competitors (Baron et  al., 2015; 
Frachon et al., 2017).

Intraspecific competition is also expected to stand under 
strong selection in the species. The population census size 
is small in a newly colonized habitat patch but will increase 
with the age of the habitat patch. Under increasing density of 
intraspecific competitors, plants differ in their ability to reach 
the fruiting phase and produce seeds (Masclaux et  al., 2010; 
Muñoz-Parra et  al., 2017). Root growth is also negatively 
impacted by intraspecific competition (Muñoz-Parra et  al., 
2017). Competitive ability may also modulate the intensity 
of selection on water-use efficiency variants (Campitelli et al., 
2016). Intraspecific variation along the S–C or R–C axes might 
be less pronounced than along the S–R axis, but is probably not 
negligible, as indicated by the recent discovery of a gene locus 
promoting positive interactions between genotypes (Wuest and 
Niklaus, 2018, Preprint; see also Vasseur et al., 2018b).

The CSR strategy scheme is one of the conceptual frame-
works that can help understand the role that specific trait (or 
gene) combinations have played in the ecological diversifica-
tion observed within A.  thaliana. To date, their contribution 
remains mostly hypothetical (Fig. 1). Late flowering in con-
trolled conditions was reported to associate with increased stress 
tolerance in the CSR scheme, yet whether this trait mediates 
an increase in stress tolerance or associates with traits which 
control stress tolerance has not been elucidated (Vasseur et al., 
2018b). Identifying causal links between traits, their under-
pinning genes, and shifts in CSR strategy could considerably 
ameliorate knowledge transfer between model and non-model 
species, because this scheme was designed to facilitate interspe-
cific comparisons (Pierce et al., 2017).

Towards linking molecular biological 
functions with their role in ecological 
strategies

Exploring how traits are combined in natural populations to 
tune the ecological strategy of local genotypes to their local 
environmental conditions can indeed cast new light on gene 
function at the molecular level. We illustrate this idea with two 
points: first we describe how natural variation can help iden-
tify genes controlling ecologically important traits and focus 
on plant nutrition as an exemplary trait. Secondly, we show 
that the function of the well-known flowering time regulator 
FLOWERING LOCUS C (FLC) can be revised in the per-
spective of ecological strategies.

Studies of natural variation have greatly assisted the discov-
ery of the genes controlling functions that cannot be easily 
dissected in mutant screen approaches (reviewed in Alonso-
Blanco et al., 2009). For example, QTL analyses of nutrients 
unraveled the function of the anion channel AtCLC-c in 
nitrate transport to vacuoles (Loudet et al., 2003; Harada et al., 
2004) or showed that the ATPase subunit G and the multi-
copper oxidase LPR1 have a major impact on the accumula-
tion of phosphate and phytate (Bentsink et al., 2003; Reymond 
et al., 2006). They further showed that foliar sulfate accumu-
lation is dependent on sulfate reduction rates (Loudet et  al., 
2007; Koprivova et  al., 2013). The fact that one of the two 
major QTLs controlling sulfate reduction, the gene APR2, has 
evolved loss-of-function alleles three times independently, in 
Central Asia, Czech Republic, and Sweden, was also a striking 
result (Loudet et al., 2007; Chao et al., 2014).

