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Abstract
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric
gravitational-wave detectors. It is one of the principal obstacles on the way towards the
next-generation gravitational-wave observatories. The envisioned significant improve-
ment of the detector sensitivity requires using quantum non-demolition measurement
and back-action evasion techniques, which allow us to circumvent the sensitivity limit
imposed by theHeisenberg uncertainty principle. In our previous review article (Danil-
ishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles
of quantum measurement theory and provided the framework for analysing the quan-
tum noise of interferometers. The scope of this paper is to review novel techniques
for quantum noise suppression proposed in the recent years and put them in the same
framework. Our delineation of interferometry schemes and topologies is intended as
an aid in the process of selecting the design for the next-generation gravitational-wave
observatories.
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1 Introduction

The second generation of ground-based gravitational-wave (GW) interferometers,
Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2015), with
significantly improved sensitivities, superseded the initial generation in 2015, which
led to a Nobel Prize-winning first direct observation of GWs from the binary black
hole (BBH) coalescence on September 14, 2015 (Abbott et al. 2016c). This hasmarked
the start of the new era of GW astronomy.

Contrary to the predictions based on the previous X-ray observations (Abbott et al.
2016a), the first detectedGWsignal has come fromanunexpectedlymassiveBBHwith
the mass of components ∼ 30M� and the final BH with mass ∼ 60M�. The follow-
ing detections (Abbott et al. 2016b, 2017c, d, g) have not only confirmed the existence
of this new population of massive black holes but also highlighted the importance of
sensitivity improvement at low frequencies (<30Hz) for better parameter estimation
and more quantitative analysis of the nature of these exotic objects.

However, massive BBHs are not the only reason for low-frequency improvement.
With all three detectors of the LIGO-Virgo network being online, the sky localisation is
dramatically improved (see Sect. 4.2. in Abbott et al. 2018) enabling multi-messenger
astronomy of compact binaries (Abbott et al. 2017b). The longer lead times before the
merger necessary for directing electromagnetic (EM) telescopes to the right sky loca-
tion depend directly on the low-frequency sensitivity where the spectral components
of the inspiral stage of the binary evolution are most prominent (Harry and Hinderer
2018). We observed this situation when LIGO and Virgo had detected a GW signal
from the final stages of evolution of the binary neutron-star (BNS) system (Abbott
et al. 2017e) before the coalescence and merger that has produced a chain of follow-
on electromagnetic (EM) counterparts detected by the EM partners of LIGO (Abbott
et al. 2017b).

This fascinating discovery has also revealed the significance of enhancing the GW
detector sensitivity in the relatively high-frequency band, from 1 to 5kHz, which
hosts the spectrum of the merger and the ringdown phases of the BNS system. It is the
precise measurement of the GW signal shape emitted in these two phases that promise
to unveil many details about the physics of nuclear matter and also to shed light on
the physical mechanisms of short gamma-ray bursts (Abbott et al. 2017a).

And this brings us to the point of this review. As we can see from the Advanced
LIGOdesign sensitivity shown in Fig. 1, the fundamental quantumfluctuations of light
are limiting the sensitivity of the current generation of GW detectors in the most of its
detection band, above ∼10Hz. The dominant noises below 10Hz comprise seismic
and gravity gradient fluctuations (Harms 2015) together with suspension thermal noise
(LIGO Scientific Collaboration 2018), while at medium frequencies around ∼50Hz
the mirror coating thermal fluctuations come close to the level of projected quantum
noise. There is an active research going on to suppress the low-frequency noise sources
further in the next generation facilities (Cole et al. 2013). With these classical noises
suppressed, we need to reduce the quantum noise to further improve the detector
sensitivity. Similarly for the next-generation GW interferometers (Punturo et al. 2010;
Hild et al. 2011; Abbott et al. 2017f), to go beyond their design sensitivity goal of at
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Fig. 1 Design sensitivity of
Advanced LIGO interferometer
with major noise sources

least an order of magnitude better sensitivity than in Fig. 1, we will need to incorporate
the advanced techniques of quantum noise suppression that this review is about.

Quantum noise (QN) comes from quantum fluctuations of the phase and amplitude
of the light, which are two conjugate canonical observables. As such they do not
commute with each other and, due to Heisenberg uncertainty principle, cannot have
vanishing uncertainties simultaneously. For the ground-based GW detectors, the GW
signal is inferred from the relative phase difference between the two light beams that
propagate in the arms of the Michelson interferometer. One might expect that only the
quantum fluctuations of the phase, known as quantum shot noise (QSN), shall limit
their sensitivity. However, this is not the case. The beating between the strong carrier
field circulating in the arm cavities with the vacuum quantum fields from the detection
port creates a random differential radiation pressure force, which shakes the freely
suspended mirrors and manifests as the low-frequency component of the QN. It is
called the quantum radiation pressure noise (QRPN) or quantum back-action noise, in
the context of quantum measurement theory. Its domination at low frequencies comes
from the strong frequency dependence of the response of the test mass’ centre of mass
motion to the external force.

Hence, to reach the aforesaid objective and suppress the QN in the entire detec-
tion band, one has to suppress the uncertainties of both non-commuting observables
in parallel, which seemingly violates the Heisenberg uncertainty relation. It sounds
impossible, at a first glance. Yet, there are actually many approaches that seek to per-
haps not violate (it’s impossible indeed), but circumvent the limitations imposed by
the uncertainty principle. In this review, we will focus on those of these techniques
applicable to interferometric GW detection.

The quantum noise-mitigation techniques we consider in this review include (1)
techniques well tested and already applied in the large scale GW detectors, such as
squeezed light injection (Caves 1981; Abadie et al. 2011; Aasi et al. 2013; Schnabel
2017), (2) techniques that are at the stage of prototyping, e.g., speedmeters (Braginsky
and Khalili 1990; Chen 2003; Purdue 2002; Purdue and Chen 2002; Chen 2003;
Danilishin 2004; Wade et al. 2012; Gräf et al. 2014; Voronchev et al. 2015) and
frequency-dependent squeezing (Oelker et al. 2016; Isogai et al. 2013), and (3) recently
proposed ones, which would require quite some research and development, before
one could implement them in a real detector, like conditional frequency-dependent

123



Advanced quantum techniques for future GW detectors Page 5 of 89     2 

Table 1 Parameters for all
configurations considered in the
paper, unless explicitly specified
otherwise

Parameter Notation Value

Mirror mass (kg) M 200

Arm length (km) L 20

Laser wavelength (nm) λp 1550

Optical power in each arm (MW) Pc/2 4.0

Effective detector bandwidth (Hz) γ 100

squeezing (Ma et al. 2017; Brown et al. 2017) or white-light-cavity based schemes
(Wicht et al. 1997; Zhou et al. 2015; Ma et al. 2015; Peano et al. 2015; Korobko et al.
2017; Miao et al. 2015; Page et al. 2018; Miao et al. 2018).

Experience shows that it takes more than tens of years from concepts to the imple-
mentation of some advanced techniques in the large-scale GW detector facility. Most
of the methods in this review are not targeted at short, or medium-term upgrades of
Advanced LIGO and Advanced Virgo, rather at the next-generation instruments and
beyond. It is quite difficult to predict what parameters these future detectors will have
andwhat the level of classical noise sourceswill be. In this review,we decide to present
only the QN in all the sensitivity curves for considered configurations, and adopt the
set of nominal parameters listed in Table 1 as the common ground. Notations used
throughout this text are listed in Table 2.

The structure of the review is the following. In the next section, we give a brief intro-
duction into the physics of quantum noise and how it manifests in GW interferometers.
In Sect. 3, we consider the general limitations that arise in precision interferometry
due to constraints that quantum mechanics imposes on the magnitude of quantum
fluctuations of light. In Sect. 4, we review the concept of quantum noise mitigation
using squeezed light injection, including frequency-dependent squeezing. Section 5 is
devoted to the suppression of quantum noise through quantum non-demolition mea-
surement of speed and to a myriad of different ways of realising this principle in GW
detectors. In Sect. 6, the enhancement of the interferometer response to GW signal
by modifying test masses’ dynamics is investigated and different variations based on
optical rigidity also sometimes referred to as dynamical back-action are analysed.
Section 7 deals with proposals which consider active elements, such as atomic spin
ensembles and unstable optomechanical filters, for the mitigation of quantum noise
both at low and at high frequencies. In Sect. 8, we give some concluding remarks and
outlook.

It is worth emphasising that this review is by nomeans a replacement of the previous
one under the title “Quantum measurement theory in GW detectors” (Danilishin and
Khalili 2012), but rather a natural continuation thereof. The previous review defined
the framework of and provided the tools for the analysis of quantumnoise in this special
regime of continuous quantum-limited interferometric measurements. This one builds
up heavily on these materials by applying the tools and methods to the multitude of
novel schemes and configurations developed recently. The main objective we had in
mind is to give commonground to all of these various configurations and to facilitate the
upcoming selection of the optimal design of the next generation instruments (Table 1).
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Table 2 Notations and conventions, used in this review

Notation and value Comments

L Length of the arms of the interferometer

τ = L/c Light travel time at distance L

ω Optical frequencies

ω0 Interferometer resonance frequency

ωp Optical pumping frequency (laser frequency)

Ω = ω − ωp Modulation sideband frequency w.r.t. laser frequency ωp

Δ = ωp − ω0 Optical pump detuning from the cavity resonance frequency ω0

E0 =
√
4π�ωp

Ac
Normalisation constant of the second quantisation of a monochromatic light
beam

Ain =
√
2Pin

�ωp
Classical quadrature amplitude of the incident light beam with power Pin

T (R) Power transmissivity (reflectivity) of the mirror

γarm = cT /4L Arm cavity half-bandwidth for input mirror transsmissivity T and perfect
end mirror

δarm Arm cavity detuning/differential detuning of the arms of Fabry–Perot–
Michelson interferometer

γ Interferometer effective half-bandwidth

β(Ω) Phase shift acquired by sidebands in the interferometer

K(Ω) Optomechanical coupling factor (Kimble factor) of the interferometer

Pin Incident light beam power

Pc = 2Parm Total power, circulating in both arms of the interferometer (at the testmasses)

M Mass of the mirror

m Reduced mass of the signal mechanical mode of the interferometer (e.g.,
dARM mode)a

Θ = 4ωp Pc
mcL

Normalised intracavity power

hSQL =
√

8�

mL2Ω2 Standard quantum limit of a free mass for GW strain

xSQL =
√

2�

mΩ2 Standard quantum limit of a free mass for displacement

aHere we follow the same definition of the dARMmechanical mode as we adopted in Danilishin and Khalili
(2012), i.e., xdARM = (xN − xE )/2, where xN ,E are the corresponding elongations of the arms of the
interferometer. When so defined, the dARM-mode has the same reduced mass as a single test mass,m = M .
Another popular definition of the dARM as x̃dARM = (xN − xE ) leads to the new reduced mass equal to
m = M/4 and to the correspondent redefinition of the SQL

2 Quantum noise

Laser interferometric GW detectors (see Fig. 2) use interference of two (almost)
monochromatic light waves travelling in their arms to measure a tiny relative phase
shift induced by the GW. Laser light in two orthogonal arms experiences opposite
variations of the effective optical length of the arms (see yellow inset box in Fig. 2),
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Fig. 2 Schematic of the working principle of a GW interferometer

which makes the light beams reflected off the arms to recombine at the beam splitter
with a slight mismatch in phase. This violates the destructive interference condition
at the beam splitter and a small fraction of carrier field makes it to the photodetector
at the detection (readout) port. The green inset box in Fig. 2 shows how the intensity
of light at the photodetector would depend on the effective difference of the optical
path lengths of the arms δL .

In a nutshell, every interferometer is a device that uses interference to measure
the relative phase of one beam to the other. It detects variations of intensity of the
interference pattern caused by this phase shift. The precision of this procedure is
dependent on many factors, which can be decomposed by source in a noise budget
(cf. Fig. 1). The one, which we are focusing on, in this review is rooted in the very
nature of light as a quantum field, i.e., the quantum fluctuation of optical phase and
amplitude.

2.1 Two-photon formalism and input–output relations

As shown by Caves and Schumaker (1985) and Schumaker and Caves (1985), the
quantum noise of light in any linear optical device can be conveniently described
within the framework of the two-photon formalism. Namely, noise can be considered
as tiny stochastic variations in the quadratures of the optical field travelling through
the device. Any variations of interferometer parameters induced by the signal, e.g.,
differential arm length change, also lead to variations of the quadratures of the outgoing
field, which can be described using the same formalism.

In the two-photon formalism, one starts withwriting down the ingoing and outgoing
optical fields of the interferometer at some fixed location in terms of sine and cosine
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quadratures:

Ê in(t) = E0
[
(Ain + âinc ) cosωpt + âins sinωpt

]
, (1)

Êout (t) = E0
[
(Bout

c + b̂outc ) cosωpt + (Bout
s + b̂outs ) sinωpt

]
. (2)

Here E0 = √
4π�ωp/(Ac) is a normalisation constant defined in the second quantisa-

tion of a monochromatic light beam with the carrier frequency ωp, optical power Pin

and cross-sectional area A; Ain =
√
2Pin/(�ωp) (Bout ) is classical mean amplitude

of the input (output) light at frequency ωp; âinc,s (b̂
in
c,s) describe small, zero-mean quan-

tum fluctuations and variations due to the signal, and they are related to the creation
and annihilation operators through

âc = â + â†√
2

, and âs = â − â†

i
√
2

, (3)

and similarly for outgoing fields. Note that we do not specify time as an argument in
Eq. (3), as the same definition holds in the frequency domain, which is assumed in the
rest of this article. The time and frequency domain are related through the following
Fourier transform:

âc,s(t) =
∫ ∞

−∞
dΩ

2π
âc,s(Ω)e−iΩt . (4)

To fully describe signal and noise in a (lossless) GW interferometer, we shall quan-
tify how thequadrature operators of the input field transformwhenpropagating through
the interferometer to the output.Mathematically, the transformation can be represented
as amatrix operating on the two-dimensional vectors â = {âc, âs}T and b̂ = {b̂c, b̂s}T
and GW signal h(Ω). Note that one needs to calculate both, the propagation of the
carrier field mean amplitudes (denoted by capital letters) and of the zero-mean fluc-
tuational sideband fields defined above. The former ones are needed to calculate the
response of the interferometer to the mirrors’ displacement as well as the effects of
quantum back-action, as both depend on the value of the classical laser field ampli-
tude at the mirror (cf. e.g., Eqs. (245) and (257) of Danilishin and Khalili 2012). We
assume that the interferometer is working in a small perturbations regime where all
the transformations of the signal and noise can be considered as linear ones, and all
the noise sources under study are Gaussian and stationary, which can be quantified by
using the frequency domain spectral density.

For aGWdetector, the transformation,which is also called the input–output relation,
can be written in the general form as:

b̂ = T · â + t
X

XSQL
, (5)

where

T ≡
[
Tcc(Ω) Tcs(Ω)

Tsc(Ω) Tss(Ω)

]
(6)
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is the optical transfer matrix of the interferometer (including the optomechanical back-
action effects),

t ≡
[
tc(Ω)

ts(Ω)

]
(7)

is the optomechanical (OM), SQL-normalised response of the interferometer to a
general signal. The signal is denoted asX and describes only the change in the physical
state of the interferometer caused by the signal in question, e.g., GW, and XSQL is the
corresponding free-mass standard quantum limit (SQL) for the mechanical degree
of freedom expressed in the unit of X , which is a normalisation factor and will be
explained later in more details (see Sect. 3). In precision interferometry, X is either
the signal displacement of the test mass, x , or an external signal force, F , that causes
this displacement, or, more specific for GW interferometry, the GW strain, h. In each
case, the corresponding SQL applies. The relation between these three quantities is
discussed in Sect. 4.3 of Danilishin and Khalili (2012).

The interferometer’s readout quantity depends on the implemented readout scheme,
but in all cases it invariably involves measuring the photocurrent î out (t) derived from
the photodetectors that sense the light leaving the readout port of the interferometer.
Assuming that all the future GW interferometers will use the balanced homodyne
detection (BHD) (see Sect. 2.3.1 of Danilishin and Khalili 2012 for basics description
of BHD, or Fritschel et al. 2014 for more in-depth analysis thereof) one can project to
an arbitrary quadrature ôφLO of the outgoing light, varying the homodyne phase φLO:

ôφLO ≡ b̂c cosφLO + b̂s sin φLO ≡ HT
φLO

· b̂, HφLO ≡
[
cosφLO
sin φLO

]
. (8)

The corresponding quantum noise spectral density in the unit of the observable of
interest, X reads:

SX (Ω) = X 2
SQL

HT
φLO

· T · S
in
a · T

† · HφLO

|HT
φLO

· t|2 (9)

where S
in
a stands for spectral density matrix of input field and components thereof is

defined as:

πδ(Ω − Ω ′) S
in
a,i j (Ω) ≡ 1

2
〈in|âi (Ω)(â j (Ω

′))† + (â j (Ω
′))†âi (Ω)|in〉, (10)

where |in〉 is the quantum state of the field injected in the dark port of the interferometer
and (i, j) = {c, s} (see Sect. 3.3 in Danilishin and Khalili 2012 for more details). In
this article, we deal with single-sided spectral densities S and hence in the case of
input vacuum state:

|in〉 = |vac〉 ⇒ S
in
a = I,

where I is the identity matrix.
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2.1.1 Case of multiple input/output channels

This formalism can be easily extended to a more general case of an interferometer
with more than one input and output channel. Two examples of such a schemes will
be discussed in more detail in Sects. 4.3 and 7.1, where two-mode squeezed states
are used as the input fields of the interferometer. Another situation, when one needs
to take into account more optical degrees of freedom arises in the case of loss and
imperfection analysis as we discuss below, in Sect. 2.6. In any of these situations,
one simply needs to extend the number of dimensions of the model from 2, for two
quadratures of a single optical degree of freedom, to 2N with N being the number of
the input and output channels of interferometer. Then the vectors â and b̂ are defined
as:

â ≡ {a(1)
c , a(1)

s , . . . a(i)
c , a(i)

s , . . . a(N )
c , a(N )

s }T with i = {1, N } (11)

b̂ ≡ {b(1)
c , b(1)

s , . . . b(i)
c , b(i)

s , . . . b(N )
c , b(N )

s }T,with i = {1, N } (12)

and the corresponding transfer matrix and response vector read:

T2N×2N ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

T
(11) · · · T

(1 j) · · · T
(1N )

...
. . .

...
...

T
(i1) · · · T

(i j) · · · T
(i N )

...
...

. . .
...

T
(N1) · · · T

(N j) · · · T
(NN )

⎤
⎥⎥⎥⎥⎥⎥⎦

and t2N ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

t(1)
...

t(i)
...

t(N )

⎤
⎥⎥⎥⎥⎥⎥⎦

, (13)

where each term T
(i j) and t(i) in the above expressions stands for a 2 × 2-matrix

block or a 2-dimensional response vector described by Eqs. (6) and (7), respectively.
Naturally, T(i j) describes the contribution of the j-th input field â( j) to the i-th output

field b̂
(i)
, while t(i) stands for the SQL-normalised response of the i-th output channel

to the signal influence X . Transformation T2N×2N on the light quadrature operators
â is unitary and represents a Bogolyubov-type transformation. As we consider in this
review only Gaussian quantum states of light, this automatically means that T2N×2N
must be a symplecticmatrix, i.e., such that keeps the fundamental commutator of field
operators unchanged (Adesso and Illuminati 2007).

Another consequence ofGaussianity of the states of light and operations under study
is that any entangled and/or squeezed multimode state injected in the GW detectors
to boost its QN-limited sensitivity can be effectively represented as an additional
symplectic transformation, T

sqz
2N×2N , on a set of vacuum fields âvac, i.e.:

âsqz = T
sqz
2N×2N â

vac ⇒ S
in, sqz
a = T

sqz
2N×2N · I2N×2N · (Tsqz

2N×2N

)†
, (14)

where I2N×2N is an identity matrix standing for the power spectral density of the 2N -
mode vacuum state. By definition, T

sqz
2N×2N stands for all the manipulations that are

performed on the input vacuum fields before they enter the main interferometer, which
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includes, for instance, squeezing and passage through the filter cavities for optimal
frequency-dependent rotation of squeezing noise ellipse (see Sect. 4.2).

To conclude, we need to generalise the treatment of multiple readout channels. In
the N-dimensional case, readout observable ôφLO of Eq. (8) transforms into a vector

of N outputs, ôN , where each output can have its own homodyne readout phase φ
(i)
LO

and a corresponding homodyne vector H(i)
φLO

as defined in (8). Finally, all the readout
channels comprising the readout vector ôN which contain information about the GW
signal and has addedGaussian noise needs to be processed so that the signal is extracted
with the highest signal-to-noise ratio (SNR) possible. This is usually achieved by
combining the readouts with some optimal weight functions, chosen so as tomaximise
the SNR, or any other chosen figure of merit. In general, this will require to define a
vector of coefficient functionsαN (generally, frequencydependent) that has to be found
as a result of optimisation procedure of a chosen figure of merit, e.g. the SNR, in which
case αi (Ω) are known as Wiener filters. The resulting combined readout then reads:

ôopt =
N∑
i=1

αi

{
b̂(i)
c cosφ

(i)
LO + b̂(i)

s sin φ
(i)
LO

}
≡

N∑
i=1

αi HT
φ

(i)
LO

· b̂(i)
,

which gives the following estimate for the signal observable X :

X̃opt = XSQLôopt/

( N∑
i=1

αi HT
φ

(i)
LO

· t(i)
)

, (15)

where the sum in the denominator stands for the effective response function for a
multi-channel interferometer. Gathering all the definitions of this section together, the
noise power spectral density in the units of signal X reads:

SXopt (Ω) = X 2
SQL∣∣∣∑N

i=1 αi HT
φ

(i)
LO

· t(i)
∣∣∣2

×
N∑
i=1

N∑
j=1

αiα j HT
φ

(i)
LO

·
[
T2N×2N · T

sqz
2N×2N · (T

sqz
2N×2N )† · (T2N×2N )†

]
i j

· H
φ

( j)
LO

(16)

with [. . .]i j denoting the 2 × 2 subblock with the indices i j within a large 2N × 2N
matrix product written inside the brackets.

