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Abstract
TheNovelMaterials Discovery (NOMAD) Laboratory is a user-driven platform for sharing and
exploiting computationalmaterials science data. It accounts for the various aspects of data being a
crucial rawmaterial andmost relevant to acceleratematerials research and engineering. NOMAD,
with theNOMADRepository, and its code-independent and normalized form, theNOMADArchive,
comprises theworldwide largest data collection of thisfield. Based on itsfindable accessible,
interoperable, reusable data infrastructure, various services are offered, comprising advanced
visualization, theNOMADEncyclopedia, and artificial-intelligence tools. The latter are realized in the
NOMADAnalytics Toolkit. Prerequisite for all this is theNOMADmetadata, a unique and thorough
description of the data, that are produced by all important computer codes of the community.
Uploaded data are tagged by a persistent identifier, and users can also request a digital object identifier
tomake data citable. Developments and advancements of parsers andmetadata are organized jointly
with users and code developers. In this work, we review theNOMADconcept and implementation,
highlight its orthogonality to and synergistic interplaywith other data collections, and provide an
outlook regarding ongoing and future developments.

1. Introduction

Big-data drivenmaterials science is emerging as a new research paradigm at the beginning of the 21st century.
The amount of data that has been created inmaterials science in recent years and is being created every newday is
immense, and thefield is facing the 4V challenges of big data [1]. Bringing together big data with high-
performance computing is a new, emerging fieldwith a game-change potential for numerous applications. It
promises breakthroughs in the improvement of the analysis and description of scientific phenomena and
materials properties. Clearly, the future of computationalmaterials sciencewill combine simulationswith
datadriven andmodeldriven techniques in an integratedmanner. This will require interdisciplinary teams as
well as next-generation researchers with different skill sets,mastering physics, chemistry ormaterials science
simulationswith data analysis andmanagement as well as hardware aspects.

Also, to fully exploit the significant information and potential of themassive amounts of available data,
requires to provide the community with proper infrastructures that allow for efficiently collecting, curating, and
sharing data.

Themost prominent early data collections of computationalmaterials science were established to serve
different special purposes rather than sharing and enabling contributions from the community. AFLOW [2] is
the biggest single data base in ab initio computationalmaterials science in theUSA,with a focus on complex
alloys.More recently, AFLOWalso offers online applications for property predictions usingmachine learning.
TheMaterials Project [3]may be called the initiator ofmaterials genomics in the field. Itsmission is to accelerate
the discovery of new technologicalmaterials, e.g. for batteries, electrodes, etc, through advanced scientific
computing and innovative design. The open quantummaterials database (OQMD) [4] has a focus on energetics
and thermodynamics. In all three themain underlying quantum engine is theVASP code [5], and the data were
originally not open to the public, but—aswill be described below—they are nowopen and part of theNovel
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Materials Discovery (NOMAD) data collection. For an overview of the current status of data-centric science for
materials innovation and amore detailed account of thementioned important initiatives we refer to a special
issue of theMaterials Research Society Bulletin [6].

Here, we describe how theNOMADLaboratory has initiated data sharing in the computationalmaterials-
science community and give an overview aboutNOMAD’s concept, its data collection, and its services based on
it. Finally, an outlook is provided about the next steps and how tomeet the big picture.

2.Game change by data sharing

The importance of an extensive data sharing for the advancement of science and engineering has been stated
often, and it is a generally accepted assessment. Unfortunately, however, it has beenmostly empty rhetoric of
scientific societies and funding agencies [7]. For thefield of computationalmaterials science, theNOMAD
Laboratory [8]has changed the scientific attitude towards a comprehensive and FAIR data sharing, opening new
avenues formining and refining big data ofmaterials science [9]. (For the definition of FAIR; i.e.findable,
accessible, interoperable, reusable see below and [10].) InNovember 2014, the principal investigators of the
NOMADCenter of Excellence [8] launched an initiative at the Psi-k community, proposing ‘a change in
scientific culture’ of computationalmaterials science and engineering through extensive sharing of data—all
data [11]. Clearly, only if the full input and outputfiles of computations are shared, calculations do not need to
be repeated again and again, and thewider community, or even the entire research field has access to big data
which can be used in a totally new researchmanner, i.e. by artificial-intelligence (AI)methods. The vision of
where thisfield should be going togetherwith themost successful data-analytics concepts pursued inmaterials
science and several examples thereof are described in [1].