Studies of natural variation can also inform about the gen-
etic architecture and evolutionary potential of specific traits. 
For example, the major discoveries driven by differences in 
ionomes between A.  thaliana populations were not achieved 
through genome-wide association mapping (Atwell et al., 2010), 
but through the use of ionomics to screen for genotypes with 
contrasted nutrient content for analysis (Lahner et  al., 2003; 
Salt et al., 2008). Approximately 20-fold differences in molyb-
denum concentration were measured in leaves of 98 A. thali-
ana genotypes, and the genetic analysis of the progeny of two 
of the most contrasted accessions Col-0 and Ler revealed the 
role of Molybdenum Transporter-1 (MOT1) (Tomatsu et al., 2007; 
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Baxter et al., 2008). Similarly, tetraploidy was shown to increase 
potassium content in the progeny of Col-0 and the autotetra-
ploid line Wa-1 (Chao et al., 2013). Such studies demonstrate 
that heritable variation in nutrient content often results from 
variants that are (i) large effect mutations since they can be eas-
ily dissected in bi-parental progeny and (ii) rare because they 
do not give a detectable signal in genome-wide association 
studies (GWAS). This indicates that a plant’s ability to pre-empt 
resources for improved nutrition can be easily manipulated 
at the genetic level. Such genetic variants in nutrient uptake 
can be used to understand population maintenance and plant 
community formation in a context of nutrient depletion or 
plant–plant competition. In other words, they provide a valu-
able resource to understand how molecular mechanisms can 
contribute to ecological diversification.

For most ionomic traits, however, a contribution to plant 
growth rate, competitive ability, or stress tolerance has not been 
established. Accumulation of sodium is one of the rare exam-
ples where the ecological relevance of genetic variation for 
mineral uptake could be documented. An allele of the sodium 
transporter gene AtHKT1 was shown to mediate increased 
Na+ concentration in A. thaliana genotypes originating from 
two coastal habitats in Spain and Japan, and was found to co-
segregate with salt tolerance (Rus et  al., 2006, Baxter et  al., 
2010). Using distance to sea or to a known saline soil as a quan-
titative measure, a strong relationship between high leaf Na+ 
and origin in potentially saline-impacted soils was confirmed 
(Baxter et  al., 2010). Recently, the mechanism by which the 
weak allele of AtHKT1 confers Na+ tolerance has been eluci-
dated (An et al., 2017). High expression of AtHKT1 in stems 
strongly limits the allocation of Na+ to reproductive tissues and 
thus confers higher fertility specifically under salt stress (An 
et al., 2017).

An ecological perspective on functional variation can also 
allow a more comprehensive description of gene function. 
For example, the gene FLC was named after its typical effect 
on flowering time: flc mutants are considerably earlier flower-
ing in long day-controlled conditions (Michaels and Amasino, 
1999). The dissection of natural variation present at this locus in 
A. thaliana uncovered an allelic series conferring a wide range 
of flowering times and responses to vernalization (Lempe et al., 
2005; Shindo et al., 2005; Coustham et al., 2012; Li et al., 2014). 
Allelic variation at FLC orthologs is also responsible for vari-
ation in flowering time or duration of flowering in other cru-
cifer species (Albani et al., 2012; Kemi et al., 2013; Baduel et al., 
2016). Progressively, however, the specificity of FLC action on 
flowering time has been questioned. FLC variation was associ-
ated with the timing of germination (Chiang et al., 2009), raising 
the possibility that FLC acts pleiotropically on multiple pheno-
types. Indeed, the genome-wide analysis of FLC-binding sites 
uncovered several hundred genes, a large proportion of which 
were involved in response to cold stress (Deng et  al., 2011; 
Mateos et al., 2015, 2017). Several genes involved in cold stress 
were strongly deregulated in flc mutants compared with the FLC 
wild type when plants were exposed to cold, but not at normal 
growth temperatures, suggesting that FLC has a role in modu-
lating expression of genes conferring tolerance to cold (Mateos 
et al., 2017). Pleiotropic genes such as FLC may respond to the 

fundamental requirement for ecological pleiotropy in natural 
environments that are marked by inevitable fluctuations. Indeed, 
the monitoring of frequency changes in alleles associated with 
various reproductive and phenological traits in the field within 
a single natural A. thaliana population showed that variants with 
intermediate levels of pleiotropy contributed the largest adap-
tive steps (Frachon et al., 2017). This is because selective forces 
fluctuate across years and seasons, and they are more likely to act 
consistently on variants controlling more than one phenotype. 
Natural selection at this particular site thus appeared to have 
favored variants contributing to both increased tolerance to local 
warming and increased competitive ability (Frachon et al., 2017). 
Although it is beyond the scope of this review to enumerate all 
molecular functions whose ecological role remains to be fully 
determined, the examples given by plant nutrition or the pleio-
tropic effects of FLC illustrate how placing molecular functions 
within the context of ecological strategies helps identify genes 
and their ultimate role in natural conditions.