2.2 Transfer functions of the quantum-noise-limited interferometer

The internal structure of the above expressions might be rather complex for given
advanced interferometer schemes, but the underlying physics is rather simple and
comes from the following two facts:
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Fig. 3 Schematics of the
input–output relations of the
GW interferometer in a form of
a flowchart

– mirrors can move when subject to the action of an external force, thus making the
interferometer sensitive to the GW, and1

– light interactswith themirrors,whichmanifests in twoways, i.e., themirrormotion
modulating the phase of light and the light exerting a radiation pressure force on
the mirror.

Quantitatively, these two facts are described by means of corresponding transfer
functions (TF)2:

1. Force-to-displacement TF is described by the mechanical susceptibility, χm of the
centre of mass motion of the test mass mirror;

2. Displacement-to-field TF, Rx ≡ {∂ac/∂x, ∂as/∂x}, reflects how much the two
quadratures of the outgoing field are changed by the displacement of the mirror x ,
and

3. Field-to-force TF, F ≡ {∂ F̂r.p./∂ac, ∂ F̂r.p./∂as}, describes how much the radi-
ation pressure force depends on the sine and cosine quadrartures of the ingoing
field;

4. Displacement-to-force TF, K ≡ −∂F/∂x , describes the dynamic back-action or
optical spring that manifests as restoring force created by the part of the optical
field dependent on the mirror displacement x .

The basic operation of any interferometer can be described by means of a simple
flowchart diagram including the above TFs, as shown in Fig. 3. Here the external
signal force (GW) interacts with the mechanical degree of freedom (DoF), displacing
its mirrors by x . The magnitude of this displacement is defined by the mechanical
susceptibility χm(Ω), which can be read off from the Fourier domain solution to the

1 Strictly speaking, there are two possible ways of looking at the action of GW on the light in the interfer-
ometer. In this review, we will follow the point of view that the test masses move in a Local Lorentz (LL)
frame of a central beam splitter, and GWs act akin to tidal forces on the test masses of the interferometer
making themmovew.r.t. the defined LL-frame of the detector (Blandford and Thorne 2008). Another way to
describe GW action is to consider the interferometer in a so-called transverse-traceless (TT) gauge, where
test masses are assumed to remain at rest and GW action leads to the modulation of the effective index of
refraction of the space interval between the test masses. Interested readers are invited to read an excellent
course book by Blandford and Thorne.
2 The rigorous mathematical treatment of the linear quantum measurement and of all transfer functions is
given in Sect. 4.2 of Danilishin and Khalili (2012)
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Newtonian equation of motion (the same as the Heisenberg equation of motion due to
linearity of the system):

mẍ(t) = F(x(t), ẋ(t)) +
∑
k

Fext
k (t)

Fourier�⇒
domain

x(Ω) = χm(Ω)
∑
k

Fext
k (Ω).

Here m is the reduced mass of the mechanical DoF, F(x, ẋ) is the sum of the internal
forces of the system (e.g. restoring force of the suspensions, dissipative forces), and
Fext
k stand for all the external forces acting on the mirror, including the GW signal

force G. For GW with the strain amplitude h(t) ↔ h(Ω), this effective differential
force reads:

G(t) = mLḧ(t)
Fourier�⇒
domain

G(Ω) = −mLΩ2h(Ω),

Displacement of the mirrors modulates the light reflected off from the mirrors. This
results in additional variation of the outgoing light quadratures, which is proportional
to x . The displacement-to-field TF Rx essentially defines the strength of the interaction
of light with the mechanics, i.e., the optomechanical coupling.

The other end of the optomechanical coupling is given by the field-to-force TF. It
stems from the radiation pressure (RP) that light exerts on the mirrors. Thus the TF in
question is a vector of coefficients at the corresponding quadratures of the input fields
in the expression for a back-action force, FBA. This force contributes to the actual
displacement of the mirrors and thus mimics the signal displacement. Noteworthy
is that the radiation pressure may depend on the displacement of the mirror, if the
interferometer is detuned. This creates a feedback loop and results in a restoring
force. This light-induced restoring force is known as dynamical back-action or optical
rigidity, represented by a violet box in Fig. 3.

Finally, there is also the field-to-field TF that describes how the input light fields
would be transformed by the interferometer, were its mirrors fixed. This is an optical
TF shown as a yellow block in the flowchart.

Note that all these considerations apply equally to a systemwith an arbitrary number
of inputs and outputs.

2.3 I/O-relations for tuned interferometers

We can use the developed formalism to derive the input–output (I/O) relation of a
given interferometer configuration and the quantum noise. And quite astonishingly, a
very broad class of so called tuned interferometers turns out to have the I/O-relations
of the same general shape that depends on the two frequency dependent parameters,
the optomechanical coupling strength K(Ω) and the phase β(Ω):

b̂ = e2iβ(Ω)

[
1 0

−K(Ω) 1

]
â + eiβ(Ω)

[
0√

2K(Ω)

]
h

hSQL
. (17)

Interferometers that are described by the above relations are tuned in the sense that the
cosine quadrature of an incident light would be transformed into the cosine quadrature
of an outgoing light, and likewise would the sine quadrature do, if the mirrors were
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fixed. Optomechanical coupling factor K was introduced by Kimble et al. (2002)
to describe the strength of interaction between light and the mechanical degrees of
freedom of the test masses. By construction, K is an absolute value of the product of
force-to-displacement TF× displacement-to-field TF× field-to-force TF. It shows the
fraction of light intensity modulation transformed into phase modulation at sideband
frequency Ω mediated by the radiation pressure force. As for β, it is an extra phase
shift.

Hence the optical transfer matrix, T, of the tuned interferometer and its optome-
chanical response, t , read:

T = e2iβ(Ω)

[
1 0

−K(Ω) 1

]
, t = eiβ(Ω)

[
0√

2K(Ω)

]
. (18)

We ought to mention that for the long-arm interferometric detectors where travel time
of light in the arms become comparable with the GW half-period (as it is planned
for all the designs of the next generation GW interferometers) the assumption of
stationarity of the GW strain within the detection frequency band breaks. To account
for the resulting reduction of response of the interferometer toGWsignal, the following
correction factor has to be applied to the above expression for the response (Schilling
1997; Essick et al. 2017):

t → tD(Ω) where D(Ω) = sinc(ΩL/c), (19)

with sinc(x) ≡ sin x/x . In general, factor D(Ω) depends on the mutual orientation
of the detector and the source of GWs (Essick et al. 2017), but in the simple case of
normal incidence with optimal polarisation it can be approximated as shown above.

Using Eq. (9), we can obtain the general expressions for the power spectral density
of the quantum noise for tuned interferometers in unit of GW strain h. Given an
arbitrary readout quadrature defined by the homodyne angle φLO, it reads:

Sh = h2SQL
2D2

[
(K − cot φLO)2 + 1

K

]
. (20)

In the special case of phase quadrature readout, φLO = π/2, this expression simplifies
as

Sh = h2SQL
2D2

[
1

K + K
]

, (21)

which clearly shows two components of the quantum noise, namely the quantum shot
noise represented by the first term inside the brackets, and the quantum radiation
pressure noise given by the last term. In Sect. 3, we use this expression to derive the
SQL.
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Fig. 4 Schematics of a
dual-recycled
Fabry–Perot–Michelson
interferometer with balanced
homodyne readout

2.4 Quantum noise of a tunedMichelson interferometer

It will be instructive for our review to present here the relevant expressions for
a conventional Michelson interferometer with Fabry–Perot cavities in the arms, a
signal-recycling mirror and a power recycling mirror, as shown in Fig. 4. In the
Appendix B.2.1, we derive rigorous expressions for the I/O-relations of such a Fabry–
Perot–Michelson interferometer (FPMI) with optical loss and shall refer the interested
reader to Sect. 5.3 of Danilishin and Khalili (2012) where even more detailed step-
by-step derivation is performed. Here we merely write down the final expressions for
the OM coupling factor KMI and sideband phase shift βMI in the ideal case without
optical losses:

KMI = ΘMIτ

Ω2

1 − R2
ITM

1 − 2
√
RITM cos 2Ωτ + RITM

� 2ΘMIγarm

Ω2(γ 2
arm + Ω2)

, (22)

βMI = arctan

(
1 + √

RITM

1 − √
RITM

tanΩτ

)
� arctan (Ω/γarm) , (23)

with ΘMI = 4ω0Pc/(McL), where Pc is the optical power circulating in the inter-
ferometer and γarm = TITM/(4τ) is the half bandwidth of the arm cavity. Given the
parameters listed in Table 1, the signal-referred noise spectral density Eq. (21) withK
replaced byKMI is shown in Fig. 5a. We also show the noise spectrum of the quantum
fluctuation δbouts in the phase quadrature (see Fig. 5b), and the detector response to
the GW signal (see Fig. 5c).

The above equations can be generalised to the case of signal-recycled interferom-
eter, using the “scaling law” approach of Buonanno and Chen (2003). As shown in
detail in Sect. 5.3.4 of Danilishin and Khalili (2012), if the distance between the SRM
and the ITMs lSRC � L (see Fig. 4), the frequency-dependent phase shift, ΩlSRC/c,
acquired by light sidebands in the signal-recycling cavity can be neglected, and one
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(a) (b)

(c)

Fig. 5 Quantum noise of aMichelson interferometer: a QNLS of the Michelson interferometer with phase
quadrature readout (solid grey trace) for parameters given in the Table 1. Thin dash-dotted grey lines show
the effect of change of readout quadrature (homodyne angle);b quantumfluctuations of the phase quadrature
of the readout light of the Michelson interferometer (grey trace); c response functions of the Michelson
(grey trace) interferometer to the GW strain

can introduce an effective compound input mirror made of the SRM and the ITMswith
effective complex reflectivity and transmissivity, leading to the followingmodification
of the initial bandwidth and detuning of the arms:

γ = γarmRe

[
1 − √

RSRMe2iφSR

1 + √
RSRMe2iφSR

]
= γarmTSRM

1 + 2
√
RSRM cos 2φSR + RSRM

(24a)

δ = δarm − γarmIm

[
1 − √

RSRMe2iφSR

1 + √
RSRMe2iφSR

]

= δarm + 2γarm
√
RSRM sin 2φSR

1 + 2
√
RSRM cos 2φSR + RSRM

(24b)

with δarm the differential detuning of the arms (zero for the tuned case considered
here), φSR = ωplSR/c the signal-recycling cavity single-pass phase shift, TSRM and
RSRM the signal-recycling mirror transmissivity and reflectivity. The general formulas
for signal-recycled interferometer are derived in Appendix B.3.1.

In the special case of φSR = 0 (π/2) these formulas take particularly simple form,
namely δ = δarm and

γSR (RSE) = γarm
1 ∓ √

RSRM

1 ± √
RSRM

(25)

where the upper signs in the numerator and denominator correspond to the so called
“resonant signal recycling” configuration, where resonant tuning of the SR cavity
makes an effective bandwidth of the interferometer narrower, proportionally increasing
the signal sideband amplitude in this narrow band, whereas the lower signs in the
numerator and denominator give the case of “resonant sideband extraction”, where
effective bandwidth of the interferometer is increased with respect to γarm at the
expense of proportional loss of signal. In Sect. 7.2, we discuss the ways to increase
the effective bandwidth without loss of peak sensitivity.
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The approximate expressions above are obtained assuming that cavity linewidth and
signal frequency are much smaller than the cavity free spectral range FSR = c/2L ,
which is known as a single-mode approximation. For the next generationGWdetectors
with longer arms where FSR may be close to the detection band, one normally needs
to use the exact expressions, although the effect of factor D(Ω) is usually stronger
and covers up any effects of departure of the interferometer response from the ones
written in the single-mode approximation.

From Eq. (20) one can immediately notice that setting homodyne angle φLO such
that K = cot φLO, the second term in the brackets vanishes, which means one evades
the back-action noise this term is standing for. This is the manifestation of the princi-
ple of variational readout, first proposed in Vyatchanin and Matsko (1996) and later
generalised in Kimble et al. (2002) that prescribes to read out not the phase quadrature
of the outgoing light where GW signal strength is maximal, rather the one that does
not contain back-action noise. This technique, in an absence of loss, allows to com-
pletely get rid of the back action noise where the above match of homodyne phase to
OM coupling strength could be satisfied. However, since KMI is strongly frequency
dependent, the total back action cancellation is only possible at a single frequency,
as demonstrated by a series of thin dash-dotted traces in Fig. 5a with an envelope
of these curves being the quantum shot noise-limited sensitivity. We show in Sect. 4
a fundamental relation of this shot noise-limited sensitivity and variational readout
concept to the fundamental quantum limit for precision interferometry.

2.5 Quantum back-action and ponderomotive squeezing

The optical transfer matrix (18) allows an interesting interpretation from the point of
view of the quantum state of the outgoing light. As shown in Kimble et al. (2002),
the optomechanical transfer matrix (18) can be interpreted as a transformation of
the phase space amounting to a sequence of rotations and squeezing. They showed
that the initial quantum state |in〉 of the vacuum fields entering the readout port of
the interferometer light gets ponderomotively squeezed and rotated by the radiation
pressure effects embodied by the off-diagonal term in the transfer matrix in (17):

|out〉 = e2iβ R̂(upond)Ŝ(rpond)R̂(vpond)|in〉, (26)

where R̂(α) is a rotation operator and Ŝ(r) is a squeezing operator, defined, e.g., in
Sect. 3.2 of Danilishin and Khalili (2012). Mathematically this means that transfer
matrix T can be represented, using singular value decomposition, as the following
product3:

b = T â = e2iβ R[upond] S[rpond] R[vpond] â, (27)

with R the rotation matrix and S the squeezing matrix that are defined as:

R[φ] =
[
cosφ − sin φ

sin φ cosφ

]
, S[r ] =

[
er 0
0 e−r

]
. (28)

3 In fact, the symplectic nature of T requires a more restrictive Bloch–Messiah Decomposition (Cariolaro
and Pierobon 2016) that ensures singular values which include their own reciprocals.
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(a) (b)

Fig. 6 Ponderomotive squeezing in theMichelson interferometer. Left panel showsdependenceof squeezing
factor, rpond(Ω), on signal frequency, and right panel shows how the squeezing angle, upond(Ω) depends
on signal frequency. The noise ellipses at different signal frequencies are shown (not to scale!) to illustrate
the effect that interferometer with movable mirrors imposes on the quantum state of the outgoing light

In a tuned case, transformed quantum state at the output port of the interferometer is
described by the two numbers - ponderomotive squeezing factor rpond and squeezing
angle, upond, that are expressed in terms of K as follows (see Fig. 6):

erpond =
√
1 +

(K
2

)2 + K
2

, upond = π

2
+ vpond = −1

2
arctan

K
2

− π

4
. (29)

Ponderomotive squeezing is the direct consequence of quantum back action, since
it is through this non-linear mechanism amplitude fluctuations of light are transformed
into the additional fluctuations of phasewith the frequency dependent gain given by the
OM coupling factor K. Understanding quantum back-action in terms of squeezing of
the state of light leaving the interferometer comes very useful when one tries to figure
out why one needs frequency dependent squeezing injection to achieve broadband
quantum noise suppression, and why injection of phase-squeezed light in the readout
port does not suffice. We discuss these topics in Sect. 4. One can also gain additional
understanding of noise transformations in more complicated schemes, like, e.g., the
scheme of the EPR-speed meter that we consider in Sect. 5 (Fig. 25).

In Appendix B.1, we consider a more general case of a detuned interferometer and
derive general formulas for ponderomotive squeezing.

2.6 Losses and imperfections

In a real experiment, the idealised situation where the interferometer can be described
solely by the I/O-relations (5) with one input and one output channel can never work.
According to the Fluctuation-Dissipation Theorem of Callen and Welton (1951), in a
lossy system, there are always additional channels through which a part of the signal-
carrying light field leaves the interferometer unobserved, while the incoherent vacuum
fields from the environment enter and admix with the non-classical light travelling
through the interferometer, thereby curtailing quantum correlations contained therein
and increasing noise. Generally, there are many places in the interferometer where loss
can occur and therefore, there are many loss channels and vacuum fields associated
with them.

These vacuum fields propagate through the interfrometer and couple to the readout
channel very similar to the input field â with the only difference in the frequency
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dependence of the optical transfer matrix Nk that reflects the fact that the optical path
of loss vacuum fields differs from that of â (see, e.g., treatment of a lossy Fabry–
Perot–Michelson interferometer in Appendix B.2.1).

Thus one can describe the lossy interferometer as the multiple input/output device
outlined above save to the fact that the loss channels are not measured, and the cor-
responding information is thereby lost. Input fields of a lossy interferometer thus can
be written as:

â ≡ {a(1)
c , a(1)

s , n(2)
c , n(2)

s , . . . n(i)
c , n(i)

s , . . . n(N )
c , n(N )

s }T with i = {1, N }

and the corresponding transfer matrix reads:

Tloss ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

T · · · N
(1 j) · · · N

(1N )

...
. . .

...
...

N
(i1) · · · N

(i j) · · · N
(i N )

...
...

. . .
...

N
(N1) · · · N

(N j) · · · N
(NN )

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

As only one channel of the interferometer ismeasured, all the rows of the above transfer
matrix but the first two (recall that T is a 2 × 2-matrix) are irrelevant. Hence the cor-
responding general expression for total quantum noise PSD of a lossy interferometer
reads:

ShPD loss(Ω) = h2SQL
HT

φLO
·
[
T · S

in
a · T

† +∑N
k=2 N

(1k) · (N(1k))†
]

· HφLO

|HT
φLO

· th |2
, (31)

The exact frequency dependence of the loss-related transfer matrices N
(1i) depends

on the location of the element of the interferometer, where loss originates from. This
means that the optical path of a specific loss-related vacuum field n̂(i) cannot be
generalised. Below we consider several most common sources of loss and describe
how they enter the final expression for the quantum noise PSD, which allows to
categorise loss into a few types in regard to their place of origin.

As for the imperfections, by which wemean here departure of the parameters of key
components of the interferometer from the assumed uniformity (e.g., perfect overlap
of the signal and local oscillator beams, perfect mode matching on the beam split-
ter etc.) and symmetry (e.g. perfect 50/50 beam splitting ratio, equal mass of all test
masses, equal length/tuning of the arms, equal absorption and photon loss in the arms
etc.), it is hard to give a general recipe how to account for their influence on quan-
tum noise. However, these studies are crucial for the design of the next generation
GW interferometers, and there are several studies that attempted rigorous treatment of
imperfections for selected configurations. Nonideal FPMI with frequency dependent
squeezing injection (see Sect. 4) was studied in Miao et al. (2014). An in-depth com-
parison of FPMI and Sagnac speed meters (see Sect. 5 with account for imperfections
was done inVoronchev et al. (2015). Influence of imperfections on Sagnac speedmeter
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performance was the topic of Danilishin et al. (2015). Impact of optical path stability
and mode matching in balanced homodyne readout was the topic of Steinlechner et al.
(2015), Zhang et al. (2017).

2.6.1 Losses in the readout train

The sources of loss in the readout train are quite diverse, ranging from non-unity
quantum efficiency of the photodiodes to the imperfect mode matching of the local
oscillator beam with the signal beam in the balanced homodyne detector (Zhang et al.
2017). Inmost cases lossmay be reduced to a single, frequency independent coefficient
of an effective quantum efficiency, ηd = 1 − εd < 1, where εd < 1 can be thought
of as a fractional photon loss at the photodetector (Kimble et al. 2002; Miao et al.
2014; Danilishin andKhalili 2012). Frequency dependence can be safely omitted here,
for any resonant optical element in the readout train, including output mode cleaners
(OMC), has bandwidthmuch larger than the detection band of themain interferometer.

The expression (8) for an output observable of the GW interferometer is modified
in the presence of readout losses as follows:

ôlossφLO
≡ √

1 − εd

(
b̂c cosφLO + b̂s sin φLO

)

+√
εd
(
n̂d; c cosφLO + n̂d; s sin φLO

)
≡ √

1 − εd HT
φLO

· b̂ + √
εd HT

φLO
· n̂d , (32)

where n̂d = {n̂d; c, n̂d; s}T stands quadrature vector of loss-associated vacuum fields
with unity spectral density matrix.

Spectral density formula (9) in lossy readout case will read:

ShPD loss(Ω) = h2SQL
HT

φLO
· [T · S

in
a · T

† + ξ2d

] · HφLO

|HT
φLO

· th |2
, (33)

where ξd = √
εd/(1 − εd).

2.6.2 Optical loss in the arms and in filter cavities

Optical loss in Fabry–Perot cavities, such as arm cavities and filter cavities, is known to
have frequency dependence with the major impact at low sideband frequencies within
the cavity optical bandwidth. A very illuminating discussion on this subject is given
in Miao et al. (2014) where optical loss in filter cavities is studied in detail. The main
source of such loss in large suspended cavities is the scattering of light off the mirror
surface imperfections of microscopic (micro-roughness) and relatively macroscopic
(“figure error”) size (Isogai et al. 2013; Miao et al. 2014).

In general, optical loss in the cavity depends on the cavity length in an involved way
(see, e.g., Appendix C inMiao et al. 2014). However, if we consider a cavity of a fixed
length the single value of total photon loss per metre (ε f in ppm/m) will fully define
the total optical loss and the conventional description of Fabry–Perot cavity with one
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lossy mirror (usually, an ETM one) and another lossless one (an ITM, respectively),
works perfectly fine. A detailed derivation of lossy cavity I/O-relation is given in
Appendix B.2.1. Here we only present its general form which reads:

b̂arm = Tarm âarm + Narm n̂arm + tarm
h

hSQL
. (34)

withTarm = T
s.n.
arm+T

b.a.
arm a transfermatrix for input fields, âarm,Narm = N

s.n.
arm+N

b.a.
arm is

a transfermatrix for loss-associated vacuumfields, n̂arm, and tarm is an optomechanical
response function of the cavity defined by Eq. (7). We wrote transfer matrices Tarm
and Narm as sums of shot-noise component, Ts.n.

arm(Ns.n.
arm), and back-action component,

T
b.a.
arm(Nb.a.

arm) (cf. Eqs. (178) and (179)), to discern Fabry–Perot cavities with strong
classical carrier light circulating inside, as in the arms, from the ones with no, or
very weak classical light inside, as in the filter cavity. In the latter case, the back-
action components can be set to zero, as well as the optomechanical response function
tarm = 0.