Since going online in 2014, the number of calculations collected in theNOMADRepository has exceeded
even themost ambitious expectations. Thereby theNOMADCenter of Excellence [8] has assumed a pioneering
role in data sharing and analytics, and in particular in all aspects of what is now called the FAIR handling of data
[1, 10]3. It has always beenNOMAD’s principle that data is Findable for anyone interested and stored in away
thatmake it easilyAccessible; its representation follows accepted standards [12, 13], with open specifications,
making data Interoperable; andfinally, all of thismakes the dataRe-purposable4, i.e. enables data to be used for
research questions that could be different from their original purpose.

3. TheNOMADLaboratory concept

TheNOMADLaboratory processes, curates, and hosts computationalmaterials science data, computed by all
importantmaterials-science codes available today andmakes this data accessible by providing several related
data services.More andmore codes are added, jointly with the code developers or expert users. The big picture is
to advancematerials science by enabling researchers in basic science and engineering to understand and utilize
materials data in order to identify improved, new or even novelmaterials and, in turn, pave theway to novel
products and technologies. NOMADalso collaborates withmany researchers and all other big databases,
specifically AFLOW [2, 14–16],Materials Project [3, 17, 18], OQMD [4, 42]. In the following, NOMAD’s
cornerstones, as summarized in table 1, are described in somemore detail.

Table 1.Components of theNOMAD laboratory.

Purpose Data source/format

NOMADRepository Open-access platform for data sharing Rawdata from40 different codes, provided under cc-

by license

NOMADArchive Data source ofNOMAD services Normalized data in unified file format and units, pro-

vided under cc-by license

NOMADEncyclopedia Graphical user interface to characterizematerials

by computed properties

Based on archive data

Advanced visualization Remote visualization tools, including virtual reality Based on archive data

NOMADAnalytics Toolkit Prototypical examples of artificial-intelligence tools Archive data; also applicable to external data sources

3
The concept of theNOMADRepository andArchivewas developed in 2014, independently and parallel to the ‘FAIRGuiding Principles’

[10]. Interestingly, the essence is practically identical.
4
TheNOMADCoEuses the term re-purposable, while in the FAIR concept it was termed re-usable. Both obviouslymean the same in this

context.
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TheNOMADRepository contains the raw data as they are created by the employed computer code, and these
data form the basis of all NOMAD services.Made publically available in early 2014, theNOMADRepository
now contains the input and outputfiles frommillions of calculations and has become theworld’s largest
collection of computationalmaterials science data. It comprises calculations that have been producedwith any
of the leading electronic-structure codes, and increasingly alsowith codes fromquantum chemistry and force-
field/molecular-mechanics simulations. Presently, NOMAD supports about 40 codes, and less-frequently used
or newly established codes are being added on demand in close collaborationwith the code developers or expert
users.We point to the orthogonality to other databases, and emphasize that theNOMADRepository is not
restricted to selected computer codes or closed research teams but serves the entire community with its
ecosystemof very different computationalmethods and tools.

By hosting rawdata and keeping scientific data for free for at least 10 years5, theNOMADRepository not
only helps researchers to organize their results andmake them available to others. Every calculation is uniquely
identified by a persistent identifier, and digital object identifiers are issued on request. Thismakes data citable
and helps tomake connections between publications and data. It also supports the community tofind outwhat
kind of calculations have been performed formaterials of interest, bywhomand bywhich code. TheNOMAD
Repositorywas thefirst repository inmaterials science recommended by ScientificData as stable and safe long-
time storage.

Uploading of data is possible without any barrier. Results are requested in their raw format as produced by
the underlying code. NOMAD implements an open data policy, where data are published according to the
Creative Commons Attribution 3.0 License. Accessibility of data inNOMADgoes significantly further than
meant in the FAIRGuiding Principles [10], as for searching and even downloading data fromNOMAD, users do
not even need to register. Nevertheless, uploaders can keep their data secret for a certain period that can be used
for publishing the results and/or restricting the access to a selected group of colleagues (or referees). After a
maximumperiod of three years though, all data become open access.

TheNOMADArchive hosts the normalized data, i.e. the open-access data of theNOMADRepository
converted into a common, code-independent format. In other words, numerous parsers have been developed
that read out and translate all the information contained in in- and outputfiles. This ensures the I in FAIR,
namely that data fromdifferent sources can be compared and, hence, collectively operated upon by various
NOMAD (and other) tools.

Figure 1 reflects the active participation of the entire community in theNOMAD initiative. It depicts a
snapshot of theNOMADArchive by 15March 2018, showing the number of uploads (total-energy calculations)
of data fromvarious community codes.