Towards resolving ecological questions 
with a genetically tractable plant system

Conversely, the diverse ecological strategies co-segregating in 
A. thaliana provides a unique system to address, at the genetic 
and molecular level, those questions that are key to ecologists. 
We illustrate this idea below with a pressing question in cur-
rent ecological research: the impact of climate change.

In today’s ecological research, discerning the mechanisms 
behind ecosystem responses to climate change is a central theme 
(Reed et al., 2012; Ruppert et al., 2015). Extended periods of 
high temperature and net declines in soil moisture are expected 
in many regions (IPCC, 2013). Intraspecific variation in func-
tional traits associated with resource-use efficiency and stress tol-
erance may help understand the determinants of species growth 
and survival under climate change (Aspinwall et al., 2013).

A first consequence of increased climatic unpredictability 
is that ecological shifts towards increasingly ruderal strategies 
will be promoted. The study of flowering time variation in 
A.  thaliana has demonstrated that species are not limited in 
the number of mutations that can promote accelerated flower-
ing (Mendez-Vigo et al., 2011; Sánchez-Bermejo et al., 2012; 
Hepworth and Dean, 2015; Whittaker and Dean, 2017): species 
will therefore have ample opportunities to adapt to drought by 
advancing their transition to flowering (Franks et al., 2007). As 
a matter of fact, earlier flowering seems to be globally under 
selection (Munguía-Rosas et al., 2011).

However, adapting the timing of major life history transi-
tions will probably not suffice. As water is a paramount fac-
tor in determining both the distribution and the productivity 
of plant species, drought stress responses will be increasingly 
critical for species assemblages in most environments (Volaire, 
2018). Through manipulative experiments and data fusion 
approaches, ecologists have learned what they may basically 
expect for ecosystem dynamics: individual-level responses are 
followed by species reordering within communities, and finally 
by species losses and immigration (Smith et al., 2009). These 
observations lack a generic understanding of individual-level 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/70/4/1141/5248506 by M

ax-Planck-Institut fur Zuchtungsforschung user on 12 April 2019



Genetics of ecological strategies in Arabidopsis thaliana  |  1147

responses, which are typically initiated at the molecular level, 
and then cascade upwards to affect plant individuals’ physi-
ology and growth (Chaves et  al., 2003; Avolio et  al., 2018). 
Unfortunately, detecting and linking cascading stress responses 
across levels of biological organization is highly challenging 
(Meyer et al., 2014; Lovell et al., 2016), partly due to the use of 
different conceptual frameworks and terminologies across the 
different disciplines and scales (Volaire, 2018). Although ecolo-
gists have grown increasingly interested in linking molecular 
drought responses with physiological data from plant individu-
als (Lovell et  al., 2016; Hoffman and Smith, 2018), very few 
studies up to now have examined the link between different 
levels of biological organization in plant water stress responses 
(Avolio et al., 2018). Besides the research challenges described 
above, this is partly due to a reluctance of ecologists to include 
an ecological outlier such as the ruderal A. thaliana.