3 Quantum limits

3.1 Standard quantum limit

The standard quantum limit (SQL)was firstly pointed out by Braginskywhen studying
the quantum limit of continuous position measurements (Braginsky and Khalili 1992).
In the context of laser interferometric GW detectors, it constraints the detector sensi-
tivity in the nominal operation mode with tuned optical cavities and phase quadrature
measurement. It comes from a trade-off between the shot noise and radiation pres-
sure noise—the former is inversely proportional to the optical power while the latter
is proportional to the power. There is an optimal power for achieving the maximum
sensitivity at each frequency which defines the SQL.

We can derive the SQL explicitly for a tuned dual-recycled Michelson interferome-
ter by using Eq. (21). In particular focusing on frequencies lower than the free spectral
range c/(2L), we have D ≈ 1 and

Sh =
(
1

K + K
) h2SQL

2
≥ h2SQL ≡ ShSQL. (35)

The SQL is defined as

hSQL =
√

8�

MΩ2L2 ≈ 2.0 × 10−25 Hz− 1
2

(
200 kg

M

) 1
2
(
100Hz

Ω/2π

)(
20 km

L

)
. (36)

In Fig. 7, we show the quantum noise curves for different arm cavity powers and the
SQL.

The SQL does not just apply to laser interferometric GW detectors, but to general
linear continuous measurements with a test mass. Generally, according to Braginsky
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Fig. 7 Plot showing the SQL for
a tuned dual-recycled Michelson
interferometer. It is defined as
the locus of those points where
the shot noise is equal to the
radiation pressure noise at
different powers

and Khalili (1992), Buonanno and Chen (2002), Chen (2013), the output of a linear
displacement measurement device can be written as

Ẑ(Ω) = Ẑ (0)(Ω) + χZF (Ω)

1 − χm(Ω)χFF (Ω)
[χm(Ω)F̂ (0)(Ω) + xsig(Ω)]. (37)

Here Ẑ (0) denotes the intrinsic fluctuation of the output port, F̂ is the degree of freedom
coupled to the probe mass displacement x̂ with χFF being its susceptibility, χm is the
mechanical susceptibility of the test mass, and xsig is some displacement signal. For
an ideal quantum-limited device, the spectral density for Ẑ (0) and F̂ (0) satisfies the
followingHeisenberg relation (Braginsky andKhalili 1992;Buonanno andChen 2002;
Miao 2017):

SZ Z (Ω)SFF (Ω) − |SZF (Ω)|2 � �
2|χZF (Ω)|2. (38)

In the special case where χFF = 0 and there is no correlation between Ẑ (0) and F̂ (0),
i.e. SZF = 0, the signal-referred noise spectral density is bounded by the general SQL:

Sx (Ω) = SZ Z (Ω)

|χZF (Ω)|2 + |χm(Ω)|2SFF (Ω) ≥ 2�|χm(Ω)| ≡ SxSQL(Ω), (39)

where we have used a + b ≥ 2
√
ab and SZ Z SFF = �

2|χZF |2 and x̂(Ω) =
Ẑ(Ω)/

[
d Ẑ/dxsig|xsig=0

]
.

Applying to the Michelson interferometer, we have

Ẑ (0) = e2iβ â2, F̂ (0) = � χZF â1, xsig = L h/2, (40)

and the susceptibilities are χZF = eiβ2
√
2K/(L hSQL), χm = −1/(mΩ2), and

χFF = 0. Therefore, in the context of laser interferometer, Ẑ (0) introduces the shot
noise, while F̂ (0) is responsible for the radiation pressure noise (quantum backaction).
Equation (35) is simply a special case of Eq. (39) when normalising to the GW strain.
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3.2 Fundamental quantum limit

The fundamental quantum limit (FQL) is a sensitivity limit that is more stringent
than the SQL for a given interferometer configuration. It is also called the energetic
quantum limit (Braginsky et al. 2000b) or quantum Cramér–Rao bound (Tsang et al.
2011; Miao et al. 2017) in quantum metrology. In the context of laser interferometric
gravitational-wave detectors, it can be written as:

ShFQL(Ω) = �
2c2

SPP (Ω)L2 = 4�
2

SEE (Ω)
. (41)

Here SPP is the single-sided quantum noise spectral density for the optical power P
inside the arm cavity and SEE = 4SPP L2/c2 is the energy spectrum. This means a
good sensitivity requires a high fluctuation of the power, or energy, in the quantum
regime—a large energy fluctuation is needed to probe the spacetime precisely, which is
directly related to the energy-time uncertainty relation. This is a very beautiful formula
involving energy, spacetime, and �.

One point worthy emphasising is that SQL is the locus of a family of sensitivity
curves at different power, while the FQL is a sensitivity limit at different frequencies
for a given configuration with fixed parameters including the power. We can derive the
FQL using the same linear-measurement formalism for deriving the SQL mentioned
above (Miao et al. 2017). The key component is the correlation between Ẑ and F̂ , i.e.,
SZF . We first consider the special case with χFF = 0. When including SZF , Eq. (39)
becomes

Sx = SZ Z
|χZF |2 + 2Re

[
χ∗
m
SZF
χZF

]
+ |χm |2SFF

= �
2

SFF
+
∣∣∣∣ SZFχZF

+ χmSFF

∣∣∣∣
2

≥ �
2

SFF
, (42)

where we have used the uncertainty relation Eq. (38) in arriving at the second line.
In the most general case with χFF �= 0, we just need to replace F̂ by F̂ which is
defined as F̂ ≡ F̂/(1 − χmχFF ). The resulting general FQL for the displacement
measurement is given by

SxFQL = �
2

SFF
. (43)

In laser interferometric GW detectors, F̂ corresponds to the radiation pressure force
on the test mass, which is equal to 2Pc/c, and therefore

SFF = 4SPP/c2. (44)

Converting the FQL for the displacement measurement to that for the strain, we obtain
Eq. (41) as the outcome.Achieving theFQL requires SZF to be equal to−χmχZF SFF ,
As proven inMiao et al. (2017), for χFF = 0, this can be realised by using the optimal
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frequency-dependent readout, which measures the optimal quadrature at different fre-
quencies using the setup proposed by Kimble et al. (2002) with optical filter cavities.
For χFF �= 0 or more specifically Im[χFF ] �= 0, this condition is not exactly real-
isable, however, the difference between the FQL and the sensitivity achieved by the
optimal frequency-dependent readout is at most a factor of two. Therefore, the FQL
sets a fundamental benchmark for the sensitivity limit of a given configuration.

Again using the tuned dual-recycled Michelson interferometer as an example, the
power fluctuation inside the arm cavity is given by

SPP (Ω) = 2cPc�γω0

L(γ 2 + Ω2)
. (45)

The resulting FQL is

ShFQL(Ω) = �c(γ 2 + Ω2)

2LPcγω0
= h2SQL(Ω)

2KMI
. (46)

Compared with Eq. (35), this simply corresponds to the shot-noise only sensitivity
without contribution from the radiation pressure noise. Indeed, we know that such a
sensitivity is achievable using the optimal frequency-dependent readout in the loss-
less case (Kimble et al. 2002), as mentioned earlier. A similar result applies to the
speed meter configuration that we will discuss in Sect. 5 by replacing KMI with the
corresponding optomechanical coupling strength KSM for a speed meter. The only
difference is that KSM is approximately constant (frequency independent) at low fre-
quencies, and, therefore, a constant quadrature readout is sufficient to reach the FQL
at those frequencies.

In Fig. 8, we illustrate the FQL for both the tuned and detuned dual-recycled
Michelson interferometer, together with the quantum noise curves for constant phase

Fig. 8 The top panel shows the quantum noise curves for reading out the phase quadrature, the optimal
frequency dependent readout, and the FQL. The middle panel is the ratio of these curves to the FQL. The
bottom panel is the optimal frequency-dependent readout angle. The left column is the case of a tuned
signal-recycled Michelson interferometer while the right one is the detuned case
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Fig. 9 A schematics showing the optical feedback in the detuned case of a dual-recycled Michelson inter-
ferometer. This is to explain the enhancement of quantum fluctuation in the amplitude quadrature (or
equivalently the power fluctuation)

quadrature readout and the optimal frequency-dependent readout. In the tuned case,
the sensitivity with the optimal readout is identical to the FQL. In the detuned case,
however, they overlap for most of the frequencies, but not at the detuning frequency.
The difference is less than

√
2 in amplitude (a factor of two in power), which matches

the general theorem in Miao et al. (2017).
Worthy of highlighting, there are two noticeable dips in the FQL for the detuned

case. The high-frequency one simply coincides with the detuning frequency which
defines the optical resonance of the interferometer. The low-frequency one, as dis-
cussed by Buonanno and Chen (2002), is attributable to the so-called optical spring
effect which shifts the test-mass centre-of-mass frequency due to the position-
dependent radiation pressure. In sight of the FQL, we can provide an alternative point
of view: the sensitivity is better around such a frequency implies that the optical power
fluctuation is significantly larger than other frequencies, according to Eq. (41). It can
be explained using the positive feedback as illustrated in Fig. 9. The quantum fluctu-
ation in the amplitude quadrature is converted into that of phase quadrature due to the
ponderomotive squeezing (amplification) effect. In the presence of non-zero detuning
and the signal-recycling mirror, the phase quadrature fluctuation is feeding back to the
amplitude one. With the round-trip feedback gain approaching unity, the amplitude
quadrature fluctuation, or equivalently the power fluctuation, is significantly enhanced
and leads to the dip in the sensitivity curve that we observe.

The above insight provides a new perspective on how the arm cavity power fluctua-
tion can be enhanced, i.e., achieving a better sensitivity. In addition to increasing power
or external squeezing injection, we can also take advantage of the internal pondero-
motive squeezing. If we can insert proper optical filters such that the simple detuning
in Fig. 9 is replaced by more sophisticated feedback, we could achieve a broadband
resonant enhancement of the power fluctuation. We can, therefore, combine different
techniques in a coherent way to optimise the the signal-to-noise ratio (SNR) for the
signal of interest:

SNR2
FQL =

∫
dΩ

2π

|hsig(Ω)|2
ShFQL(Ω)

= L2

�2c2

∫
dΩ

2π
|hsig(Ω)|2SPP (Ω). (47)

We can shape the power fluctuation with different techniques such that it has a good
spectral overlap with the signal, which implies a high SNR according to the above
formula. This idea is now under study in the GW community. The only limitation to
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this idea comes from the optical loss which could set a more stringent bound if the
FQL is made sufficiently low (Miao 2017). Coming up with schemes with low FQL
and robust against is one of the challenges.

4 Interferometers using non-classical light

4.1 Squeezed vacuum injection

One approach to reducing quantum noise is using the non-classical state of light—the
squeezed vacuum state, which is produced by non-linear optical processes mentioned
earlier. This approach is originally proposed by Caves when analysing the quantum
limit of laser interferometers (Caves 1981). The basic setup is shown schematically
in Fig. 10. The squeezed light is injected into the dark port of the interferometer
using an optical isolator (circulator). After several pioneering experimental works on
the generation of squeezed state, it has been successfully demonstrated in GEO600
(Abadie et al. 2011), and LIGO (Aasi et al. 2013) for reducing the high-frequency shot
noise (see a recent review article by Schnabel 2017).

Thedetector sensitivitywith squeezed light depends on the the squeezingquadrature
(angle). The latter is determined by the relative phase between the carrier of the main
interferometer and the pump field which produces the squeezed light. We again use
the tuned dual-recycled Michelson interferometer as an example. Assuming that we
measure the output phase quadrature, the quantum noise spectral density is

Sh(Ω) = h2SQL
2KMI

[
e−2rs(sin θs − KMI cos θs)

2 + e2rs(KMI sin θs + cos θs)
2
]
, (48)

where rs is the squeezing factor and θs is the squeezing angle. We show the resulting
noise curves for different squeezing angles in the right panel of Fig. 10. The phase
squeezing with θs = 0 gives

Fig. 10 Sketch of a laser interferometric GW detector with squeezed light injection (left) and the quantum-
noise curve

√
Shh for different squeezing angles (right). The SQL is shown as a reference
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Sh(Ω) = h2SQL
2

[
e−2rs

KMI
+ e2rsKMI

]
, (49)

which implies that we reduce the shot-noise term at a price of increasing the radiation-
pressure-noise term proportional to K. To reduce the shot noise and the radiation
pressure noise simultaneously, the squeezing angle θs needs to be frequencydependent,
which will be discussed in the next section.

4.2 Frequency-dependent squeezing

As we have learnt from the previous section, a fixed squeezing angle only improves
the sensitivity for some frequencies but not all. This is because the fluctuation in
the amplitude quadrature and the phase quadrature contribute to the quantum noise
differently at different frequencies. We can, therefore, optimise the sensitivity by
making the squeezing angle frequency dependent.

Again using the tuned dual-recycled interferometer for illustration, the optimal
frequency-dependent squeezing angle is equal to

tan θs = −1/KMI ∝ Ω2(Ω2 + γ 2) (50)

such that the anti-squeezing term, proportional to e2rs , in Eq. (48) vanishes and the
quantum noise is reduced over the entire frequency band. The frequency-dependent
squeezing is realised by sending the squeezed light through a cascade of so-called
filter cavities, which are Fabry–Perot cavities with proper bandwidth and detuning, as
illustrated in Fig. 11.

For a general detector configuration with the input–output relation given by Eq. (5),
the optimal squeezing angle is determined by

tan θs(Ω) = Tcs(Ω) cos ζ + Tss(Ω) sin ζ

Tcc(Ω) cos ζ + Tsc(Ω) sin ζ
, (51)

Fig. 11 The left panel is a schematic of the dual-recycled Michelson interferometer with 10dB frequency-
dependent (FD) squeezing. The top right shows the quantum-noise curve with and without squeezing. The
bottom right shows the optimal squeezing (SQZ) angle as a function of frequency
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where ζ is the measured quadrature angle at the output. It is equal to−K in the special
case mentioned above. The number of filter cavities is determined by the order of Ω

in the frequency dependence of tan θs . As shown in Purdue and Chen (2002), if tan θs
is a rational function of Ω with the highest order equal to Ω2n for its numerator and
denominator, the number will be equal to n and we can derive the bandwidth γk and
detuning Δk for the individual filter cavity analytically:

1 + i tan θs(Ω)

1 − i tan θs(Ω)
= e2i θ̄

n∏
k=1

γk + i(Ω + Δk)

γk − i(Ω + Δk)

γk + i(−Ω + Δk)

γk − i(−Ω + Δk)
, (52)

where θ̄ defines the global constant phase of the filter cavity chain at Ω → ∞.
However, if tan θs is not a rational function of Ω or one wish to approximately realise
θs using the number of cavities less than n, one can use a numerical algorithm to obtain
the filter cavity parameters by fitting to the angle. The authors find that, when proper
physical constraints on the parameters are imposed, using a minimisation routine to
minimise the following cost function leads to a good answer:

J =
{

θs − θ̄ −
n∑

k=1

arctan[(Ω + Δk)/γk] +
n∑

k=1

arctan[(Ω − Δk)/γk]
}2

. (53)

For example, in the tuned dual-recycled Michelson, two filter cavities are needed
to achieve the optimal squeezing angle, as the highest order of Ω in tan θs is four, cf.
Eq. (50). When the detector bandwidth γ is much larger than the frequency for the
transition from the radiation-pressure-noise dominated to the shot-noise dominated,
one filter cavity can approximately realise the optimal squeezing angle. This is the case
for the resonant-sideband-extraction mode of detectors. Given the default parameters
that we assumed, the bandwidth is of the order of a few hundred Hz and the transition
frequency is around 30Hz. Indeed, as shown in the left panel of Fig. 12, the difference
between the optimal angle and the one realised with one filter cavity is less than one
milliradian, and the projection noise from the anti-squeezing is smaller than 0.4dB
for 10dB squeezing. However, when the detector bandwidth is narrow, e.g., around

Fig. 12 The difference in the squeezing angle between the optimal angle and the approximation realised
by using only one filter cavity for different values of detector bandwidth
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100Hz, as shown in the right panel of Fig. 12, one filter cavity is not able to produce
the optimal angle which has a steeper change than the case of having a broad detector
bandwidth.

One may also estimate how many filter cavities is sufficient for an interferometer
from the perspective of loss, as discussed in Sect. 4.4. The price to pay in the case
of imperfect rotation angle is the extra quantum noise that comes from the projection
of anti-squeezed quadrature on the readout one. If this contribution, that can be esti-
mated as Δimp. θs = s+δθs (cf. Eq. (68)) is smaller than the contribution to the phase
fluctuations due to loss in the squeezing injection optics (see Eq. (66)), which yields:

δθs �
√

εsqze−2r+ .

4.3 Conditional frequency-dependent squeezing via EPR entanglement

As mentioned in the previous section, the canonical setup for realising the frequency-
dependent squeezing for a broadband detector involves at least one additional filter
cavity. In contrast, the recently proposed idea based upon the Einstein–Podolsky–
Rosen (EPR) entanglement of light shows a new approach without a need of the
external long filter cavity (Ma et al. 2017). This idea takes advantage of the entan-
glement (correlation) between fields around the half of the frequency ωp of the pump
field that drives the nonlinear crystal.

Compared to the canonical setup, where ωp/2 coincides with the carrier frequency
ω0 of the interferometer, this scheme slightly shifts the pump frequency by, e.g., tens
ofMHz, denoted asΔ, which needs to much larger than the GW frequency but smaller
than the bandwidth of the squeezed light source. The field around ω0, which contains
the GW signal, are called signal field (mode); that around ω0 + Δ is called the idler
field. They are correlated due to the nonlinear process in the squeezed light source;
measuring one will allow us to reduce our uncertainty of the other, which is so-called
conditional squeezing. Since the idler field is separated with the signal fields by tens of
MHz, it will not mix with the strong carrier atω0 to produce a radiation pressure on the
test masses. The interferometer will just behave like an optical filter cavity for the idler
field; the conditional squeezing can gain the desired frequency dependence by properly
tuningΔ, andno external filter cavity is needed.The setup is shown inFig. 13.The input
path is the same as the frequency-independent squeezing. The additional complication
comes from the output path. It requires a short (tens of centimetre scale) cavity similar
to the output mode cleaner (OMC) to separate the signal field and the idler field. Two
sets of balanced homodyne detection are needed to measure these two fields.

To understand this idea, we need to look at the structure of EPR entanglement
in the multi-frequency-mode picture, as illustrated in Fig. 14. The upper sideband
at ω + Ω and the lower sideband at ω − Ω are entangled in the sense that their
quantum fluctuations are not independent but correlated. In the standard case with ωp

equal to twice the carrier frequency ω0 of the interferometer, we often do not need
to consider such an entanglement in the two-photon formalism after introducing the
amplitude and phase quadratures which are linear combinations of the upper and lower
sidebands. This is because the test-mass-light interaction inside the interferometer and
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Fig. 13 A schematic showing
the configuration of realising
frequency-dependent squeezing
using the idea of EPR
entanglement. The basic setup is
the same as
frequency-independent
squeezing but with the pump
frequency slightly shifted away
twice the carrier frequency ω0 of
the interferometer by Δ

Fig. 14 The squeezer in the single-frequency-mode picture (top) and multi-frequency-mode picture (bot-
tom). In the latter picture, the field is only squeezed precisely atω, the half of the pump frequency. The upper
and lower sidebands around ω will have fluctuations larger than that of a vacuum state, but are entangled
(correlated) if their sum frequency is equal to 2ω

the homodyne readout only involve these quadratures rather than individual sidebands.
It turns out that the entanglement between upper and lower sidebands can be converted
into quadrature squeezing in the frequency reference with respect to ω0, as illustrated
by Fig. 15.

In the EPR squeezing idea, the entanglement between the upper and lower side-
bands is the key to create the conditional squeezing. Let us go through the math behind
the illustration shown in the lower panel of Fig. 15. With the offset Δ of the pump
frequency, the sidebands around ω0 and those around ω0 + Δ are correlated. Specifi-
cally, the optical field ô(ω0 − Ω) is correlated with ô(ω0 + Δ + Ω), and ô(ω0 + Ω)

is correlated with ô(ω0 + Δ − Ω). To distinguish between the sidebands around ω0
and those around ω0 + Δ, we introduce

â± ≡ ô(ω0 ± Ω), b̂± ≡ ô(ω0 + Δ ± Ω). (54)
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Fig. 15 The upper panel illustrates the standard case with ωp = 2ω0. We can transform the entanglement
between the upper and lower sidebands into quadrature squeezing without entanglement, by using the two-
photon formalism. The lower panel shows the EPR squeezing idea where such an entanglement is explicitly
explored to produce the conditional squeezing

Their correlations can be quantified by the cross spectrum in the frequency domain.
Specifically, given the squeezing factor rs and angle θs of the squeezed light source,
we have

Sa+a+ = Sa−a+ = Sb+b+ = Sb−b− = cosh 2rs, (55)

Sb−a+ = S∗
a+b− = Sb+a− = S∗

a−b+ = −e2iθs sinh 2rs, (56)

Sa−a+ = Sa−b− = Sa+b+ = Sb−b+ = 0. (57)

In terms of the amplitude and phase quadratures for â and b̂, we can obtain the covari-
ance matrix for (âc âs b̂c b̂s):

S =

⎡
⎢⎢⎣

cosh 2rs 0 − cos 2θs sinh 2rs sin 2θs sinh 2rs
0 cosh 2rs sin 2θs sinh 2rs cos 2θs sinh 2rs

− cos 2θs sinh 2rs sin 2θs sinh 2rs cosh 2rs 0
sin 2θs sinh 2rs cos 2θs sinh 2rs 0 cosh 2rs

⎤
⎥⎥⎦ .

(58)
In the special case when θs = π/2 (phase squeezing injection), the covariance matrix
becomes

S|θs=π/2 =

⎡
⎢⎢⎣
cosh 2rs 0 sinh 2rs 0

0 cosh 2rs 0 − sinh 2rs
sinh 2rs 0 cosh 2rs 0

0 − sinh 2rs 0 cosh 2rs

⎤
⎥⎥⎦ . (59)

We can see that â and b̂ are mutually correlated, or equivalently forming quantum
entanglement, manifested by the nonzero off-diagonal terms in the covariance matrix.
It is such a correlation that allows us to reduce the uncertainty (variance) of â by
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making a measurement on b̂, or vice versa. This is the main principle behind the
conditional squeezing.