Obviously, a clearmetadata definition [20] is a prerequisite for the normalization step (and for all later steps)
tomake sure that the results/values obtained by atomistic/ab initio calculations are correctly interpreted by the

Figure 1.TheNOMADLaboratory supports all important codes in computationalmaterials science. The figure shows the number of
uploaded open-access total-energy calculations at theNOMADRepository (NOMAD) as of 15March 2018. The abscissa shows the
various codeswithmore than 80 uploads. The total number of open-access total-energy calculations at theNOMADRepository is
more than 50million, corresponding to billions of CPU-core hours. The stamp ‘supported byNOMAD’ can be found on the
homepage ofmany ab initio software packages of computationalmaterials science. Figure adaptedwith permission from [19]. ©
Materials Research Society 2018.

5
NOMADguarantees to keep data for at least ten years from the last upload. In practice thismeans that overall, data are keptmuch longer

than ten years.
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parsers. As such activity should be community driven, afirst keyworkshop (others are already following)was
organized at theCECAMHeadquater, bringing together players fromdifferent codes and research areas. The
goal and the outcome of this workshopwas published in [12, 13]. The following development of an open,
flexible, and hierarchicalmetadata classification system [20]was indeed challenging. The overall effort defining
general and code-specificmetadata and developing parsers for 40 codes amount to some ten or twenty person
years. Obviously, as codes are continuously updated and extended, and new codes are being developed, this is an
ongoing process, towhich everybody is welcome to contribute.

TheNOMADVisualization Tools allow for remote visualization of themulti-dimensional NOMADdata
through a dedicated infrastructure developedwithin theNOMADLaboratory. A centralized service is provided
that enables users to interactively perform comprehensive data visualization tasks on their computers without
the need for specialized hardware or software installations. Interactive data exploration by virtual-reality (VR)
tools is a special andmost successful focus. Also for this branch of the toolbox, users have access to data and tools
using standard devices (laptops, smartphones), independent of their location. SuchVR enhances training and
dissemination and evenwere a great success, e.g. when presented to the general public during the LongNight of
Sciences, taking place in Berlin, in June 2017 (see figure 2). As an example, we note that 360°movies can be even
watchedwith simpleGoogle cardboard glasses as demonstrated, e.g. for CO2 adsorption onCaO and excitons in
LiF or hybridmaterials [21]. Excitons, being six-dimensional objects, cannot easily be visualized in a standard
way. Taking the position of an electron or a hole, VR allows for inspecting the ‘space’ (probability distribution)
of its counterpart. This example indeed demonstrates how seeing helps understanding.

As the visualization tools already have evidenced, it is extremely useful to provide the data not only in a
machine-readable but also in a human-accessible form in order to get afirst insight intomaterials data.
Therefore, theNOMADCoEhas created its data infrastructure not only for collecting and sharing data but also
to let us see and explore what information all this data contain. TheNOMADEncyclopedia is a web-based public
platform that gives amaterials-oriented view on the Archive data that helps us to search for the properties of a
large variety ofmaterials. Here, unlike in the Repository, one does neither search for a single code nor for a
specific contributor. The Encyclopedia serves the purpose of in-depth characterization and understanding of the
materials of interest by providing knowledge of their various properties. This includes structural features,
mechanical and thermal behavior, electronic andmagnetic properties, the response to light, andmore.
Whatever property of a givenmaterial has been computed, the aim is tomake this information easily accessible
through a user-friendly graphical user interface. Having all this information in one place gives us an impression
of thewealth of availablematerials data and even allows for comparing very different systems in terms of certain
features. TheNOMADEncyclopedia allows us to explore and comprehend computations obtainedwith various
tools and differentmethodology.We can directly assess the spread of results and, as for instance,measure the
impact of a density functional on a given feature andmaterials class.

So far, theNOMADEncyclopedia processes structural, electronic, thermal properties (see figure 3 as an
example), andmore for bulkmaterials and low-dimensional systems. It is constantly extended in terms of new
data, other system types, and properties. And soon, the Encyclopedia will handlemolecules, surfaces and
adsorbate systems (as shown infigure 4), the response to external excitations, elastic properties, Fermi surfaces,
molecular dynamics, andmore.

Figure 2.Virtual-reality setup as demonstrated during the LongNight of Sciences, Berlin 2017.
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Figure 3.Collage showing as example thermal properties of Ba8Ga43 from theNOMADEncyclopedia.