Ecologists nevertheless increasingly acknowledge that an 
understanding of gene expression is a critical hurdle for dissecting 
stress response mechanisms (Hoffman and Smith, 2018). Many 
studies focusing on drought ecology have been conducted in 
perennial grasses such as Andropogon gerardii, Sorghastrum nutans, 
or Panicum virgatum (Hoover et  al., 2014). Agronomic studies 
have been mostly conducted on domesticated, annual grasses 
such as durum wheat (Triticum turgidum) or barley (Hordeum 
vulgare). In light of the comparatively high ecological diversi-
fication reviewed above, one can argue that the annual forb 
A.  thaliana could efficiently complement these studies. Some 
recent, interdisciplinary attempts have exemplified how such a 
diverse species could help us understand the mechanisms and 
ecological trade-offs of stress responses. Combining a charac-
terization of genetic variation in drought stress resistance with 
current and future climate envelopes revealed the enormous 
adaptive potential of A. thaliana in the face of climate change 
(Fournier-Level et al., 2016; Exposito-Alonso et al., 2018a). It 
also documented the genetics of this potential (Exposito-Alonso 
et  al. 2018b, c; Fournier-Level et  al., 2016). Among European 
genotypes, it is predicted that those originating from Northern 
and Southern latitudes will be able to adapt in the new climate, 
due to their higher drought resistance as well as the genetic 
variability of the populations (Exposito-Alonso et  al., 2018c). 
In fact, in A.  thaliana, it is possible to perform experiments 
quantifying the impact of selection in populations faced with 
increasingly realistic scenarios of global climate change, where 
exposure to drought stress, average temperature, or increased 
frequency of major disturbance set new limits on plant plasticity 
(Exposito-Alonso et al., 2018b). To enhance the comparability 
of drought studies across model species and disciplines, drought 
regimes (e.g. frequency and intensity) should also be character-
ized with standard methods in the species (Vicca et al., 2012; 
Ruppert et al., 2015), and diagnostic experimental procedures 
should be adopted to identify the ecological mechanisms pro-
moting drought resistance (Gilbert and Medina, 2016).

As an undomesticated species, A.  thaliana has been subject 
to a complex suite of environmental challenges over the course 
of its evolutionary history (see Koch, 2019), which promoted a 
diversification in ecological strategy. Its amenability to genetic 
approaches (e.g. seed stocks, mapping populations, mutant col-
lections, or GWAS panels) can greatly facilitate trait analysis and 

reveal which functional traits or trait combinations are sufficient 
to promote shifts in ecological strategies. For example, dissecting 
how the plant combines tolerance to multiple stresses, whilst at 
the same time fine-tuning the balance between defense, growth, 
and productivity, is of great importance for interpreting the 
dynamics of plant communities (Bechtold et al., 2018). Knowing 
which genes contribute to unobservable traits underpinning key 
aspects of ecological strategy can also improve the ecological clas-
sification of species. Indeed, they provide measurable proxies for 
traits that are difficult to measure but make important contribu-
tions to dimenstions of the ecological strategy that leaf traits and 
the CSR strategy scheme do not fully recapitulate.

Conclusion and outlook

The high natural variation and the unrivaled genomic resources 
of A. thaliana are great assets in understanding pressing questions 
in contemporary plant ecology but also to dissect gene func-
tion comprehensively, from the molecular to the community 
level. This review has assembled recent conceptual and meth-
odological developments that show how this field is advancing. 
The advent of new sequencing technologies has increasingly 
digitalized observations both in the lab and in the field. To 
enhance our interpretation of these data, links between specific 
genes and the evolution of novel ecological preferences must be 
established. The recently published indication that variation in 
CSR positioning contributes to local adaptation in A. thaliana 
already suggests that variation in global ecological strategy is 
both heritable and relevant for understanding plant perform-
ance in diverse parts of the species range (Vasseur et al. 2018b). 
Yet, variation in CSR positioning also depends on the envir-
onment in which CSR-indicative traits are measured (Vasseur 
et al. 2018b). Several key challenges remain to be addressed such 
as the following: (i) To what extent do intraspecific changes in 
CSR positioning translate into changes in competitive ability, 
stress resistance, or tolerance to disturbance? (ii) How many 
traits in a trait syndrome are sufficient to initiate significant eco-
logical shifts? (iii) What is the importance of plasticity in shifting 
ecological strategies? (iv) Which gene or gene activity can be 
used as proxy to quantify ecological dimensions that are not 
correctly summarized in global strategy schemes? Answering 
these questions in A.  thaliana will pave the way for bridging 
ecology and molecular biology in Plant Sciences.
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