To show the conditional squeezing explicitly, suppose we use the homodyne detec-
tion scheme to measure the quadrature b̂φ :

b̂φ ≡ b̂c cosφ + b̂s sin φ. (60)

The remaining uncertainty of â1,2 conditional on the measurement of b̂φ , i.e., the
conditional variance can be derived by using the definition of conditional probability:

P(â|b̂φ) = P(â, b̂φ)

P(b̂φ)
. (61)

Here P(â, b̂φ) is the joint probability distribution of â ≡ (â1 â2) and b̂φ a three-
dimensional Gaussian distribution with mean equal to zero and covariance matrix
derived from Eq. (59). The resulting covariance matrix for the conditional probability
is

Scondaa = Saa − SabφSbφa

Sbφbφ

= R−φ

[
e−2reff 0

0 e2reff

]
Rφ, (62)

where the effective squeezing factor reff is defined through

e2reff ≡ cosh 2rs . (63)

Therefore, the signal field â is a squeezed state conditional on the measurement of
b̂φ .4

The squeezing angle is −φ and the magnitude of the conditional squeezing is
around 3dB less than the squeezing level directly measured using a local oscillator
at ω0 + Δ/2. For example, given 10dB squeezed light source, i.e. e2rs = 10, the
observed conditional squeezing is approximately equal to 7dB:

10 log10(e
2reff ) = 10 log10(cosh 2rs) ≈ 7. (64)

One would need to have 13dB squeezing as the input to obtain 10dB squeezing using
this approach.

Fig. 16 illustrates how the interferometer affects the signal field and the idler field
by only looking at the differential mode from the dark port (the interferometer is
mapped into a coupled cavity). For the former, the signal-recycling cavity (SRC)
formed by SRM and ITM is tuned on resonance with respect to ω0 in the resonant
sideband extraction case. The strong carrier inside the arm cavity mixes with the signal
field and interacts with the test mass mediated by the radiation pressure. This process

4 In some sense, Eq. (62) is another way to derive aWiener filter for a 2-channel interferometer, as described
in Sect. 2.1. In this case the 2 quadratures of the signal field are combined with the idler-channel readout
multiplied by a frequency-dependent coefficientsK = {Kc(Ω), Ks (Ω)} that minimise the spectral density

of the difference: (â − Kb̂φ), i.e., min
K

[〈
(â − Kb̂φ) ◦ (â − Kb̂φ)†

〉]
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Fig. 16 The dual role of the
interferometer (schematics
showing the differential mode):
it acts as a signal extraction
device and a ponderomotive
squeezer for the signal field (top
panel), while acting as a filter
cavity for the idler field (bottom
panel). Measuring the output of
the idler field will project the
signal field into a squeezed state

makes the signal field at the output squeezed, which is the ponderomotive squeezing
effect mentioned earlier. It introduces the radiation pressure noise by converting the
fluctuation of the amplitude quadrature into that of the phase quadrature. For the latter,
there is no strong carrier at ω0 +Δ and there is no radiation pressure effect associated
with the idler field. The interferometer behaves as a passive filter cavity that imprints
frequency-dependent rotation on the quadratures of the idler field. Since measuring φ

quadrature of the idler field will make −φ quadrature of the signal field squeezed, cf.
Eq. (62), the frequency dependence will be transferred to the squeezing of the signal
field. As shown in Ma et al. (2017), we can achieve the desired frequency-dependent
squeezing by choosing a proper value ofΔ and fine tuning the length of SRC. Onemay
as well use the I/O-relations formalism of Sect. 2.1 to arrive to the above described
result. However, since the twomodes of squeezed light are entangled and thus ought to
be considered together, asmanifested by Eq. (58), the dimensions of the corresponding
transfer matrix T and the response vector t should be expanded to 4 × 4 and 4 × 1,
respectively.

There is one last issue worthy of emphasising, which is the optical loss. This idea
removes the additional filter cavity that is needed in the conventional frequency-
dependent squeezing. Therefore, the optical loss associated with the filter cavity is
now absent, as the arm cavity is long enough to achieve the required filter bandwidth
with a low finesse. However, since there are two readout channels: one for the signal
field and the other for the idler field, the optical loss at the output, e.g., from the mode
mismatching and finite quantum efficiency of the photo detector, is effective doubled
compared with the conventional scheme. This scheme, if to be implemented, places
a more stringent requirement on the output loss. In the section below, we will dis-
cuss in general how the optical loss influences the quantum-limited sensitivity of laser
interferometers.

4.4 Optical losses in interferometers with non-classical light

The performance of the described interferometers with squeezed vacuum injection
depends rather strongly on how well the quantum correlations generated by the
squeezer are transmitted to the interferometer to counteract the corresponding quan-
tum correlations created by optomechanics (i.e., ponderomotive squeezing discussed
earlier). As shown by Kimble et al. (2002), this effect is quite significant and detri-
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mental. There are several mechanisms that cause deterioration of the QNLS of the
interferometers using squeezing injection, which we consider below.

4.4.1 Optical loss in a squeezing injection optics

Optical loss in the injection train may be considered the main hindrance for squeezed
vacuum to enter the GW detector dark port (Dwyer et al. 2013; Dooley et al. 2015;
Isogai et al. 2013). The mechanism behind is mainly the scattering/mode mismatch
and absorption in the auxiliary optical elements used to link the squeezer and the FC
input mirror, or the interferometer dark port. As an upper bound estimate, it can be
characterised by an integral, frequency-independent injection power loss coefficient,
εsqz. Following the same chain of argument as for the readout train loss in Sect. 2.6.1,
the I/O-relation for the injection train can be written as:

îdark port = √
1 − εsqz î sqz + √

εsqz n̂sqz, (65)

where îdark port stands for the light field, entering the dark port of the detector (or the
filter cavity in case of frequency dependent squeezing injection), and î sqz and n̂sqz are
the field generated by a squeezer and a vacuum field due to injection loss, respectively.
If the squeezer is capable of generating squeezed statewith (anti-)squeezing quadrature
variances, s− = e2r− , (s+ = e2r+), the effective (anti-)squeezing factor at the dark
port reads:

seff− ≡ e−2reff− = (1 − εsqz)e
−2r− + εsqz,(

seff+ ≡ e2r
eff+ = (1 − εsqz)e

2r+ + εsqz

)
. (66)

Here we took into account that the real squeezer produces not a pure squeezed vacuum
state, for which s+ = 1/s− = e2r , rather a mixed state that can be described by a
diagonal spectral density matrix:

S
sqz
i =

[
s+ 0
0 s−

]
(67)

with s+ usually larger than 1/s− (see, e.g., Suzuki et al. 2006).

4.4.2 Squeezing angle fluctuations

Another source of noise is known as ‘phase quadrature noise’, or ‘squeezing angle
jitter’ (Dooley et al. 2015). It comes from the random fluctuations of the optical path
length between the squeezer and the dark port of the interferometer.

Although the fluctuation may happen anywhere along the squeezing injection train,
the absence of active nonlinear components between the squeezer and the interfer-
ometer justifies viewing it as a random rotation of a squeezed vacuum state at the
output of the squeezer. In this case, the effect can be described by a random angle
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of rotation, λ, normally distributed around the zero mean with an r.m.s. uncertainty

σλ: w(λ) = 1√
2π σ 2

λ

exp

[
− λ2

2 σ 2
λ

]
. Provided that the r.m.s. uncertainty σλ is quite small

(∼ 10mrad), one can assume that the resulted quantum state of light remainsGaussian
to a good precision and therefore only the transformation of the field second moments,
i.e. of the PSD matrix (67), under these random rotations is of interest. The averaged
over λ squeezed state PSD matrix read:

〈
S
sqz
i

〉
λ

=
∫ ∞

−∞
dλ w(λ)R[λ] · S

sqz
i · R[−λ]

= s+ + s−
2

[
1 + s+−s−

s++s− e
−2σ 2

λ 0

0 1 − s+−s−
s++s− e

−2σ 2
λ

]
�
[
s+ 0
0 s− + σ 2

λ s+

]
,

(68)

where the last approximate inequality takes into account that σλ � 1 and s+ � s−. So
we see that the phase quadrature fluctuations lead to a contamination of the squeezed
quadrature, s−, by the noise contained in the anti-squeezed quadrature, s+.

4.4.3 Losses in filter cavities

Filter cavities used for frequency-dependent squeezing have a bandwidth that is smaller
than the detection band of the interferometer. Hence, the influence of extra vacuum
fields associated with loss in the FC’s mirrors has a distinct frequency dependence
that can be accounted for using the model of a lossy Fabry–Perot cavity derived in
Appendix B.2.1. As there is no carrier light propagating in the FC, the general I/O-
relations can be simplified by omitting back-action and signal parts in (176):

ô f (Ω) = TFC î(Ω) + NFC n̂, (69)

where î and ô stand for input and output fields of the FC, respectively, and n̂ represents
vacuum fields due to loss. Transfer matrices for filter cavity are defined as:

TFC = T
s.n.
arm(Ω), NFC = N

s.n.
arm(Ω), (70)

with expressions for T
s.n.
arm and N

s.n.
arm given by Eqs. (178) and (179), respectively.

Using this simplified formula, quantum noise spectral density for interferometer
with lossy input filter cavities can be obtained by substituting into (33) the following
expression for input field spectral density matrix:

S
in
o f , loss = TFC · Rλ · S

sqz
i · R

†
λ · T

†
FC + NFC · N

†
FC. (71)

The last term here peaks near the resonant frequency of the cavity which thereby
decreases squeezing of the vacuum fields entering the cavity. But the off-resonant
squeezedvacuumfields reflect off theFCwithout deterioration.This explainswhyopti-
cal loss in the cavities have major impact at low frequencies within the FC linewidth.
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4.5 Summary and outlook

After years of developments and researches, squeezing now becomes an indispensable
quantum technique for enhancing the detector sensitivity. We can now produce a high
level of squeezing, more than 10 dB, at the audio band for both 1064 nm and 1550
nm with the goal of expanding to other wavelengths (Schnabel 2017). To fully take
advantage of the squeezing, efforts are being put into minimisation of the optical
loss, due to scattering and mode mismatch, in between the squeezed light source and
the interferometer output. The frequency-dependent squeezing with a filter cavity has
already been demonstrated in a table-top experiment (Oelker et al. 2016), and the large
scale filter cavity, of the order of hundred meter, will be implemented in the near term
upgrades of current advanced detectors (LIGO Scientific Collaboration 2018). The
EPR squeezing idea is at an early stage and requires table-top demonstrations, which
have been started by several experimental groups. Since reducing the shot noise of
a detuned interferometer also requires the frequency-dependent squeezing, this idea
equally applies there, which has been modelled in details in Brown et al. (2017).
Indeed, the on-going experimental demonstrations all use this fact.

Looking further into the future, more complex frequency-dependent squeezing
might be needed to optimise the sensitivity of detectors operating beyond the current
broadband operation. This may require a cascade of filter cavities with parameters
that can be tuned in situ. For passive optics (without external energy input), one can
achieve the tunability by using compound mirrors. The active optomechanical fil-
ter cavity idea provides an alternative approach and also can achieve narrow cavity
bandwidth with a short cavity length (Ma et al. 2014). However, it has not yet been
investigated experimentally as systematically as the passive filter cavity, and more
researches are needed.

5 Speed-meter interferometers

Measurement of speed was first proposed by Braginsky and Khalili (1990) as an
alternative to a position measurement performed by a conventional Michelson inter-
ferometer. The goal was to get rid of the back-action fluctuations of light and thereby
drastically improve the sensitivity of GW interferometers at low frequencies. This
is possible because, they argued, velocity of the free body is proportional to its
momentum, which is a conserved quantity and thus a quantum-non-demolition (QND)
observable. As such, any measurement of momentum is free from back action by
design. The more careful analysis has shown that the dynamics of the test object can-
not be considered separately from that of the meter, which is the laser light in the
case of GW interferometers. For a combined system ‘mirrors+light’, the generalised
momentum is rather a sum of two terms, P̂ = mv̂ − gSM(t)âc than a simple pro-
portionality to velocity (see, e.g., Sect. 4.5.2 in Danilishin and Khalili 2012), where
gSM(t) is the strength of coupling between the light and the mirrors’ mechanical
motion, and âc = (â + â†)/

√
2 is the amplitude quadrature of light. Nevertheless,

speed measurement offers a substantial reduction of random back-action force.
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Fig. 17 Principle scheme of
optical measurement of speed

The power of speed-meter interferometer (SI) to reduce back-action noise is nested
in its ability to sense the relative rate, or in other words speed of an arm cavities length
variation, whereas Michelson interferometer senses arms length variation itself. The
simple way to understand how a speed measurement can reduce back-action is to
consider a simple thought experiment depicted in Fig. 17. Here the free mirror is
sensed twice by the same laser light that is reflected from both the front and the rear
surfaces thereof with a time delay τ between reflections. The phase of outgoing light
is measured by, say homodyne detector, and is proportional to the the difference of
the succesive mirror coordinates: φout ∝ (x(t + τ) − x(t)) � v̄τ , where v̄ stands
for the mean velocity of the mirror over the interval τ . If the signal force one seeks
to measure, watching the change of the mirror velocity, has characteristic frequency
Ω much smaller than τ−1, the two kicks light gives to the mirror on the consecutive
reflection partly compensate each other and the resulting back-action force turns out
to be depressed by a factor ∝ Ωτ � 1:

F̂b.a.(Ω) � −iΩτ
2 P̄pulse

c
, (72)

as compared to the back-action of single light pulsewith an average power P̄pulse which
one expects in a single reflection experiment sensitive to the test mass displacement.

5.1 Speedmeters as GW detectors

The original paper by Braginsky and Khalili (1990) considered the microwave speed
meter as a readout for bar GW detectors. The first of two proposed schemes was
the microwave version of the scheme shown in Fig. 17. The second one used two
coupledmicrowave cavities with one of them having amovable wall attached to the bar
antenna to sense the GW-induced oscillations thereof, and the other cavity served for
storing the EM signal with displacement information and sending (“sloshing”) it back
to the readout cavity with an opposite sign (π -phase shift). This allowed sequential
measurement of position as described above, thereby yielding speed measurement. In
the subsequent years, a lot of new speed-meter interferometer designs were proposed,
although it took almost 10 years till the first optical implementation of the original
sloshing speed-meter principle has been finally developed by Braginsky et al. (2000a).

The more or less complete chart of configurations developed so far is shown in
Fig. 18. All schemes are classified in 3 types—(i) Sagnac-like speed meters (Chen
2003; Khalili 2002; Danilishin 2004; Wang et al. 2013; Danilishin et al. 2018), (ii)
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Fig. 19 Two possible ways of realisation of speed meter in a GW interferometer: a “Sloshing” speed meter
scheme based on Braginsky et al. (2000a), and b zero-area Sagnac speed meter based on Chen (2003)

sloshing speed meters (Braginsky et al. 2000a; Purdue 2002; Purdue and Chen 2002;
Wade et al. 2012; Huttner et al. 2017) and (iii) the EPR-type speed meter (Knyazev
et al. 2018) by the mechanism the speed measurement is arranged. In Sagnac speed
meter, signal sidebands interact with the interferometer twice and co-propagate all
the time with the carrier light. Sloshing speed meters use an additional not pumped
sloshing cavity to store the signal sidebands between the two interactions with the
interferometer arms and thus have an extra parameter, the sloshing frequency (defined
by the sloshing cavity length and the input coupler mirror reflectivity), that discerns its
response function from that of a Sagnac speedmeters. And finally, the EPR-type speed
meter uses two optically independent position-sensitive interferometers and devise the
speed information by combining their outputs into sum and difference combinations
with a beam-splitter and then adding the so obtained correlated photocurrents with
optimal weights. Let us see how it works in individual schemes.

5.2 Sloshing speedmeter

In the sloshing speed meter proposed by Braginsky et al. (2000a) (see Fig. 19a), an
auxiliary “sloshing” optical cavity was added into the output port of the Fabry–Perot–
Michelson interferometer. Thismakes theGWsignal to “slosh” back and forth between

the two coupled effective cavities with an alternating sign and the rate ωs = c
2

√
T0
LL0

defined by the transmissivity T0 of the input coupler and the lengths of the arm
L and sloshing cavity L0, respectively. Hence, after the second pass through the
interferometer, the outgoing light bears exactly the required combination of position
signals, ∝ x̂(t) − x̂(t + τ) ∼ τ v̄, yielding the speed measurement.

Two possible implementations of such a scheme are shown in Fig. 20. The left panel
shows the variant with space separation of optical beams used for sequential measure-
ment of arms’ differential displacement (Braginsky et al. 2000a; Purdue and Chen
2002), whereas the right one, proposed byWade et al. (2012) employs two orthogonal
polarisations to separate the beams. The latter also gets rid of an extra sloshing cavity
by using the orthogonal not pumped polarisation mode of the interferometer.
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(a) (b)

Fig. 20 Two possible realisations of sloshing speed-meter interferometer: a using additional sloshing cavity
(Braginsky et al. 2000a; Purdue and Chen 2002) and b using the two orthogonal polarisations to make use
of the main IFO as a sloshing cavity (Wade et al. 2012)

In the simple case of no losses and resonantly tuned main IFO and the sloshing
cavity, the quantum noise of such interferometer is characterised by the following
I/O-relations of the same form as Eqs. (17):

b̂outc = e2iβSSM âinc , (73)

b̂outs = e2iβSSM
(
âins − KSSMâinc

)+ eiβSSM
√
2KSSM

h

hSQL
. (74)

where KSSM is the sloshing speed meter optomechanical coupling factor. For the
general case it can be written as:

KSSM(Ω) = T0KMI sin2 αSC

cos2(βMI + αSC) + T0R0 cos2 βMI − T0 cos(βMI + 2αSC)
(75)

where βMI and αSC stand for the frequency-dependent phase shifts gained by the
sidebands at frequency Ω as they pass through the main Michelson interferometer
and the sloshing cavity (see Eq. (23) for definition). It can be simplified, if one uses
a single-mode approximation where all the sideband frequencies of interest are much
smaller than the arm cavity FSR = c/2L (Miao et al. 2014):

KSSM(Ω) � 4Θγ

(Ω2 − Ω2
s )2 + γ 2Ω2 (76)

with Ωs = √
c2T0/(4LL0) being the sloshing frequency that specifies the rate at

which the signal sidebands “slosh” between the main IFO and the sloshing cavity with
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(a) (b)

(c)

Fig. 21 Quantum noise of a sloshing speed meter: a QNLS of the sloshing SM for parameters given in
the Table 1 as compared to an equivalent Michelson (grey trace), with thick red dashed line showing noise
in the phase quadrature at readout (φLO = π/2), and the thin red dashed line demonstrating the sub-SQL
sensitivity of a SM for optimal readout quadratureφLO = arccot(KSSM(0)) = π/4; b quantumfluctuations
of the phase quadrature of the readout light of the SM (red dashed trace) and the equivalent Michelson (grey
trace); c response functions of the sloshing SM (red dashed trace) andMichelson (grey trace) interferometers
to the GW strain. For a sloshing cavity, we assumed the same length as the arm cavities Ls = L giving
αSC = 2ΩLs/c, no input mirror and chose the transmissivity T0 of the coupling mirror from the condition
KSSM(0) = 1 that yielded T0 = 0.96

length L0, and βSSM = arctan[(Ωs − Ω)/(Ωγ )] is the frequency dependent phase
that a modulation sideband Ω acquires as it travels through the interferometer.

It is straightforward to obtain the expression for quantum noise of the sloshing
speed meter, using formula (10) that reads:

ShSSM = h2SQL
2

[
(KSSM − cot φLO)2 + 1

KSSM

]
. (77)

The corresponding plot of quantum noise limited sensitivity of a lossless sloshing
speed meter is shown in the left panel of Fig. 21 along with a plot for the QNLS of a
Michelson interferometer with similar parameters and a free mass SQL for scaling.

One can immediately see that the QNLS of speed meter has the same frequency
dependence as the SQL at low frequencies, where quantum back-action noise dom-
inates, which is a unique feature of the speed meters in general. It results from the
back-action suppression, as expected from the QND speed measurement. However, it
does not go parallel to the frequency axis, like, for instance, the frequency-dependent
variational readout and the FQL do (see Fig. 8 in Sect. 3). One can see why on the two
right panels of Fig. 21, where on the top plot, the quantum noise of the outgoing light
phase quadrature (φLO = π/2) is plotted (the numerator of Eq. (10)), whereas on the
lower panel we see the response of the interferometer to the signal variation of GW
strain (the numerator of Eq. (10)). Hence the QNLS plot to the left is simply the ratio
of the upper and lower plots to the right.

So, one can see in Fig. 21b that quantum back-action noise of speed meter is indeed
heavily suppressed as compared to the Michelson interferometer and has the same
constant-like frequency dependence as quantum shot noise. The 1/ f -slope in QNLS
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is coming from the speed response that rolls off as ∝ f towards the DC as shown in
Fig. 21c.

Mathematically, this suppression comes from the fact the OM coupling factor K
is constant below the cavity pole, i.e. at DC: KSSM(Ω → 0) = const , while for
the Michelson interferometer it is KMI(Ω → 0) ∝ Ω−2. This also means that unlike
Michelson the power circulating in the arms of the speedmeter must be above a certain
threshold value Θcrit , below which the speed meter cannot reach the SQL. Threshold
is defined by the condition KSSM(0) = 1. When substituting this condition into the
QNLS expression at low frequencies and for phase quadrature readout one gets:

ShSSM = h2SQL
2

[
KSSM(0) + 1

KSSM(0)

]
→ h2SQL,

Hence the threshold power reads Θcrit = Ω4
s /4γ , or Pcrit = McLΩ4

s /(16ω0γ ).
Another consequence of the peculiar behaviour ofKSSM for a speedmeter is the abil-

ity to surpass the SQL at low frequencies if the right quadrature is selected for readout.
Indeed, the general expression for the SSM QNLS has a term ∝ [KSSM − cot φLO]2
that can be made zero, were cot φLO] = KSSM. This is quite easy to achieve, as
KSSM = const below the cavity pole. The resulting sensitivity at these low fre-
quencies is the FQL for the speed meter, as mentioned in Sect. 3. For instance, at
the threshold power where KSSM(0) = 1 the optimal readout quadrature will equal
φLO = π/4. This case is plotted as a thin dashed line in Fig. 21a.