Figure 4.Unit cells of various surface systemswith defects and adsorbed atoms andmolecules. In the respective upper right corners,
the irreducible unit cell of the pristine crystals are shown as detected by the Encyclopedia classification algorithm.
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Furthermore, the Encyclopedia provides amaterial classification system, information on various levels, e.g.
about computed quantities or themethodology behind the calculations, as well as links to external sources, like
to usefulWikipedia pages.We also point to the error-reporting tool, implemented for the case of problematic
data. Should there be a dataset or a graph that does not appear to be correct,making use of a simple pull-down
menu, the user can let us know about it.

The Encyclopedia infrastructure currently consists of processing, stating and three production systems that
are coordinated by a load balancer (see figure 5) to increase fault-tolerance, availability and handle dynamic
loads.

TheNOMAD infrastructure provides the ideal platform for data-driven science. This topic is discussed in
detail in [1]. Here, we focus on theNOMADAnalytics Toolkitwhich provides a collection of examples and tools
to demonstrate howmaterials data can be turned into knowledge.When the results of AImethods are presented
and discussed in scientific publications, a challenge is posed in terms of the complete and sound description of
the providedmodel and of theway it was trained. This is difficult to fully report in awritten text. One practical
solution is to provide themodel in the formof an ‘interactive code’ that can be inspected and run interactively by
any interested researcher and even thewider public. Even better, one can provide the algorithm that trained the
model, starting from the training data. Readers can then at once verify the procedure and learn new strategies in
depth. TheNOMADAnalytics Toolkit [22]was created as a platform for hosting such ‘interactive codes’. Its
infrastructure is composed of data-science notebooks, which run in containers. It allows developers of data-
science notebooks related to their researchwork to be free in the choice of programming language, version,
required libraries, etc. Presently, several notebooks prepared by theNOMAD team are already publicly available
through the Analytics Toolkit and present the learning and/or the application of data-analyticsmodels, applied
tomaterials science. They concern topics like crystal-structure prediction, property prediction, error estimates,
classification ofmaterials, andmore. Some of these notebooks correspond to peer-reviewed publications
[23–34].

To explore theseNOMADanalytics tools, there is no need to install any software, no need for registration,
and no need for computational capacity (for not too demanding requests). Like the visualization tools, also this
toolkit allows for remote usage.We emphasize that though initiated by theNOMADCoE, thewidermaterials
science community has been invited to use theNOMADAnalytics Toolkit platform to upload notebooks for any
data-analytics publication through dissemination channels, such asNOMADSummer 2018 [35], and has
actively participating also in hackathons, contributing their ideas and tools to this platform.

Let us conclude this section by pointing to informative YouTubemovies that describe theNOMADproject
as awhole https://youtu.be/yawM2ThVlGw and https://youtu.be/sI2cPuIGNUU, the Repository https://
youtu.be/UcnHGokl2Nc, and the Analytics Toolkit https://youtu.be/UcnHGokl2Nc, all of them also available
at [21].

4. Fromdata to novel tools by crowd sourcing

It is surprising to seewhat people dowith data once it ismade available in a fully characterizedway. This was
impressively demonstrated by a public data-analytics competition [36] set up by theNOMADCoE. It was hosted
byKaggle—an online platform for data-science competitions. Specifically, this competition addressed the need

Figure 5.CurrentNOMADEncyclopedia environment consisting of the processing, staging, and three production systems, each
hosting several database- andweb-services (API stands for Application Programmbale Interface, GUI for graphical user interface).
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to identify novel transparent and semiconductingmaterials using a dataset of (AlxGayInz)2O3 compounds (with
x+y+z=1). The aimof this challengewas to identify the bestmachine-learningmodel for the prediction of
two key physical properties that are relevant for optoelectronic applications: the electronic band-gap and the
crystal-formation energy. These target properties were provided for 2400 fully relaxed crystalline systems.
However, the participants were given only an idealized (unrelaxed) geometry of the atomic positions. These
unrelaxed structures were generatedwithout an extensive calculation but just using the concentration-weighted
averages of the pure binary crystalline systems (Al2O3, Ga2O3, and In2O3). The reason for only providing
unrelaxed geometries was that the exact geometry is typically unknown a priori, and amodel using features from
the optimized structure would thus requirefirst calculating the relaxed geometry for any newmachine-learning
prediction. In this case, the band gap and formation energywould also be known for the relaxed structure, and
the prediction of these properties bymachine learningwould be of little value.

The test set for the competitionwas composed of an additional 600 systemswhere only the idealized
geometries and no othermaterials property was provided. By including data from7different crystal space
groups and unit cells ranging from10 to 80 atoms, both data sets (those for learning and for testing)were
constructed to ensure that the proposedmodels would be generalizable to diverse structures and various sizes.