5.3 Sagnac-type speedmeters

Another way to make a speed measurement with laser interferometer was suggested
independently byChen (2003);Khalili (2002). They showed that the zero-areaSagnac
interferometer (Beyersdorf et al. 1999a, b) actually implements the initial double-
measurement variant of the quantum speed meter, shown in Fig. 17. Indeed, visiting
consequently both arms (see Fig. 22a), counter propagating light beams acquire phase
shifts proportional to a sum of arms length variations xN ,E (t) ≡ [

xN ,E
ETM(t)− xN ,E

ITM (t)
]

(hereinafter I(E)TM stands for Input (End) Test Mass) for of both cavities taken with
time delay equal to average single cavity storage time τarm:

δφR ∝ xN (t) + xE (t + τarm), (78)

δφL ∝ xE (t) + xN (t + τarm). (79)

After recombining at the beam splitter and photo detection the output signal will
be proportional to the phase difference of clockwise (R) and counter clockwise (L)
propagating light beams:

δφR − δφL ∝ [xN (t) − xN (t + τarm)] − [xE (t) − xE (t + τarm)] ∝
∝ ẋN (t) − ẋE (t) + O(τarm) (80)
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(a) (b)

Fig. 22 Twopossible realisations of Sagnac speed-meter interferometer: a using ring arm cavities to separate
the in- and outgoing beams (Chen 2003; Khalili 2002) and b using the two orthogonal polarisations and a
λ/4-plate, PBS and a mirror for the same purpose (Danilishin et al. 2018)

that, for frequencies Ω � τ−1
arm, is proportional to relative rate of the interferometer

arms length variation.
The originally proposed configuration that uses ring cavities for separation of the

in- and outgoing beams is not very practical, as the experience of the experimental
prototyping of this type interferometer at the University of Glasgow has shown (Gräf
et al. 2014). Apart from the infrastructural complexity of placing two large suspended
mirrors in the same vacuum tube, the ring arm cavities suffer heavily from the coherent
back-scattering of light from one beam to the counter propagating one. This creates an
unwanted coupling between the two modes of the ring cavity (associated with clock-
wise and counterclockwise propagating beams) thereby causing resonance frequency
splitting. This means that the arms become detuned with respect to the pump light,
which lead to the increase of quantum noise as shown in Pascucci (2019).

To avoid this problem, a few polarisation-based variants of speed-meter schemes
were proposed (Danilishin 2004; Wang et al. 2013; Danilishin et al. 2018), which
relaxed the need for modifications of the main interferometer significantly. The most
recent proposal (Danilishin et al. 2018), depicted in Fig. 22b, no changes to the infras-
tructure of the main interferometer. It requires, however that all reflective coatings of
the core optics have the same properties for both polarisations of light. This is a tough,
though not impossible requirement, and some research in this direction is under way
already (Hild 2017; Krocker 2017).

Quantum noise of the Sagnac speed meter can be written exactly in the same way
as for the sloshing speed meter before. The only difference will be in the shape of the
OM coupling factor that for Sagnac interferometer can be written as:

KSag = 4KMI sin
2 βMI � 8Θγ

(Ω2 + γ 2)2
. (81)
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(a) (b)

(c)

Fig. 23 Quantum noise of a Sagnac speed meter: a QNLS of the Sagnac SM for parameters given in the
Table 1 as compared to an equivalent Michelson (grey trace), with thick blue dashed line showing noise
in the phase quadrature at readout (φLO = π/2), and the thin blue dashed line demonstrating the effect
of increased circulating power (ramped up by 2.5 times to 10 MW); b quantum fluctuations of the phase
quadrature of the readout light of the SM (blue dashed traces) and the equivalent Michelson (grey trace);
c response functions of the Sagnac SM (blue dashed traces) and Michelson (grey trace) interferometers to
the GW strain

From this expression one can see that Sagnac has an advantage in response as
compared toMichelson with the same pump power, as identified by the factor 4 before
KMI. The reason is straightforward and comes from the fact that in Sagnac each beam
that leaves themain beam splitter visits both cavities in a row. Thismeans that each arm
takes twice asmuchpower as that of the equivalentMichelson, thereby producing twice
of the optomechanical response. To show this, one just need to substitute KSSM →
KSag in Eq. (82) and calculate the QNLS:

ShSag = h2SQL
2

[
(KSag − cot φLO)2 + 1

KSag

]
. (82)

The above QNLS is plotted in Fig. 23a. It is instructive to see how speed meter’s
sensitivity depends on circulating power.

5.4 EPR-type speedmeters

Knyazev et al. (2018) proposed a third distinct way to realise speed measurement in
GW laser interferometer, using two-positionmeters (Fabry–Perot–Michelson interfer-
ometers, see Fig. 24a that have rigidly connected test masses (or simply share them)
but have contrasting light storage times (bandwidths satisfy condition γ1 � γ2). The
information about the differential motion of the arms thus comes of the two interfer-
ometers at a very different rate given by respective bandwidths. Hence, combining
the readout beams of the two interferometers on a beam-splitter and reading out the
“−”-channel thereof one gets the difference of the two position signals at different
times that is, in fact, velocity. There is an additional back-action noise associated with
the vacuum fields entering the “+”-port of the beam-splitter that however can be sub-
tracted from the readout, if one measures the amplitude quadrature at the “+”-channel
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(a) (b)

Fig. 24 EPR-speedmeter concept:aEPRspeedmeter based on twoFabry–Perot–Michelson interferometers
with inputs and outputs combined using a beam-splitter and b practical EPR-speed meter scheme based on
using two orthogonal polarisations

and subtracts it, with optimal filter, from the readout of the “−”-channel. As the two
output channels of the readout beam-splitter get entangled, when the two pondero-
motively squeezed output fields, b̂1 and b̂2, of the two position meters get overlapped
on it, and this entanglement is used to remove the excess back-action noise from the
output, this speed meter was dubbed an EPR-speed meter.

As the design of Fig. 24a is obviously a nightmare to implement in a real GW
detector (it was never intended to be), another one, based on orthogonal polarisation
modes of light was proposed in Knyazev et al. (2018) and is shown in Fig. 24b. The
key element here is the quarter-wave plate (QWP) that acts as a π/2-phase retarder
between the two orthogonal polarisation modes of the main interferometer. The QWP
placed between the main IFO and the signal-recycling mirror, which position with
respect to the arm’s ITMs is chosen so that the resulting SR cavity (with the QWP) is
tuned resonantly for one of the polarisation modes. The orthogonally polarised light
sees the SR cavity as anti-resonant due to the π/2 phase shift given to it by the QWP.
As a consequence of the “scaling law” (Buonanno and Chen 2003), the polarisation
mode that is in resonance with the SRC sees the interferometer with a very narrow
effective bandwidth γ2 (tuned SR regime, see Eq. (24a) with φSR = 0), whereas for the
orthogonal one the effective bandwidth γ2 � γ1 is greatly increased (resonant side-
band extraction (RSE) regime, see Eq. (24a) with φSR = π/2). The polarisation beam
splitter (PBS) with a polarisation plane rotated by 45◦ angle with respect to the s- and
p-polarised modes of the main interferometer creates the EPR-type correlations in the
“+” and “−” readout channels. The optimal distribution of circulating powers among
the two effective positionmeters is organised by the proper choice of the angle ϑ of the
carrier light polarisation plane to the vertical direction (see the blue box in Fig. 24b).

Quantum noise of the EPR-speed meter can be calculated using the multi-channel
formalism of Sect. 2.1 and the I/O-relations (17) for each of the individual Michelson
interferometers of the scheme save to the assumption of different bandwidth for each
of them and account for the common back action on the test masses imposed by both
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carriers, i.e.:

b̂(1)
c = e2iβ1 â(1)

c , (83a)

b̂(1)
s =

[
e2iβ1 â(1)

s −
(
e2iβ1K1â

(1)
c + ei(β1+β2)

√
K1K2â

(2)
c

)]

+ eiβ1
√
2K1

hSQL
h, (83b)

b̂(2)
c = e2iβ2 â2c , (83c)

b̂(2)
s =

[
e2iβ2 â(2)

s −
(
e2iβ2K2â

(2)
c + ei(β1+β2)

√
K1K2â

(1)
c

)]

+ eiβ2
√
2K2

hSQL
h. (83d)

HereK1,2 and β1,2 stand for the OM coupling factors and sideband phase shifts of the
two Michelsons, as defined by Eqs. (22) and (23). Note the terms in parentheses in
the equations for sine quadratures, which describe radiation pressure contributions to
the outgoing light. The EPR entanglement of the outgoing light fields happens at the
main beam splitter of the scheme and described by junction equations:

b̂
(+) = b̂

(1) + b̂
(2)

√
2

, b̂
(−) = b̂

(1) − b̂
(2)

√
2

(83e)

â(1) = â(+) + â(−)

√
2

, â(2) = â(+) − b̂
(−)

√
2

. (83f)

Solution of the above Eqs. (83) yields two output channels of the EPR-speed meter,
namely the “+”- and “−”-channels that each carries an information about the GW-
induced signal differential displacement the arms and quantum fluctuations of light:

b̂
(+) = T++ â(+) + T+− â(−) + t+

h

hSQL
,

b̂
(−) = T+− â(+) + T−− â(−) + t−

h

hSQL
.

where transfer matrices T±± are the subblocks of the 4× 4 full transfer matrix of the
form (13) read:

T++ = eiβ+
[

cosβ− 0
− 1

2 (K1eiβ− + K2e−iβ− + 2
√
K1K2 cosβ−) cosβ−

]

T−− = eiβ+
[

cosβ− 0
− 1

2 (K1eiβ− + K2e−iβ− − 2
√
K1K2 cosβ−) cosβ−

]
,

T+− = T−+ = eiβ+
[

i sin β− 0
− 1

2 (K1eiβ− − K2e−iβ−) i sin β−

]
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and the responses of the “+” and “−” channels are:

t+ = t1 + t2 = eiβ+
√
2K+

[
0
1

]
, t− = t1 − t2 = eiβ−

√
2K−

[
0
1

]
, (84)

where we defined the ±-channel OM coupling factors, K±, and phase shifts, β± as:

K± ≡ K1 + K2 ±√
K1K2 cos(β1 − β2), and β± ≡ β1 ± β2. (85)

Now, if one looks closely at the structure of the OM factorsK j=1,2 in Eq. (22), one
sees that they can be factorised as follows:

K j �
[ 2Θ j

γ jΩ2

] γ 2
j

(γ 2
j + Ω2)

= κ j cos
2 β j , ( j = 1, 2), (86)

with κ j ≡ 2Θ j

γ jΩ
2 . Those can be made equal to each other at low enough frequen-

cies (Ω � min[γ1, γ2]), if powers and bandwidths of the individual MIs satisfy the
following relation:

Θ1

γ1
= Θ2

γ2
, (87)

which provides κ1 = κ2 ≡ K0 = 2Θ/(Ω2(γ1 + γ2)) with Θ = Θ1 + Θ2 the sum
power in both MIs. In this case, one can get for K−:

K− = K0 sin
2(β1 − β2) = 2Θ(γ1 − γ2)

2

(γ1 + γ2)(γ
2
1 + Ω2)(γ 2

2 + Ω2)
, (88)

which behaves exactly as one expects from the speed meter, namely it tends to a con-
stant value at lowenough frequencies (see orange dashed trace on inset plot in Fig. 26a).
Hence, “−”-channel of the EPR-scheme indeed performs the speed measurement (see
orange dashed trace in Fig. 26c). However, there is an additional back-action created
by the vacuum fields â(+), entering the “+” port of the beam splitter that compromise
the speed meter’s low-frequency advantage. This may be explained by the fact that

displacement information flows out of the “+” channel with the b̂
(+)

light fields, as
one can see from the plot of the response of the “+”-channel given by a purple dash-
dotted trace in Fig. 26c. This ensues from the shape of the OM coupling factor of the
“+”-channel that reads:

K+ = K0(cos
2 β1 + cos2 β2 − 2 cosβ1 cosβ2 cos(β1 − β2))

= 2Θ[4γ 2
1 γ 2

2 + Ω2(γ1 + γ2)
2]

Ω2(γ1 + γ2)(γ
2
1 + Ω2)(γ 2

2 + Ω2)
. (89)

that grows as K+(Ω � γ j ) ∝ Ω−2 at low frequencies (see the inset in Fig. 21a).
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(a) (b)

Fig. 25 Ponderomotive squeezing of the output fields b̂
(1)

and b̂
(2)

of the two MIs that compose an EPR-
speed meter, before the main beam splitter. a The ponderomotive squeezing factor of the outgoing light of
theMI 1(red trace) and of theMI 2 (blue trace).bThe dependence of squeezing angle at different frequencies
as well as squeezing ellipses for the corresponding MIs (not to scale!) with phase quadrature uncertainty
along the vertical axis. For clarity of representation we chose γ1/2π = 60 Hz and γ2/2π = 6 Hz here

(a) (b)

(c)

Fig. 26 Quantum noise of an EPR speed meter: aQNLS of the “−” channel (orange dashed trace) realising
an EPR speed meter regime and of the “+”-channel (purple dash-dotted trace) that realises an EPR position
meter regime. Parameters for the curves are given in the Table 1 and the plot of the QNLS of a Michelson
(grey trace) is given; b quantum fluctuations of the phase quadrature of the readout light the equivalent
Michelson (grey trace) and of the “+” and “−” channels of the EPR interferometer; c response functions
of the Michelson (grey trace) interferometer and of the two channels of the EPR interferometer

It is possible however to remove this additional back-action noise from the readout
of the “−” channel, by measuring at the “+”-channel the quadrature (amplitude)
that is responsible for this back action, and subtracting it with a proper frequency-
dependent weight function from the readout of the “−”-channel (cf. Sect. 2.1 and the
Appendix of Knyazev et al. 2018). Quantum correlations between the two readouts

are at its strongest at the lower frequencies, where both MIs output light fields, b̂
(1)

and b̂
(2)
, are strongly squeezed due to ponderomotive squeezing discussed in Sect. 2,

as shown in Fig. 25. After the beam splitter “+” and “−” channel are highly correlated
(entangled), which allows aforementioned subtraction of quantum back action noise.
The resulting QN-limited sensitivity for the speed meter channel (see orange trace in
Fig. 26a) follows the general tuned interferometer pattern of Eq. (20):

ShEPR− = h2SQL
2

[
(K− − cot φ(−)

LO )2 + 1

K−

]
, (90)
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with φ
(−)
LO standing for the “−”-channel readout quadrature angle. Similar expression

for the “distilled” sensitivity of the “+” channel that exhibits a vivid position-meter
behaviour, is obtained by exchanging “−” indices by “+” in the above formula, and
the resulting plot is shown as a purple trace in Fig. 26a. Note that both expressions are
special cases of the Eq. (16).

5.5 Imperfections and loss in speed-meter interferometers

Speed-meter interferometers suffer in general from the same sources of noise due
to loss as Fabry–Perot–Michelson interferometers, since in most of the speed-meter
configurations presented in Fig. 18 FPMI itself is an integral part. However, loss
influence is different from the FPMI and there are also some specific features of speed
meters worth mentioning.

Firstly, cancellation of back-action noise in speed meters comes from the coherent
subtraction of back action forces created by the same light beam in two consequent
interactions with the test mass. Therefore any admixture of incoherent vacuum due
to loss between the two interactions, e.g., the loss in the arms, creates an unbalanced
back-action force. This loss-associated back action leads to a position-meter-like rise
of quantum noise at low frequencies, where it starts to dominate over the suppressed
quantum back action of the speed meter.

Secondly, as any scheme where balancing of the noise contributions between the
arms is essential for the noise cancellation, speed meters are very sensitive to the
asymmetry of the arms, as discussed in detail in Danilishin et al. (2015). Asymmetry
of the beam splitter in Sagnac interferometers, for instance, creates a coupling of laser
fluctuations to the readout port through an excess radiation pressure they create on the
mirrors which is quite strong as laser noise in the low-frequency range is far from the
shot noise limit. This excess noise, however can be cancelled by a wise choice of local
oscillator in the balanced homodyne readout as shown in the recent study by Zhang
et al. (2018).

In general, speed-meter interferometers show higher robustness to intracavity loss
than Michelson ones due to lower back-action component of quantum noise, which
means lower ponderomotive squeezing as discussed in Sect. 2.5. This reduces the
effect of loss vacuumfields on the internal squeezing of light since quantum correlation
between phase and amplitude fluctuations is already suppressed by the speed meter.
For the same reason the requirements on tolerable filter cavity loss and bandwidth in
case of frequency-dependent squeezing injection are significantly relaxed for speed
meters. The detailed study of loss influence on speed-meter quantum noise is given in
Voronchev et al. (2015).

5.6 Summary and outlook

Speed-meter interferometers are arguably the most elaborate and well studied concept
alternative to theMichelson interferometer based onpositionmeasurement. Theirmain
advantage is a greatly reduced back-action noise that potentially allows to increase the
rate of detection of massive binary black-hole systems by up to 2 orders of magnitude
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compared to the equivalent position meter (Danilishin et al. 2018) if only quantum
noise is considered. Although there is an obvious penalty of vanishing response at low
frequencies, the reduction of back-action is still greater to make the overall increase
of the SNR worth it. The progress in development of new, more practical topologies
of speed meters shown in Fig. 18 has led to designs that allow to keep the main
interferometer intact, yet this comes at a price of using polarisation optics that is
prone to imperfections and even more importantly, it requires development of the new
all-polarisation type mirror coatings.

We have considered here all three main genera of speed meters and gave the com-
parison of their performance. All studies done so far indicate the superiority of speed
meters’ performance over that of the conventional Michelson interferometers even
in the presence of losses and imperfections (Wang et al. 2013; Miao et al. 2014;
Voronchev et al. 2015; Danilishin et al. 2018). However, a thorough and systematic
study of losses and imperfections in all the speed-meter schemes is needed as well as
experimental prototyping, before any final conclusion can be made.

In the context of FQL, the speed-meter configuration is an approach to shaping the
power fluctuation inside the arm cavity. The FQL can be reached at low frequencies,
where the optomechanical coupling strength is approximately constant, by using the
frequency-independent readout rather than the frequency-dependent readout as in the
case of a position meter (Michelson interferometer). In the tuned case, the price we
paid is that the power fluctuation gets reduced at low frequencies and the resulting
FQL is parallel to the SQL rather than flat for the position meter.

An interesting future direction is to investigate detuned speed-meter configurations
with additional intra and external filters. Since the optomechanical coupling strength
is approximately constant at low frequencies, this means the resulting ponderomotive
squeezing is frequency independent at these frequencies. With detuning, the optical
feedback, illustrated in Fig. 9, could result in a broadband enhancement of the power
fluctuation. Or equivalently, this can be viewed as a broadband enhancement of the
mechanical response of the test mass, similar to the idea of negative inertia to be
discussed in the section that follows.

6 Interferometers with optomechanically modified dynamics

6.1 Introduction

All schemes of suppression of quantum noise considered so far in this paper are based
on the same principle, namely the quantum noise cancellation, that is the based on
mutual compensation of the measurement noise and the back action noise which is
possible by means of introducing the cross-correlation between these noise sources,
see Sect. 4.4. of Danilishin and Khalili (2012). The main problem of this approach
is that that the quantum correlations are very fragile and can be easily destroyed by
additional noises caused by optical losses in the interferometer and by the non-ideal
quantum efficiency of photodetectors. A rule of thumb for the limit of achievable
SQL-beating in this case can be presented as follows (Chen et al. 2011):
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S � SSQLe
−r

√
1 − η

η
. (91)

Here S is the sum quantum noise spectral density of the detector, SSQL is the corre-
sponding SQL, e−r is the squeeze factor and η is the unified quantum efficiency of the
detector. Even for rather optimistic values of the optical parameters with η = 0.95 and
e−2r = 0.1 (10 dB squeezing), we have S/SSQL � 0.07, which means that sensitivity
(in units of the signal amplitude) can surpass the SQLby only a factor of

√
SSQL/S � 4

with the noise-cancellation schemes.
At the same time, the SQL, normalized to the signal force, decreases as the test

object susceptibility increases. Because this approach does not require any precise
mechanisms for mutual compensation of measurement noise and back-action noise
(and, in particular, the SQL is not evaded), it is much more robust with respect to
optical losses, than quantum noise cancellation.

A trivial example is just the use of smaller inertial mass minert. This method can
be used, for example, in atomic force microscopes. However, when detecting forces
of a gravitational nature, particularly in gravitational-wave experiments, the signal
force is proportional to the test-object gravitational mass mgrav. Taking into account
that, due to the equivalence principle, minert = mgrav, the overall sensitivity decreases
with the mass, which can be seen, for example, from the expressions for SQL in the
h-normalization (39) (see, however, Sect. 6.4).

Another possibility is to use a harmonic oscillator instead of a free test mass. The
susceptibility of a harmonic oscillator rapidly increases near its resonance frequency
Ω0, which improves the SSQL by a factor of Ω0/ΔΩ in the frequency band ΔΩ

centered at Ω0 (see Sect. 4.3.2 of Danilishin and Khalili 2012). This method was
demonstrated in several “table-top” experiments with mechanical nano-oscillators
(Teufel et al. 2009;Anetsberger et al. 2009;Westphal et al. 2012). In laser gravitational-
wave detectors, the characteristic eigenfrequencies of the test mirror pendulummodes
are close to 1Hz, and in the operating frequency range these mirrors can be considered
as almost free masses. Evidently, it is technically impossible to turn the differential
mechanical mode of laser detector test mirrors into an oscillator with a frequency
in the operating frequency range by using “ordinary” springs. However, the optical
spring which arises in detuned interferometer configurations and possesses excellent
noise properties can be used for this purpose instead.

The optical spiring is a particular case of the more general electromagnetic rigidity
(e.m.) effect, which takes place in any detuned e.m. resonator. This effect, togetherwith
the associated e.m. damping, were most probably first discovered and explained in the
very early work by Braginsky and Minakova (1964), where the low-frequency (sub-
Herz) torsional pendulum was used as the mechanical object and the radio-frequency
capacitor transducer—as the position sensor. Few years later, existence of these effects
in the optical Fabry–Perot cavities (that is the optical spring proper) was predicted the-
oretically (Braginsky and Manukin 1967). After that, the e.m. damping was observed
in the microwave Fabry–Perot type cavity (Braginskiı̌ et al. 1970). In the beginning
of 1980s, the first truly optical experiment was done (Dorsel et al. 1983).
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Much later, quantum noise properties of the optical spring and the optical damp-
ing were analyzed in Braginsky et al. (1997), Braginsky et al. (2001), Braginsky and
Khalili (1999), Braginsky and Vyatchanin (2002) and it was shown that the noise
temperature of the optical damping can be very close to zero. This stimulated a series
of experimental works where the optical rigidity was observed both in table-top opti-
cal setups (Bilenko and Samoilenko 2003; Sheard et al. 2004; Corbitt et al. 2006b,
2007a, b) and in larger-scale Caltech 40m interferometer devoted to prototyping of
future GW detectors (Miyakawa et al. 2006).

It have to bementioned also that the very low noise temperature of the e.m. damping
stimulated also a bunch of optomechanical and electromechanical experiments aimed
at preparation of mechanical resonators in the ground state using this cold damping,
see e.g.,Teufel et al. (2011), Chan et al. (2011) and the reviews by Aspelmeyer et al.
(2014) and Khalili and Danilishin (2016).

Specifically in the context of the large-scale gravitational-wave detectors the optical
rigidity was analyzed in Braginsky et al. (1997), Buonanno and Chen (2001), Khalili
(2001), Buonanno and Chen (2002), Buonanno and Chen (2003). Most notably, it was
shown in these works that in very long cavities with the bandwidth γ comparable with
the or smaller than the characteristic mechanical frequencies Ω , the optical spring has
sophisticated frequency dependence which enables some interesting applications, see
below.

6.2 Optical rigidity

The e.m. rigidity and the e.m. damping effects were correctly explained in Braginsky
and Minakova (1964) by respectively, dependence of the e.m. eigen frequency and
therefore of the energy E stored in the e.m. resonator on the mechanical position x
and by the time lag between the variation of x and the variation of E . We reproduce
below the semi-qualitative, but simple and transparent reasoning of that paper.

Really, if
ω0(x) = ω0(1 − x/L), (92)

then the effective detuning is equal to

δ(x) = ωp − ω0(x) = δ + ω0x

L
, (93)

and the optical energy is equal to

E(x) = γ 2 + δ2

γ 2 + δ2(x)
E, (94)

where E is the initial (at x = 0) value of the energy. This, in turn, leads to the x-
dependence of the ponderomotive force that acts on the mechanical object:

F(x) = E(x)

L
≈ F(0) − Kx + O(x2). (95)
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where

K = −∂F(x)

∂x

∣∣∣∣
x=0

= mΘδ

γ 2 + δ2
(96)

is the e.m. rigidity.
Note also that the optical energy follows the mechanical motion not instantly, but

with some delay τdelay ∼ 1/γ . Therefore, the force (95) actually is equal to [we omit
the constant term F(0)]

F ≈ −Kx(t − τdelay) ≈ −Kx(t) + K τdelay
dx(t)

dt
≈ −Kx(t) − H

dx(t)

dt
, (97)

where
H = −K τdelay. (98)

is the e.m. damping.
The rigorous quantum treatment of the e.m. rigidity was done in the mentioned

above articles (Braginsky et al. 1997; Buonanno and Chen 2001; Khalili 2001; Buo-
nanno and Chen 2002, 2003). It was shown there that it is equal to

K (Ω) = mΘδ

D(Ω)
= �K (Ω) − iΩH(Ω). (99)

It is easy to see, that Eqs. (96, 98) describe the quasistatic (slow mechanical motion,
Ω → 0) particular case of (99) with the effective delay time

τdelay = 2γ

γ 2 + δ2
. (100)

According to the fluctuation-dissipation theorem, any damping H(Ω) is accompa-
nied by the noise force having the spectral density

ST (Ω) = 2κB |H(Ω)|T (Ω), (101)

where

T (Ω) = �Ω

2κB
coth

�Ω

2κBT
(102)

is the mean energy of the heatbath modes at the frequency Ω , expressed in units of
kelvins, and T is the effective noise temperature.

In the optical spring case, the fluctuational pondermotive force Ffl imposed by the
quantum fluctuations of the optical energy in the interferometer play the role of the
thermal noise. Spectral density of this noise is calculated, inparticular, in the Sect. 6 of
Danilishin and Khalili (2012), see Eq. (473). Combining this equation with Eqs. (99,
102), we obtain that

T (Ω) = SFF (Ω)

2κB |H(Ω)| = �

2κB

γ 2 + δ2 + Ω2

2|δ| . (103)
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Minimumof this expression at any given frequencyΩ is provided by δ = −√γ 2 + Ω2

and is equal to

T (Ω) = �

√
γ 2 + Ω2

2κB
. (104)

In the case of the narrow-band cavity, γ � |Ω|,

T (Ω) → �|Ω|
2κB

, (105)

which corresponds to the noise temperature T → 0. The opposite case of the broad-
band cavity, γ � |Ω| translates to much higher “temperature”

T ≈ T ≈ �γ

2κB
� �|Ω|

2κB
. (106)

However, large γ means strong flow of information on the mechanical position x from
the cavity. This means that the fluctuational pondermotive force Ffl in this case has to
be treated not as the thermal noise of the optical damping, but as the quantum back
action due to the measurement.

6.3 Characteristic regimes of the optical spring

Non-trivial frequency dependences of the optical rigidity (99) and of the quantum
noise components of the detuned interferometers [see Eqs. (376–378) of Danilishin
and Khalili 2012] lead to very sophisticated shape of the corresponding sum quantum
noise spectral density, see Eq. (385) of Danilishin and Khalili (2012). This shape
can be tuned flexibly by varying the interferometer bandwidth γ and detuning δ,
homodyne and squeezing angles, and the squeezing amplitude, with the optimal tuning
depending on many factors, such us the available optical power, intensity of non-
quantum (“technical”) noise sources, optical losses etc. The corresponding exhaustive
optimization exceeds the scope of this paper (as well as probably any single paper).
Broad set of examples covering the most typical scenarios can be found e.g.,in the
articles Buonanno and Chen (2001, 2003), Kondrashov et al. (2008), Danilishin and
Khalili (2012). Therefore, here we concentrate specifically on the modification of the
mechanical probe dynamics by the optical spring.

In Fourier domain, mechanical dynamics is described by the response function

χ−1(Ω) = m

(
−Ω2 + Θδ

D(Ω)

)
. (107)

Analysis of the roots of the characteristic equation χ−1(Ω) = 0 shows that this
response function can have either two resonance minima or one broader minimum. If
the interferometer bandwidth is sufficiently small, γ � δ, then frequencies of these
minima can be approximated as
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Fig. 27 Mechanical response
function modified by the optical
rigidity. This solid line: free
mass (|χ−1|/m = Ω2); thick
solid line: δ = 2π × 300 s−1;
short dashes: δ = 2π × 150 s−1;
long dashes: δ = (4Θ)1/3. In all
cases, γ = 2π × 2 s−1 and
Θ = (2π × 50)3 s−1

Ω2
1,2 ≈ δ2

2
±
√

δ4

4
− Θδ. (108)

In the weak pumping case with Θ � Θcrit , where

Θcrit = δ3

4
(109)

is the critical value of the normalize optical power Θ , roots of χ−1(Ω) are approxi-
mately equal to

Ω1 ≈
√

Θδ

γ 2 + δ2
and Ω2 ≈ δ. (110)

The first of this root corresponds to the resonance frequency of the ordinary harmonic
oscillator created by the static optical rigidity (96). This is so called mechanical reso-
nance. The second root, so called optical resonance, is created by the sharp increase
of the optical rigidity at Ω ≈ δ, which allows the second term in (107) cancel the first
one even if Θ is small.

With the increase of the ratio Θ/Θcrit , these two roots drift toward each other
(see Fig. 44 of Danilishin and Khalili 2012), and the area with the reduced χ−1(Ω)

(that is, with better sensitivity) forms between them (Buonanno and Chen 2001). At
Θ → Θcrit the rootsmerge into one broader second-order one. The detailed analysis of
this second order pole regime (Khalili 2001) can be found in Sect. 6.3.4 of Danilishin
and Khalili (2012). In particular, it is shown there this in essence narrow-band regime
can in principle provide an arbitrarily-high signal-to-noise ratio for broadband signals,
limited only by the level of the additional noise of non-quantum (technical) origin.

In Fig. 27 the absolute value ofχ−1 normalized by themechanical massm is plotted
as a function of the frequency for these characteristic cases. For pedagogical reason (to
emphasize the frequency dependencies), a very small value of γ = 2π ×2 s−1 is used
in these plots. It worth to be mentioned however such a narrow bandwidth actually can
be used in configurationswith two optical carriers belonging to two free spectral ranges
of the interferometer, with one of them having “standard” γ ∼ 103 s−1 and being used
for the measurement, and another one, with the small γ , creating the optical rigidity.
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Fig. 28 Quantumnoise spectral densities for the two-carrier interferometer,with the dedicated second carrier
creating the optical spring. Thin dashed line: SQL; thin solid line: lossless SQL-limited interferometer; thick
solid line: detuning of the second carrier δ = 2π × 300 s−1; short dashes: δ = 2π × 150 s−1; long dashes:
δ = (4Θ)1/3. Bandwidths: γ1 = 2π × 500 s−1 (the “signal” optical mode) and γ2 = 2π × 2 s−1 (the
“spring” optical mode). For both carriers, Θ = (2π × 50)3 s−1. Quantum efficiency η = 0.8. Other
parameters are listed in Table 1

Two different values of the bandwidth can be implemented in the signal-recycled
configurations of GW detectrors by using the resonant sideband extraction and the
ultimate signal recycling regimes for respectively the broadband and the narrow-band
carriers.

In Fig. 28, quantum noise spectral densities for this setup are plotted for the same
three characteristic values of the detuning of the narrow-band carrier as in Fig. 27. It
is instructive to compare these plots with the corresponding ones for the case of the
single carrier detuned carrier, see e.g., Fig. 45 of Danilishin and Khalili (2012). It is
easy to see that while in the latter case the use of the detuned regime leads to sharp
degradation of sensitivity at higher frequencies, in the former one the high-frequency
sensitivity remains intact.

In these plots, we assumed good but not very high value of the overall quantum
efficiency of the interferometer η = 0.8 (note that in “ordinary” interferometers with-
out squeezed light injection, all optical losses can be absorbed into this unified factor,
see Sect. 6.3.2 of Danilishin and Khalili 2012). This resulted only in the barely-visible
sensitivity degradation in the shot noise dominated high-frequency area, confirming
the above statement about tolerance of the optical spring based schemes to optical
losses.

6.4 Cancellation of mechanical inertia

In the interferometer configurations with two or more optical carriers, more deep
modification of the mechanical dynamics is possible, allowing, in some sense, to
make the mechnaical inertial mass minert smaller than the gravitational one mgrav by
attaching a negative optical inertia to the former one (Khalili et al. 2011; Danilishin
and Khalili 2012). Existence of this effect immediately follows from the frequency
dependence of the optical spring (99).
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Assume for simplicity that γ → 0 and Ω � δ. In this case, Eq. (99) can be
approximated as follows:

K (Ω) ≈ K (0) − moptΩ
2, (111)

where K (0) = Θ/δ is the static rigidity and

mopt = −mΘ

δ3
(112)

is the optical inertia. which, similar to K (0), can be either positive or negative depend-
ing on the sign of the detuning δ.

We now assume that the interferometer is pumped with two detuned carriers having
frequencies belonging to different free spectral ranges of the interferometer. In this
case, each carrier creates its own optical rigidity. These two rigidities K1,2 can be
combined in such a way that their static parts would compensate each other and the
total optical inertia would compensate the usual mechanical inertia of the test mass:

K1(0) + K2(0) = 0, (113a)

mopt1 + mopt2 = −m. (113b)

Obviously, the exact compensation would happen only at zero frequency, but at other
sufficiently small frequencies, the responce of such a test object would be significantly
stronger than that of the initial test mass.

Let us derive the conditions for this inertia cmpensations. The two optical springs
modify the mechanical susceptibility as follows:

χ−1(Ω) = −mΩ2 + K1(Ω) + K2(Ω)

= m
−Ω2D1(Ω)D2(Ω) + Θ1δ1D2(Ω) + Θ2δ2D1(Ω)

D1(Ω)D2(Ω)
, (114)

where
D1,2(Ω) = (γ1,2 − iΩ)2 + δ21,2 (115)

and the parameters γ1,2, δ1,2, and Θ1,2 correspond to the respective carriers. The con-
ditions for cancelation of the total inertia and rigidity are equivalent to the cancelation
of the terms proportional to Ω2 and Ω0 in the numerator of Eq. (114). Calculation
gives that this cancelation is provided by

Θ1δ1 = Γ 4
1 Γ 2

2

Γ 2
2 − Γ 2

1

, Θ2δ2 = Γ 2
1 Γ 4

2

Γ 2
1 − Γ 2

2

, (116)

where Γ 2
1,2 = γ 2

1,2 + δ21,2. It follows from these equations, that since Θ1,2 are, by
definition, positive quantities, the signs of the detunings has to be opposite, with
negative detuning corresponding to the larger Γ . Below we assume that Γ2 > Γ1,
δ1 > 0, and δ2 < 0.
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Fig. 29 Mechanical response function modified by the negative optical inertia. This solid line: free mass
(|χ−1|/m = Ω2); thick solid line: γ1 = γ2 = 2π × 2 s−1 (the inertia and the static rigidity are canceled);
dashed line: γ1 = 2π × 2 s−1, γ2 = 4γ1, see Eq. (117) (the inertia, the static rigidity, and the optical
damping are canceled). In both cases, Θ1 = 2/3 × (2π × 100)3 s−1, Θ2 = 2Θ1, δ1 ≈ 2π × 40 s−1,
δ2 = −2δ1, see Eqs. (116)

The resulting mechanical response function is plotted in Fig. 29 (solid line). It can
be seen from this plot that indeed below some threshold frequency (it can be shown
that it is equal to the smaller detuning δ1) the value of χ−1 is noticeably suppressed
(that is, the mechanical probe is more responsive) in comparison with the free mass.
The “residual” low-freqeuncy value of |χ−1| is created by optical damping, and for
the parameters values used in this example, the gain is limited.

This scheme has also another disadvantage, namely it is dynamically unstable, and
this instability could be significant. In Khalili et al. (2011), two methods of damping
this instability were proposed. First, partial compensation of the mechanical inertia
is possible, with the remaining non-zero inertia stabilizing the system and making the
instability time long enough to be damped by an out-of-band feedback system.

The secondway is to cancel, in addition to the rigidity and inertia, also the damping.
This approach allows also to significantly improve the gain in |χ−1|. This cancellation
can be achieved by adjusting the bandwidths γ1,2 as follows:

γ2

γ1
=
∣∣∣∣Θ1δ1

Θ2δ2

∣∣∣∣ . (117)

The corresponding response function is also plotted in Fig. 29 (dashed line), demon-
strating much more significant low-frequency gain.

Similar to the previous (single optical spring) case, two strategies of implementa-
tion of the negative inertia are possible. In the first one, two carriers have to be used
in order to both create the negative inertia and also measure the test mirrors motion.
This strategy was analyzed in detail in Danilishin and Khalili (2012) in the context of
the Advanced LIGO parameters set. The second one require three dedicated carriers:
one for the measurement and additional two for creation of the negative inertia. Unfor-
tunately, in both cases the results can not be considered as satisfactory ones. Within
the optical power constrains of existing and planned GW detectors, they can provide
only very moderate low frequency sensitivity gain which accompanied by strong sen-
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sitivity degradation at higher frequencies. The reason for this is simple: indeed the
negative inertia strongly increase the mechanical response, but only in the frequency
band where the radiation pressure dominates and the therefore the sensitivity does not
depend on the mechanical susceptibility.

6.5 Summary and outlook

The method of increasing the GW detectors sensitivity by means of optical modifica-
tion of the test masses dynamics was proposed two decades ago and looks very simple
and elegant. It does not require any sophisticated quantum states of light or radical
alterations in the GWdetectors core optics and also tolerant to the optical losses. How-
ever, as long as we aware, no specific plans of implementing this method in future
GW detectors exist. This probably can be attributed to the following two reasons:
first, technical problems associated with the detuned regime of GW interferometers,
and second, the optical power constraints. The rule-of-thumb estimates show that in
broad-band configurations, in order to shift the mechanical resonance up to some fre-
quency fm by means of the optical spring, about the same optical power is required as
make the back action noise equal to the shot noise at this frequency fm . This means
that using a single carrier, it is impossible to shift fm into the shot-noise dominated
area where the increase of the mechanical response could provide a significant effect,
and in the two-carriers configuration, the carrier which create the optical spring has
to be more powerful than the one which do the measurement. Taking into account the
tight optical power budget of the contemporary GW detectors and even more tight of
the future ones (with much more heavy test masses and longer arms), implementation
of this regime could be problematic.

A possible solution to this problem was proposed recently in Somiya et al. (2016);
Korobko et al. (2018). In was shown in these works, that using the parametric amplifi-
cation of the optical field inside the interferometer, it is possible to amplify the optical
spring without increase of the optical power. This approach, in principle, can be com-
bined with other applications of the intracavity parametric amplification (white-light
cavity, back action evasion), see in particular Sect. 7.2.

7 Hybrid schemes

In this section, we review a relatively novel approach that seeks to enhance the sensi-
tivity of the GW interferometer by coupling it to another, generally nonlinear, quantum
system. Depending on the nature of the nonlinearity and on the way it is coupled to
the interferometer, one can suppress back-action noise or reshape the optomechanical
response of the interferometer so as to increase its bandwidth without sacrificing peak
sensitivity.

The first effect, known as coherent quantum noise cancellation (CQNC) was pio-
neered by Tsang andCaves (2010). They suggested to use a combination of a nonlinear
Kerr crystal and an unbalanced beam-splitter to couple the optomechanichal system
under study (a GW interferometer, in our case) and an ancilla optical mode, where
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the frequency offset of the ancilla to the main interferometer, the splitting ratio of the
beam-splitter and the nonlinear gain of the crystal are tailored so as to perfectly coun-
teract the effect of ponderomotive squeezing due to optomechanical back-action. In
this work, it was also shown that an all optical ancilla system interacts with the signal
light as if it was an optomechanical system with negative mass mechanical oscillator.
Wimmer et al. (2014) have developed this idea further to the level of a practical exper-
iment that is currently being built at the University of Hannover. They also performed
a thorough analysis of imperfections and their influence on this system ability for
coherent cancellation of quantum back-action noise. This analysis has shown that it is
problematic to realise this scheme in a GW detector due to stringent constraints on the
ancilla’s optical bandwidth and frequency offset that must both be much smaller than
the mechanical resonance frequency, which is ∼ 1 Hz for Advanced LIGO mirrors.
However, another physical implementation of the negative mass oscillator principle
based on the interaction of the collective spin of caesium vapours in magnetic field
with light was proposed by Polzik and Hammerer (2015), and the back-action cancel-
lation effect in such systems was demonstrated experimentally byMøller et al. (2017).
As we discuss in the following Sect. 7.1, such spin-based systems might be used in
GW detectors.

Another way to use nonlinear system coupled to the optical degree of freedom
is for creation a so-called white-light-cavity (WLC) effect (Wicht et al. 1997), that
is to introduce in the interferometer an active element that compensates the positive
dispersion of the arm cavities by its own negative dispersion and thereby increase the
effective band of a high response to the GW signal. Original idea byWicht et al. (1997)
proposed to use atomic medium with electromagnetically induced transparency effect
providing the desired negative dispersion, which suffered from the internal loss in the
gas cell. In the following Sect. 7.2, we discuss more promising variants based on active
nonlinear optical and optomechanical negative dispersion elements. These solutions
are less lossy and thus stand a good chance to be a part of the next generation GW
detectors, which might benefit from the additional astrophysical output the improved
high-frequency sensitivity of such schemes may offer (Miao et al. 2018).

7.1 Negative-mass spin oscillator

7.1.1 The negative-frequency system

Multi-atomic spin ensembles proposed in Duan et al. (2000) and demonstrated exper-
imentally in Julsgaard et al. (2001) (see also the review papers Hammerer et al. 2010;
Polzik and Hammerer 2015) possess a set of unique features which make them attrac-
tive for use in quantum optomechanical experiments. Under certain conditions (see
below), the dynamics of collective spin of such a system with high precision models
the one of the ordinary harmonic oscillator, which eigen frequency can be made both
positive and negative. Moreover, interaction of this spin systemwith light can be made
similar to the ordinary pondermotive interaction of a movable mirror with the probing
light.
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The collective spin of the atomic ensemble can be described by the angular momen-
tum vector � × { Ĵx , Ĵy, Ĵz}. Suppose that this system is placed in a strong external
magnetic field B, which we assume to be pointed along the x-axis. The minimum
energy state in this case corresponds to the large negative value −�Jx of the x compo-
nent of the angular momentum, with Jx � 1 and the energy equal to −�ΩS Jx , where
ΩS is the Larmor frequency. Relatively weak (with the number of inverted spins much
less that Jx ) excitations can be described by the effective Hamiltonian (Holstein and
Primakoff 1940; Møller et al. 2017)

ĤS = −�ΩS Jx + �ΩS

2
(X̂2

S + P̂2
S ), (118)

where

X̂ S = Ĵz√
Jx

, P̂S = Ĵy√
Jx

(119)

are the effective (dimensionless) position andmomentumof the spin ensemble obeying
the standard commutation relation

[X̂ S, P̂S] = i . (120)

Up to the the irrelevant c-number term, the Hamiltonian (118) describes a harmonic
oscillator with the eigen frequency ΩS .