The competitionwas launched on 18December 2017, andwhen itfinished on 15 February 2018, an
impressive total of 883 solutions had been submitted by researchers or research teams from around theworld,
employingmany differentmethods. A recent publication [32] presents a summary of the top three crowd-
sourcedmachine-learning approaches from the competition. Interestingly, the top three approaches adopted
completely different descriptors and regressionmodels. Thewinning solution employed a crystal-
graph representation to convert the crystal structure into features by counting the contiguous sequences of
unique atomic sites of various lengths (called n-grams), and combined this with kernel ridge regression [37]. The
2nd-placemodel represented each systemusingmany candidate descriptors from a set of compositional, atomic
environment-based, and average structural properties, whichwas combinedwith the light gradient-boosting
machine regressionmodel [38]. The 3rd-place solution employed the smooth overlap of atomic positions
representation [39] combinedwith a neural network.

5.Outlook

The by nowwell establishedNOMADLaboratory has recently been incorporated into a non-profit association,
FAIRData Infrastructure for Physics, Chemistry,Materials Science, andAstronomy e.V. (FAIR-DI) [40]. This
initiative is dedicated to providing a stable and sustainable data infrastructure that hosts and further develops the
NOMADRepository, Archive, and Encyclopedia such to guarantee long-term viability, independent of
individual research projects currently driving it. It also forms an ideal basis for advancing data-driven science,
for example, also addressing experimental studies. The proof of concept regarding Artificial Intelligence for
materials science has been successfully demonstrated, as discussed in detail in [1], with examples shown in the
Analytics Toolkit [22]. Now it is time for the next steps towards the ambitious goals of rigorousmaterials
classification andNOMAD.NOMAD’s long-term vision is to provide (high-dimensional)materialsmaps that
tell where in the composition and compound space one canfindmaterials for a certain application, be it
thermoelectrics, solar-cellmaterials, superconductors, topological insulators, or other systems of interest.

What FAIRDI’s name already suggests is another crucial andmost timely issue, i.e.making the link to
experimentalmaterials science.We note that this is a very demanding task. The input file in computations is a
comprehensive characterization of the sample used in the experiment. In the best case this includes thewhole
workflowof the sample preparation and the sample’s history. Furthermore, itmay also be difficult to describe
the experimental setup in every potentially relevant detail. First steps, building onNOMAD’s experience, are
already taken together with the BiGmax network [41], where computational data-drivenmaterials sciencemeets
data-intensive experiments. Thus far, the search for newmaterials enabling new applications (or improved
performance)was limited to educated guessesmostly based on selective experiments. Recent advances in data
miningwill allow pattern recognition and pattern prediction in an unprecedentedway. The outcome of big-
data-drivenmaterials science approaches will then impact theway experiments and data analyses will be done in
the future.

On the computational side, there are also big challenges to tackle. Despite the fact thatmillions of CPU core
hours are spent every day on supercomputers worldwide, thereby tremendously increasing the amount of
available data, we stillmay ask the questionwhetherwe have enough data for trustfulmaterials discovery? In fact,
current state-of-the-art electronic-structuremethods, i.e. DFTwith semi-local functionals, often face severe
deficiencies when describingmodernmaterials. The approximationsmade for exchange-correlation effects are
often too crude to properly capture, e.g. the energetics of defects and polaronic distortions, and often completely
fail to predict the energy-level alignment at interfaces betweenmaterials of different character, like organic-
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inorganic hybridmaterials. Hence, higher-levelmethodologies, ranging from advanced density functionals to
coupled-cluster (CC) theory, are essential to enable computationalmaterials science tomeet the needs of
modern technology.However, on present-day computers such higher-level calculations are not feasible.While
DFT,withmost popular semi-local functionals can handle nowadays 1000 atoms andmore, the higher-level
hybrid functionals are limited to the order of 100 atoms. The same holds for the random-phase approximation
and theGW approach ofmany-body perturbation theory. CC theory, the gold-standard of quantum chemistry,
is currently out of reach for system sizes beyond some 10 atoms. Thus reliably predicting novelmaterials with
desired properties by quantum-theory based tools can currently not be realized because highly precisemethods
are computationally too demanding to be applied to ‘real’materials. Obviously, our aimmust be to push the
limits of ab initio computational science in terms of speed, accuracy, and precision, tofinally serve the scientific
community, industry, and thus society.
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