In a similar way, if all atoms are optically pumped to the energetically inverted spin
state, then the collective spin is given by the positive value �Jx . Weak de-excitations
around this maximal value can be described by the effective Hamiltonian

ĤS = �ΩS Jx − �ΩS

2
(X̂2

S + P̂2
S ), (121)

where in this case

X̂ S = Ĵz√
Jx

, P̂S = − Ĵy√
Jx

(122)

which corresponds to a Harmonic oscillator with the negative eigen frequency ΩS .
Note that the term negative mass is used in Julsgaard et al. (2001), Hammerer et al.
(2009), Polzik and Hammerer (2015), Møller et al. (2017) instead. However, in order
to implement the dynamics (121), the effective rigidity also have to be negative, which
corresponds to the negative frequency −ΩS .

The Hamiltonian (121) gives the following equation of motion of the position XS :

X̂ S(t) = X̂ S(0) cosΩSt − P̂S(0) sinΩSt, (123)

while evolution of position Xm of an ordinary positive-frequency harmonic oscillator
is described by the following equation:

X̂m(t) = X̂m(0) cosΩSt + P̂m(0) sinΩSt, (124)
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where Pm is the corresponding momentum. Note that the sum of these positions
autocommutes:

[X̂ S(t) + X̂m(t), X̂ S(t
′) + X̂m(t ′)]

= [X̂ S(t), X̂ S(t
′)] + [X̂m(t), X̂m(t ′)] = 0, (125)

that is, X̂ S+ X̂m is aQNDvariablewhich can be continuouslymonitoredwith precision
not limited by the uncertainty relation. During such a measurement, both X̂ S and X̂m

are perturbed, but these perturbations, being equal by absolute values and having
opposite signs, cancel each other.

Consider now interaction of the atomic spin system with the probing light, which
allows to implement such a measurement. Following Møller et al. (2017), we assume
that the light propagates in z-direction. If the light is far detuned from the atomic
resonance, then the interaction Hamiltonian can be presented as follows (see details
in Hammerer et al. 2009; Møller et al. 2017):

Ĥint = −�κ Ŝ3 Ĵz, (126)

where κ is the coupling constant,

Ŝ3 = i(â†x ây − â†y âx ) (127)

is the Stokes operator, and âx,y are the annihilation operators of the two linear polar-
izations of the optical beam. This is so-called Faraday interaction (Hammerer et al.
2010), which describes mutual rotation of the collective atomic spin and the optical
polarization. Suppose then that the light is linearly polarized in x-direction, and the
corresponding classical amplitude is equal to ax = iα, where α is real. In this case,

Ŝ3 ≈ √
2αâcS, (128)

where

âcS = ây + â†y√
2

(129)

is the cosine quadrature of the y-polarized light, and

Ĥint ≈ −�

√
2Jxκα X̂ S â

c
S . (130)

This Hamiltonian is identical to the standard Hamiltonian describing the dispersive
coupling of an optical mode and a mechanical object, with the factor

√
2Jxκ playing

the role of the vacuum optomechanical coupling strength g0 (Aspelmeyer et al. 2014).

7.1.2 Sequential scheme

The QND measurement discussed above was first demonstrated in Julsgaard et al.
(2001) using two atomic spin systems having, respectively, positive and negative effec-
tive eigenfrequencies ΩS and −ΩS and consisting of ∼ 1012 Cesium atoms. Later,
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Fig. 30 Scheme of back-action
evading measurement using light
which sequentially probes the
atomic spin system and the
interferometer test mass(es).
OC—optical circulator;
HD—homodyne detector; “VAC
or SQZ”—incident optical field
in vacuum or squeezed state

in Hammerer et al. (2009) the idea of combining the negative-frequency atomic spin
systemwith the positive-frequency optomechanical systemwas put forward. Recently,
this idea was implemented experimentally using silicon-nitride nanomembrane as the
mechanical resonator (Møller et al. 2017).

The sketch of this class of measurement schemes is shown in Fig. 30. Here the
probing light interacts first with the atomic spin system and then is injected into the
main interferometer, which measures the probe object position. The light leaving the
interferometer is measured by the homodyne detector. It is easy to note similarity of
this scheme with the one which uses the frequency-dependent squeezed light prepared
by means of an additional filter cavity, see Kimble et al. (2002), Sect. 6.1 of Danilishin
and Khalili (2012), and Sect. 4.2 of this paper. Another option is to put the atomic
system system after the main interferometer, similar to the variational-output scheme
of Kimble et al. (2002). In the case of the atomic spin system (and opposite to the filter
cavity based schemes), both layouts provide identical results in the ideal (loss-free)
case. Therefore, we consider here only the one shown in Fig. 30.

In order to demonstrate the basic features of this schemewhile keeping the equations
length within reasonable limit, we ignore the optical losses both in the atomic spin
system and in the main interferometer. The full analysis with account of the optical
losses can be found in Khalili and Polzik (2018). We would like to mention however,
that while the problem of optical losses is a very serious one, it is generic for all
interferometric schemes which use non-classical light, see Sect. 4.4. At the same
time, the atomic spin system introuces a new source of imperfection, namely the noise
associated with the imaginary part of its effective succeptibility. We take into account
this noise source here.

Using the analogywith the ordinary optomechanical systems, Eqs. (121, 130) can be
recast into the Heisenberg equations of motion for the atomic spin system interacting
with the continuous traveling optical wave (see e.g.,Aspelmeyer et al. 2014):

d2 X̂ S(t)

dt2
+ 2γS

d X̂S(t)

dt
+ Ω2

S X̂ S(t) = −ΩS

√
2�S â

c
S(t) −√

ΩS f̂S(t),(131a)

b̂cS(t) = âcS(t), (131b)

b̂sS(t) = âsS(t) +√
2�S X̂ S(t), (131c)
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where âc,sS are the cosine and sine quadratures of the incident light, b̂c,sS are the cor-
responding quadrature of the outgoing light, and �S is the readout rate (see details in
Møller et al. 2017). In Eq. (131a), the internal damping in the atomic spin system, with
the damping rate γS , is taken into account, together with the corresponding (normal-
ized) thermal force f̂ S . It worth to be noted that the spin degree of freedom is very well
isolated from the mechanical motion of the atoms and therefore can be prepared in an
almost pure (e.g.,ground) quantum stated, even if the motional degree of freedom has
the room temperature. This corresponds to the spectral density of f̂ S equal to

SS = 4|Ω|γS . (132)

In order to increase interaction with the probing light, the atomic spin system can be
placed into the optical cavity, as shown in Fig. 30. In this case, the factor �S scales
up by the effective number of the light passes 2F/π , where F is the cavity finesse
(Khalili and Polzik 2018).

Rewriting Eqs. (131) in Fourier picture and combining Eqs. (131a, 131c), we obtain
that

b̂cS(Ω) = âcS(Ω), (133a)

b̂sS(Ω) = âsS(Ω) + 2θχS(Ω)âcS(Ω) + √
2θ χS(Ω) f̂ S(Ω), (133b)

where

χS(Ω) = 1

Ω2 − Ω2
S + 2iΩγS

(134)

is the effective susceptibility of the atomic spin system and θ = ΩS�S .
In the simplest case of the resonance tuned interferometer without optical losses,

its input/output relations look as follows (see Sect. 2.3):

b̂cI (Ω) = âcI (Ω), (135a)

b̂sI (Ω) = �∗(Ω)

�(Ω)
âsI (Ω) − 2γΘ

Ω2�2(Ω)
âcI (Ω) + 1

�(Ω)

√
2mγΘ

�
xsign(Ω),

(135b)

where xsign(Ω) is the signal displacement of the free testmass(es) of the interferometer
and âc,sI , b̂c,sI are, respectively, the cosine and sine quadratures of the light at the input
and the output light of the interferometer and �(Ω) = γ − iΩ .

In the scheme of Fig. 30,
âc,sI = b̂c,sS . (136)

We assume also that the sine quadrature b̂sI of the interferometer output is measured
by the homodyne detector. With account of this, combination of Eqs. (133, 135) gives
that

b̂sI (Ω) = 1

�(Ω)

√
2mγΘ

�

[
xsign(Ω) + x̂sum(Ω)

]
, (137)
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where

x̂sum(Ω) = �∗(Ω)

√
�

2mγΘ

{
âsS(Ω) + √

2θ χS f̂S(Ω)

+
[
2θχS(Ω) − KMI(Ω)

]
âcS(Ω)

}
(138)

is the position-normalized sum quantum noise.
Suppose that the squeezed light in injected into the atomic spin system. In this case,

the single-sided spectral densities of the quadratures âcS(Ω) and âsS(Ω) are equal to,
respectively,

S[âcS] = e2r , S[âsS] = e−2r , (139)

and spectral density of the sum noise x̂sum is equal to

Sx (Ω) = �

mΩ2KMI(Ω)

{
e−2r +4θ |�χS(Ω)|+ |2θχS(Ω)−KMI(Ω)|2e2r

}
. (140)

In order to cancel the back action, which corresponds to the last term in the curly
brackets, the following condition has to be satisfied:

2θχS(Ω) = KMI(Ω). (141)

It can be seen from Eqs. (134, 22) that this requirement can not be fulfilled at all
frequencies. However, in all planned GW detectors, the quantum back action will be
significant only well within the interferometer bandwidth, Ω � γ . In this frequency
band, KMI(Ω) ∝ 1/Ω2. On the other hand, if Ω � ΩS, γS then dynamics of the
atomic spin system is close to the one of a free mass, χS(Ω) ∝ 1/Ω2. Therefore, in
the frequency band ΩS, γS � Ω � γ frequency dependencies of KMI and ξS match
to each other, allowing to satisfy (141) by setting

θ = Θ

γ
. (142)

In Fig. 31, quantum noise spectral densities of the considered scheme is plotted
for two particular cases: no input squeezing and 10 db of squeezing. In these plots,
parameters of the main interferometer (the normalized optical power and the band-
width) correspond to the ones listed in Table 1. For the atomic spin spin system, the
same quite demanding but realistic values

ΩS = γS = 2π × 3 s−1 (143)

as in Khalili and Polzik (2018) are used.
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Fig. 31 Quantum noise spectral densities for the measurement schemes using spin systems with negative
effective frequency. Thin dashed line: SQL; thin solid line: SQL-limited interferometer; thick dashed line:
sequential scheme of Fig. 30, no squeezing, γS = 2π × 3 s−1; thick dash-dotted line: sequential scheme of
Fig. 30, 10db squeezing, γS = 2π × 3 s−1; thick solid line: parallel scheme of Fig. 32, 10db of squeezing,
γS = 2π × 3 s−1; dotted line: parallel scheme of Fig. 32, 10db of squeezing, γS = 2π × 30 s−1. In all
cases, γ = 2π × 500 s−1, ΩS = ×3 s−1, θ is given by Eq. (142), and all other parameters are listed in
Table 1

Fig. 32 Scheme of back-action
evading measurement using two
entangled beams probing the
atomic spin system and the
interferometer test mass(es).
OC—optical circulator;
HD—homodyne detectors;
PDC—parametric down
conversion; âI ,S—two
entangled light beams

7.1.3 Parallel (or EPR) scheme

A serious problem of the scheme discussed in the previous section is the disparity of
the typical optical wavelengths used in the GW detectors and the atomic spin systems.
Optical transition of the cesium atoms used in Julsgaard et al. (2001); Møller et al.
(2017) corresponds to the wavelength ≈ 850 nm. Light with this wavelength can be
used in the table-top interferometers, as it was done in Møller et al. (2017). However,
the contemporary GW detectors use light with the wavelength 1064nm, and longer
wavelengths are planned for future interferometers.

This problem can be avoided by using another “parallel” optical layout, see
Fig. 32. It relies on high degree of cross-correlation between quantum fluctuations
in the two entangled “signal” and “idler” light beams generated in the parametric
down-conversion conversion (PDC) process. These two beams could have different
wavelengths (the non-degenerate case), which should match the working frequency
of the GW detector and the atomic transition frequency. Each of the beam has to inter-
act with the respective subsystem, as shown in see Fig. 32. Then both output signals
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have to be combined using optimal weight factors. Due to the above-mentioned cross-
correlation, both the shot noise and the radiation pressure noise contributions will be
suppressed in the combined output signal.

Note that a similar scheme was proposed initially in Ma et al. (2017) for another
purposes, namely, as a method of generation of effective frequency dependent squeez-
ing without the use of an additional filter cavity (as in Kimble et al. 2002); see details
in Sect. 4.3.

Consider quantum noise of this scheme, using the same assumptions as in
Sect. 7.1.2. Quadratures of the two optical beams generated by the PDC are equal
to

âcI ,S = ẑcI ,S cosh r + ẑcS,I sinh r , (144a)

âsI ,S = ẑsI ,S cosh r − ẑsS,I sinh r , (144b)

where ẑc,sI and ẑc,sS correspond to two independent vacuum fields and their (single-
sided) spectral densities are equal to 1/2. Correspondingly, spectral densities of the
PDC beams and their only non-zero cross-correlation spectral densities are equal to

S[âcI ] = S[âsI ] = S[âcS] = S[âsS] = cosh 2r , (145a)

S[âcI âcS] = sinh 2r , S[âsI âsS] = − sinh 2r . (145b)

Input/output relations for the interferometer and the atomic spin system are given by
the same equations Eqs. (133, 135) and in the scheme of Sect. 7.1.2, but with the
input optical fields defined by Eqs. (144). The outgoing fields are be measured by
two independent homodyne detectors, which output photocurrents are data-processed
together. We assume that both detectors measure the sine quadratures of the respective
output beams b̂sI and b̂

s
S , which gives the following equation for the combined output

signal:

b̂sI (Ω) + α(Ω)b̂sS(Ω) = 1

�(Ω)

√
2mγΘ

�

[
xsign(Ω) + x̂sum(Ω)

]
, (146)

where α(Ω) is the weight factor which has to be optimized,

x̂sum(Ω) = �∗(Ω)

√
�

2mγΘ

{
âsI (Ω) − KMI(Ω)âcI (Ω)

+β(Ω)
[
âsS(Ω) + 2θχS(Ω)âcS(Ω) +√

2θχS(Ω) f̂ S(Ω)
]}

(147)

is the position-normalized sum quantum noise, and

β(Ω) = �(Ω)

�∗(Ω)
α(Ω). (148)
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With account of Eqs. (144), spectral density of this noise is equal to

Sx (Ω) = �

mΩ2KMI(Ω)

[
σI (Ω) − 2�(β(Ω)σI S(Ω)) + |β(Ω)|2σS(Ω)

]
, (149)

where

σI (Ω) = [
1 + K2

MI(Ω)
]
cosh 2r , (150a)

σS(Ω) = [
1 + 4θ2|χS(Ω)|2] cosh 2r + 4θ |�χS(Ω)|, (150b)

σI S(Ω) = [
1 + 2KMI(Ω)θχS(Ω)

]
sinh 2r . (150c)

It is easy to see that the optimal value of β is equal to

β(Ω) = σ ∗
I S(Ω)

σS(Ω)
, (151)

which gives that

Sx (Ω) = �

mΩ2KMI(Ω)

[
σI (Ω) − |σI S(Ω)|2

σS(Ω)

]

= �

mΩ2KMI(Ω)σS(Ω)

{[
1 + K2

MI(Ω)
]

[
1 + 4θ2|χS(Ω)|2 + 4θ |�χS(Ω)| cosh 2r]

+ |2θχS(Ω) − KMI(Ω)|2 sinh2 2r
}
. (152)

Note that leading in e2r term in this equation (the last one in the curly brackets) is
similar to the corresponding term for the sequential scheme, see Eq. (140). Therefore,
the same reasoning as in that case canbeusedhere aswell, giving the sameoptimization
condition (142).

In order to provide better insight into the general structure of the obtained quite
lengthy equations, it is instructive to consider a simple asymptotic case. First, we
neglect the damping in the atomic spin system, assuming that �χS → 0. Second, we
consider the frequency band where the condition (142) is equivalent to the condition
(141). In this case,

β(Ω) = tanh 2r (153)

and

Sx (Ω) = �

mΩ2 cosh 2r

[
1

KMI(Ω)
+ KMI(Ω)

]
. (154)

Taking into account that if r is large, then tanh 2r → 1, it follows form these equations,
that in the strong squeezing case the optimal strategy is just summing up the outputs
of two homodyne detectors, which gives the sensitivity gain, in comparison with the
ordinary SQL-limited interferometer, equal to cosh 2r ≈ e2r/2.
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Spectral density (152) optimized by the condition (142) is plotted in Fig. 31 for the
same parameters (143) as in the previous case. It is easy to see that (in accord with the
above reasoning) in the major part of the frequency band the sensitivity is worse by
3db than in the sequential scheme (for the same squeeze factor r ).

In order to reveal the influence of the internal damping in the atomic spin system,
the case with γS = 2π × 30 s−1 also is presented in Fig. 31. It can be seen that this
ten-fold increase of γS noticeably degrade the low-frequency sensitivity, preventing
from overcoming the SQL.

It is interesting, that in the low-frequency band, where the condition (141) starts to
deviate form the simplified one (142). the parallel scheme provide noticeably better
sensitivity, than the sequential one (for the same value of γS). This result can be
attributed to the fact, that the “software” summing of the photodetectors outputs using
the optimized frequency-dependent factor (151) is more flexible procedure that simple
“hardware” subtraction of the back actions.

7.1.4 Summary

Using the additional spin systems with negative effective mass, it is possible to sup-
press the quantum noise inGWdetectors across the almost entire frequency bandwidth
relevant for gravitational wave observation. In comparison to themost of the other pro-
posals for reducing the quantumnoise, the spin systembased approach has a significant
advantage of being completely compatible with existing and planning GW interfer-
ometers thus not requiring complex alterations in the interferometers’ core optics. In
both “sequential” and “parallel” variants of this scheme, the only additional elements
are the spin system itself, the source of the single-mode or two-mode squeezed light,
and the optical scheme of injection the non-classical light into the interferometer. This
setup strongly resembles the scheme of injection of “ordinary” squeezed light into the
interferometer and evidently should has about the same level of complexity and cost.

It worth to be noted also that this scheme paves the road towards generation of an
entangled state of the multi-kilogram GWDmirrors and atomic spins which would be
of fundamental interest due to the sheer size of the objects involved.

7.2 Negative dispersion and white-light-cavity schemes

In the nominal operationmode of Advanced LIGO, the signal-recycling cavity is tuned
to be resonant with respect to the carrier frequency. This is the so-called resonant
sideband extraction idea, which increases the detector bandwidth.5 However, the peak
sensitivity limited by the shot noise is decreased as a price, as illustrated in Fig. 33.
Such a tradeoff between the bandwidth and peak sensitivity was firstly discovered by
Mizuno when he compares different signal recycling schemes. Using the tuned signal-

5 It might seem counter intuitive, how a resonantly tuned signal-recycling cavity could result in a broader
bandwidth of the combined effective cavity of the arms and the SRC. The reason for that is the sign flip (π
phase shift) experienced by the light reflected off the resonance-tuned arm cavities. If combined with the
SR mirror placed at a distance of an integer number of half-wavelengths of carrier light, it will result in an
effectively anti-resonance tuned SRC and therefore will lead to a virtually lower finesse of the combined
cavity.
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Fig. 33 The left panel shows the shot noise limited sensitivity for tuned signal-recycled Michelson inter-
ferometer with different effective signal recycling cavity (SRC) transmission; The right panel show the
counterpart in the detuned case with a detune frequency equal to 1kHz

recycled Michelson as an example, such a tradeoff is manifested by the following
integral of the shot-noise spectrum:

∫ ∞

0

dΩ

2π

1

Sshothh (Ω)
=
∫ ∞

0

dΩ

2π

4LPcγω0

�c(γ 2 + Ω2)
= PcLω0

� c
, (155)

where we have used a single-mode approximation for the shot-noise spectrum, other-
wise, the upper limit for the integration would be the half of the free spectral range
Ωfsr/2 = πc/L . Since 1/Shh has a Lorentzian profile, the enclosed area is a constant,
independent of the detector bandwidth.

To overcome the bandwidth-peak-sensitivity tradeoff, there are two approaches.
One is keeping the bandwidth and increasing the peak sensitivity with the squeezed
light, as discussed in Sec. 4. The other is broadening the bandwidth while keeping
the peak sensitivity, which is the idea of so-called white light cavity—a cavity that
resonates “all” frequencies. It is motivated by the physical origin of the tradeoff, and
has to do with the extra phase φ = ΩL/c picked up by the GW sidebands at ω0 ± Ω

when propagating inside the arm cavity that is tuned on resonance with respect to the
carrier frequency ω0. Such a positive dispersion with dφ/dΩ > 0 implies that higher
the sideband frequency is, the more phase it is accumulated and thus is far away from
the resonance, which leads to a degradation of the signal response.

The white-light-cavity idea is introducing an active element, which has a negative
dispersion dφ/dΩ < 0 around the frequencies of interest, inside the signal recycling
cavity. Such a negative dispersion compensates the sideband phase and leads to a
broadband resonance without changing the peak sensitivity. Earlier attempts of realis-
ing the white-light-cavity effect with passive optical elements, which have no external
energy input, have problemswith the absorption associatedwith negative dispersion—
a consequence of the Kramers–Kronig relation. Recent studies instead propose the use
of active elements with external pump energy, including atomic systems (Wicht et al.
1997; Zhou et al. 2015; Ma et al. 2015), nonlinear crystal (squeezer) (Peano et al.
2015; Korobko et al. 2017) and optomechanical devices (Miao et al. 2015; Page et al.
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Fig. 34 The left panel shows the general scheme for the white-light-cavity cavity, where a negative-
dispersion (ND) element is placed inside the signal-recycling cavity. The internal signal-recycling mirror
(iSRM), which has the same transmission as ITM, is introduced to form an impedance match cavity with
ITM so that the signal sidebands are not affected by the narrow bandwidth of the arm cavity. The right
panel shows a realisation using the unstable optomechanical filter. A global feedback control is needed to
stabilise the system

2018; Miao et al. 2018). Here we will focus on the idea of active optomechanical filter
operating in the unstable regime as the negative dispersion element, of which the setup
is illustrated in Fig. 34.

The optomechanical filter involves an optomechanical device (Chen 2013;
Aspelmeyer et al. 2014) with a movable oscillator as one mirror of the filter cav-
ity. The oscillator has a resonant frequency equal to ωm , and is coupled to the signal
field around ω0 via the radiation pressure, which is created by the beating between the
signal field and an external pump field at ωp = ω0 + ωm . The mechanical resonance
frequency ωm is chosen to be much smaller than the bandwidth of the filter cavity—
the so-called resolved sideband regime. In such a regime, the interaction between the
mechanical oscillator and the filter cavity mode can be described by a non-degenerate
parametric process. In the rotating frame at the pump laser frequency, the interaction
Hamiltonian is

Ĥint = −�g(â b̂ + â†b̂†), (156)

where â and b̂ are the annihilation operators for the cavitymode andmechanical mode,
respectively. The coupling rate g is related to the intra-cavity pump power Pf by

g =
√

Pf ωp

mcL f ωm
, (157)

inwhichm is the oscillatormass and L f is the filter cavity length. Solving the following
Heisenberg equations ofmotion leads to the following frequency-domain input–output
relation for the filter cavity mode:

âout(Ω) = Ω + i(γm + γopt)

Ω + i(γm − γopt)
âin(Ω) + 2

√
γmγopt

Ω + i(γm − γopt)
b̂†th(−Ω), (158)

123



    2 Page 72 of 89 S. L. Danilishin et al.

where γopt ≡ g2/γ with γ being the filter cavity bandwidth, and γm is the mechanical
damping rate with b̂th being the associated thermal fluctuation in accord with the
fluctuation-dissipation theorem. The last term here comes from the additional noise
that any linear phase-insensitive amplifier adds to the amplified signal as quantum
uncertainty principle prescribes (Caves 1982). The fact that optomechanical ND cavity
acts as an amplifier is clearly seen from its Hamiltonian (156) that has the same form
as the Hamiltoniam of the non-degenerate optical parametric amplifier, save to that
one of the modes here is mechanical rather than an optical one.

When γopt , which is the anti-damping rate due to the optomechanical coupling,
becomes much larger than the intrinsic mechanical damping γm , the system will be
unstable and deviate from the working point if no feedback control is applied. With a
proper feedback control engaged, the above input–output relation can be interpreted
as the open-loop transfer function between the input field and the output field of the
filter cavity. In the regime of γopt � γm , if ignoring the thermal-fluctuation term at
the moment, we have6

âout(Ω) ≈ Ω + iγopt
Ω − iγopt

âin(Ω) ≈ −e−2iΩ/γopt âin(Ω). (159)

Apart from the unimportant π -phase offset, the filter will therefore approximately
imprint a negative phase φfilter = −2Ω/γopt onto those sidebands at Ω � γopt, which
can cancel the positive round-trip phase φarm = 2ΩL/c when the following condition
is satisfied

γopt = c

L
= 1.5 × 104 s−1

(
20 km

L

)
. (160)

Fig. 35 shows the effect of the unstable filter on the shot-noise limited sensitivity of
a tuned Michelson interferometer. The propagation phase of sidebands is cancelled
at low frequencies. At frequencies above 1kHz, the cancellation starts to become
imperfect; this is because the filter approximates e−2iΩτ , as shown in Eq. (159), only
to the second order of Ω . Also in the same figure, we have illustrated the effect of
the thermal noise in the mechanical oscillator on the sensitivity. The thermal noise
affects the sensitivity similar to the optical loss in the arm cavity, and we can define
an effective optical loss as follows:

εeff = 4kB
�γopt

(
Tenv
Qm

)
, (161)

where kB is the Boltzmann constant, Tenv is the environmental temperature and Qm

is the mechanical quality factor. The corresponding sensitivity limit from such an
effective arm-cavity loss, according to Miao (2017), is

6 Here, the negative dispersion may appear a positive one if one assumes a different sign convention as
compared to Eq. (4). In that case a special care has to be taken to do ALL the calculations consistent with
the chosen sign convention in the definition of the Fourier transform.
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Fig. 35 The left panel shows the improvement of the shot-noise limited sensitivity by adding the unstable
optomechanical filter in the ideal case with the cancellation of the propagation phase illustrated at the
bottom panel. The right panel illustrates the effect of the thermal noise in the mechanical oscillator of the
optomechanical filter

Shε ≈ � c2εeff
4L2ω0Pc

=
(
2.0 × 10−25/

√
Hz
)2 (Tenv/Qm

10−9K

)
, (162)

given the default parameters L = 20 km, Pc = 4MW and wavelength of 1550 nm.

7.3 Summary and outlook

Two main issues of active unstable optomechanical filter are the thermal noise and the
optical loss. Intuitively, the thermal noise is significant because the light is exchanging
information with the mechanical oscillator (effectively as a quantum memory) at a
rate of kHz, one over the light propagation time inside the arm. The thermally-induced
decoherence needs to be lowenough such that the signal-to-noise ratio does not degrade
at the quantum limit. One feasible approach to mitigating the thermal noise, instead
of brutal-force cryogenic, is using the idea of optical dilution (Corbitt et al. 2007b;
Korth et al. 2013). It takes advantage of the lowmechanical dissipation of a suspended
optics and increases the stiffness by using the optical spring effect. The issue of optical
loss comes from both inside the filter and at the interface with the main interferometer
due to mode mismatch. In particular, the loss introduced inside the signal recycling
cavity limits the sensitivity improvement at high frequencies. Because of the narrow
bandwidth of the arm cavity, the signal strength is suppressed significantly at high
frequencies, and even a small amount of loss inside the signal recycling cavity is
important. Specifically, according to Miao (2017), Miao et al. (2018),

SSRCh (Ω) = �c(γ 2
arm + Ω2)εSRC

4Lω0Pcγarm
,

≈
(
2.4 × 10−25 Hz− 1

2

)2 (Ω/2π

1 kHz

)2 (0.015
TITM

)( εSRC

10−3

)
, (163)

where we have assumed the default parameters for the interferometers.
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The atomic based active filter for broadening the detector bandwidth is not suffering
the from same thermal noise issue as the optomechanical filter; the atomic transition
involved happens at the optical frequency and the thermal environment can be viewed
effectively as in the vacuum state. The main issue for the atomic system has to with
the wavelength being tied to the transition of some specific species of atoms, which
is different from those used in the current and proposed GW detectors. Exploring
atomic systems with compatible wavelength or studying coherent frequency conver-
sion scheme will be needed. The same issue of optical loss also applies.

8 Discussion and conclusion

We made an attempt to overview in this article the vast body of quantum techniques
for suppression of quantum noise that are developed specifically for the field of
gravitational-wave astronomy. We are standing now at the moment of inception of
the concepts for the next generation of gravitational wave detectors that must have
at least 10 times better sensitivity than the existing Advanced LIGO and Advanced
Virgo instruments, which are about to be limited by quantum fluctuations of light in
the almost entire detection band. The task of building the detector with the best astro-
physical output justifies the need to bring some order into the massive collection of
quantum noise-mitigation techniques that has beed developed so far. This was the goal
of this work along with the aim to put all of those techniques in the same context and
measure their merits and downsides against the common ruler. This pushed us towards
the unified set of parameters for all considered schemes, taking the approach suggested
by the GWIC 3G R&D Committee in LIGO-T1800221 and summarised by Table 1.

As an outlook, with the recent understanding of the fundamental quantum limit
(FQL), which only depends on the power fluctuation inside the arm cavity, it seems to
lead to a unified picture of different techniques: (1) the external squeezing injection
is a direct approach to increasing the power fluctuation; (2) Modifying dynamics
with the optical spring effect can be viewed as using the internal ponderomotive
squeezing for enhancing the power fluctuation; (3) The white-light-cavity idea is to
extend the enhancement over a broad frequency range; (4) The speed meter is an
approach to shaping the power fluctuation at different frequencies such that the FQL
can be reached using a frequency-independent readout quadrature at those frequencies;
(5) The optimal frequency-dependent readout is in general needed to attain the FQL
at different frequencies. Instead of comparing techniques against each other, as in
the case for near-term upgrades of existing detectors, we may now start to think how
we can coherently combine different techniques to enhance the power fluctuation at
frequency of interest, i.e., lowering the FQL, and reach the limit.We can then study the
susceptibility of different realisations to optical loss and other realistic imperfections.
Eventually, we may obtain new configurations with high sensitivity that goes beyond
what can be achieved with the current paradigm of design.
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A Squeezing of light in non-linear medium

Squeezing is awell known technique in quantum optics which allows to generate states
of light with reduced fluctuations in a chosen quadrature, which is very instrumental
for GW detection. Squeezed light can be generated in several different ways (Loudon
and Knight 1987) employing quadratic optical non-linearity, or even opto-mechanical
non-linearity (Corbitt et al. 2006a). The most successful squeezed light generators
(Vahlbruch et al. 2016) are based on the parametric down-conversion (PDC) process
that happens in a non-linear medium (e.g., PPKTP crystal) with strong enough χ(2)

non-linearity, where photons of the high-frequency pump give birth to a pair of lower
frequency entangled photon modes called traditionally signal and idler, as depicted in
Fig. 36. Pump, signal (with frequency ωs) and idler (with frequency ωs) modes must
satisfy energy and momentum conservation laws:

2ωp = ωs + ωi , kp = ks + ki . (164)

where kp, ks and ki stand for the wave-vectors of the corresponding beams with
lengths |kp| ≡ 2ωp/c, |ks | ≡ ωs/c and |ki | ≡ ωi/c, respectively.

The correspondingHamiltonian of this process, linearised in terms of large classical
pump amplitude, can bewritten in the frame, rotatingwith the frequencies of the signal
and idler modes as follows (see, e.g., Sect. 5 of Walls and Milburn 2008 for details):

ĤPDC = i�χ
[
â†s â

†
i e

iφ − âs âi e
−iφ

]
, (165)

where âs,i describe annihilation operators for the signal and idler photon modes,
respectively, and χ and φ are the magnitude and phase of the PDC coupling strength

Fig. 36 Sketch of a parametric
down-conversion process in a
non-linear crystal that describes
the physics of squeezed light
generation
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that is proportional to the second-order susceptibility χ(2) of the medium and to the
pump power.

It is straightforward to obtain the evolution of the two modes in the interaction
picture (leaving apart the obvious free evolution time dependence e−iωs,i t ) solving the
Heisenberg equations:

âs(t) = âins cosh χ t + (âini )†eiφ sinh χ t, (166)

âi (t) = âini cosh χ t + (âins )†eiφ sinh χ t . (167)

Parameter t here describes the duration of interaction of the pump photons with the
nonlinear medium, and r = χ t is the integral squeezing factor. The above linear
relations represent, in fact, the input–output relations for a non-degenerate parametric
amplifier (OPA) in time domain. In frequency domain, the expression can be easily
obtained using the general 2-photon formalism formulas, which yield:

âs(Ω) = Gc â
in
s (Ω) + Gs â

in
i (Ω), (168)

âi (Ω) = Gs â
in
s (Ω) + Gc â

in
i (Ω), (169)

where the corresponding transformation matrices read

Gc = cosh r

[
1 0
0 1

]
, Gs = sinh r

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

]
. (170)

It has to be noted that the OPA applied for generating squeezed vacuum in GW inter-
ferometers use cavity resonance to enhance χ(2), as pictured in Fig. 36, which imposes
certain bandwidth limits and makes the above analysis more complicated. Neverthe-
less, the approximation we used in this section holds pretty well, since the typical
bandwidth of the cavities used in squeezers is of the order of the hundreds of MHz,
while the GW frequency range spans to maximum a few kHz, one can safely assume
r and φ in the above formulas as frequency independent.

B Quantum noise in advanced interferometers

B.1 Ponderomotive squeezing in GW interferometers

Ponderomotive squeezing that takes place in a tuned losslessMichelson interferometer
can be written as a sequence of 3 unitary transformations – rotation, squeezing and
second rotation (Kimble et al. 2002):

|out〉 = e2iβ R̂(upond)Ŝ(rpond)R̂(vpond)|in〉. (171)

where β is a scheme-specific complex frequency-dependent phase shift which does
not change the noise spectral density, the rotation operator R̂(α) and the squeezing
operator Ŝ(r) are defined in Sect. 3.2 of Danilishin and Khalili (2012). Action of these
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operators on the vector of light quadratures, â = {â1, â2}T, results in a new vector,
b̂ = {b̂1, b̂2}T, that reads:

b = T â = e2iβ R[upond] S[rpond] R[vpond] â, (172)

with R the rotation matrix and S the squeezing matrix that are defined by Eq. (28).
For a general optomechanical system without loss, the transfer matrix (TM) has

a specific structure, namely, the optical TM is T
meas = e2iβR[ψ] and the radiation

pressure one in proportional to T
b.a. ∝ t (σ1t)T, where σ1 is the Pauli‘s matrix, also

known as σx . This structure of TM preserves covariance matrices of the input and
the output fields, Va and Vb = T VaT

†, from being non-symplectic, i.e., it ensures
that both are covariance matrices that describe gaussian quantum states. Factoring out
common complex phase e2iβ , one ends up with a real matrix T

Re = e−2iβ [Tmeas +
T
b.a.], the singular value decomposition of which can be written as:

T
Re = R[upond] S[rpond] R[vpond],

that proves that Eq. (172) is indeed correct.
In order to get the expressions for rpond, upond and vpond, one can expand T

Re in
Pauli matrices:

T
Re = z̃0I + z̃1σ1 + z̃2σ2 + z̃3σ3

where z̃0,1,2,3 are complex coefficients.
Symmetries of the TM immediately allow to see that z̃3 = 0 and the z̃0 = T

Re
cc =

T
Re
ss . Since all elements of T

Re are real, the following relations hold for the remaining
coefficients:

z̃1 = −T
Re
cs + T

Re
sc

2
= z1, z̃2 = i

T
Re
cs − T

Re
sc

2
= i · z2,

which means z1, z2 are real.
Then singular values can be calculated:

s1,2 =
∣∣∣∣|z1 | ±

√
z20 + z22

∣∣∣∣ .

Assuming erpond = max{s1, s2} and e−rpond = min{s1, s2} (i.e., rpond > 0) one can get
the following expression:

sinh rpond =
⎧⎨
⎩

|z1 | , if detTRe = 1,√
z20 + z22, if detTRe = −1.

The expression for angles upond and vpond are:

upond = −1

2
arctan

z2
z0

− sgn [z1]
π

4
,
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Fig. 37 Schematics of
I/O-relations for a Fabry–Perot
cavity

vpond = −1

2
arctan

z2
z0

+ sgn [z1]
π

4
.

B.2 I/O-relations of a Fabry–Perot–Michelson interferometer with losses

Here we give the I/O-relations for considered interferometers beyond narrow-band
approximation.

B.2.1 Fabry–Perot interferometer with endmovingmirror

I/O relations for a single Fabry–Perot arm cavity (see Fig. 37) without any additional
assumptions about its bandwidth can be obtained from the following chain of steps.
First, consider the I/O-relations for the ETM:

b̂ETM = TETM âETM + NETMn̂ETM + tETM
h√

2hSQL
, (173)

where the corresponding transfer matrices and the OM response of the mirror read

TETM = √
RETM (I + METM) ,

NETM = √
TETM (I + METM) ,

METM =
[

0 0
−RETMKTM 0

]
,

tETM = √
2RETMKTM

[
0
1

]
.

(174)

and

KTM = 8ωp Pc
Mc2Ω2 = 2Θarmτarm

Ω2 ,

is an optomechanical coupling factor for a single perfectly reflective free mirror and
Pc stands for the full light power circulating in the arm. Note also the factor of

√
2

in front of the hSQL, as the latter stands for the SQL of a Fabry–Perot cavity with 2
movable mirrors of mass M each.

It has to be noted that the above expressions are derived in the assumption of zero
phase of the carrier light at the ETM, namely that only the cosine quadrature of carrier
light, Ac

ETM = √
2Pc/�ωp, is not equal to zero, while As

ETM = 0. The general case
of arbitrary phase � = ωpτ , corresponding to carrier light travel time τ = L/c, can
be obtained by means of simple rotation of the corresponding transfer matrices and
response vector by �:
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TETM, ø = R[ωpτ ]TETMR[−ωpτ ],
NETM, ø = R[ωpτ ]NETMR[−ωpτ ],
METM, ø = R[ωpτ ]METMR[−ωpτ ],
tETM, ø = R[ωpτ ]tETM.

(175)

Adding an ITM to the system makes a Fabry–Perot interferometer, described by
the system of (173) and two new equations:

b̂arm = −√RITM âarm +√
TITMPøarm b̂ETM,

âETM = PøarmNITM âarm + PøarmTITMPøarm b̂ETM.

Here matrices TITM and NITM has absolutely the same form as TETM and NETM
correspondingly, provided by (175). The solution have the following form:

b̂arm = Tarm âarm + Narm n̂arm + tarm
h√

2 hSQL
, (176)

where transfer matrices and signal response function read:

Tarm = √
TITMMarmPøarmTETM, øPøarmNITM −√

RITMI,

Narm = √
TITMMarmPøarmNETM, ø,

tarm = √
2 TITMMarmPøarm tETM, ø,

Marm = [
I − PøarmTETM, øPøarmTITM

]−1
,

(177)

with Pøarm = eiΩτarmR[ωpτarm] standing for the transfer matrix of a free space prop-
agation of light between the mirrors of the arm cavity.

Tunedarmcavity: In the important special casewhen the cavity is tuned in resonance,
which mathematically means that ωpτarm = 2πn (n integer) the above expressions
simplify to:

Tarm = T e2iβarm
[

1 0
−√

RETMKarm 1

]
,

Narm = Neiβarm
[

1 0
−N 1

]
,

tarm = teiβarm

√
4 RETMKarm

1 + RITM

[
0
1

]
,

where in an assumption of small optical loss (TETM � 1):

Karm = (1 + RITM) TITMKTM

1 − 2
√
RITM cos 2Ωτ + RITM
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βarm = arctan

(
1 + √

RITM

1 − √
RITM

tanΩτ

)
,

N =
√
1 − RETM

1 + RITM

Karm

KTM
, T = t = 1,

N =
√
KarmKTMRETM

1 − R2
ITM

1 + e2iΩτarm R3/2
ITM

e−iβarm+iΩτarm

The following expressions for shot-noise and back-action components of the optical
transfer matrix of the lossy Fabry–Perot cavity can be finally written:

T
s.n. = e2iβarm I, T

b.a. = e2iβarm
[

0 0
−√

RETMKarm 0

]
, (178)

N
s.n. = eiβarmNI, N

b.a. = eiβarmN

[
0 0

−N 0

]
. (179)

Filter cavity I/O-relations In case of filter cavities, mirrors can be assumed fixed and
no radiation pressure effects are to be considered due to an absence of any significant
classical light component therein. One can also make a so called narrow-band approx-
imation, assuming ΩL f /c � 1, where L f is the filter cavity length and T f � 1 is
input mirror power transmissivity. Then one can write transfer matrices as:

TFC = 1

D

[
t1 t2

−t2 t1

]
,
t1 = γ 2

f 1 − γ 2
f 2 − δ2f + Ω2 + 2iΩγ f 2,

t2 = −2γ f 1δ f ,

NFC = 2
√

γ f 1γ f 2

D

[
γ f − iΩ1 −δ f

δ f γ f − iΩ

]
,

where D = (γ f − iΩ)2 + δ2f , γ f = γ f 1 + γ f 2 is a full cavity half-bandwidth and δ f

if its detuning. Here γ f 1 = cT f /(4L f ) is a half-bandwidth part depending on input
mirror transmissivity and γ f 2 = cA f /(4L f ) is the loss-associated part of bandwidth
with A f � 1 being the total round-trip fractional photon loss.

B. 3 Fabry–Perot–Michelson interferometer

B. 3. 1. Fabry–Perot–Michelson interferometer w/o signal recycling

I/O-relations of a Michelson/Fabry–Perot interferometer can be obtained by complet-
ing the above ones for the single arm with junction relations at the beam splitter:

âN = p̂ + î√
2

, âE = p̂ − î√
2

, ô = b̂
N − b̂

E

√
2

,

123



Advanced quantum techniques for future GW detectors Page 81 of 89     2 

Fig. 38 Schematics of
I/O-relations for a
Fabry–Perot–Michelson
interferometer

where âN,E ≡ âN,E
arm , b̂

N,E ≡ b̂
N,E
arm stand for the input and output fields of the N and E

arms, respectively. Hence, the Michelson interferometer I/O-relations read:

ô = TMI î + NMIn̂ + tMI
h

hSQL
, (180)

where
TMI = Tarm, NMI = Narm, tMI = tarm.

Here n̂ =
(
n̂Narm − n̂Earm

)
/
√
2 represents effective vacuum fields associated with

optical loss in the arm cavities.
In case of small losses the interferometer is described by opto-mechanical factor

KMI = Karm and phase βMI = βarm.

B. 3. 2. Signal-recycled Fabry–Perot–Michelson (FPM) interferometer

I/O-relations of a signal recycled FPMI depicted in Fig. 38 can be obtained from the
following equations written for light fields on a signal recycling mirror (SRM):

⎧⎪⎨
⎪⎩
ôSR = P

(√
TSRPSR ô−√

RSRP îSR
)

î = PSR

(√
RSRPSR ô+√

TSRP îSR
)

,
(181)

where an additional phase shift αSR is introduced to satisfy the Scaling Law of Buo-
nanno and Chen (2003) which maps the signal-recycled FPM interferometer and a
single detuned Fabry–Perot cavity:

PSR = ei
ΩlSR

c R[φSR] � R[φSR], φSR = ωplSR
c

,
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P � R[αSR], αSR = arctan

(√
RSR − 1√
RSR + 1

tan φSR

)
.

The solution of (180) and (181) gives the following:

ôSR = TMI SR îSR + NMI SR n̂ + tMI SR
h

hSQL
,

where

TMI SR = P
[
TSRPSRMMI SRTMIPSR −√

RSRI
]
P,

NMI SR = √
TSRPPSRMMI SRNarm,

tMI SR = √
TSRPPSRMMI SRtMI,

MMI SR =
[
I −√

RSRTarmP
2
SR

]−1
.

C Sagnac interferometer I/O relations

First, we consider a bare lossless zero-area Sagnac interferometer and derive its input–
output (I/O) relations. For definiteness, in this section, we stick to a configuration of
Sagnac interferometer that utilises ring arm cavities (as per the left panel of Fig. 22),
although the results we obtain are applicable to both realisations unless loss is taken
into account.

Unlike Michelson interferometer, in Sagnac interferometer light beam visits two
arm cavities before recombination with a counter-rotating beam at the beam splitter
(see Fig. 22). At the same time, two light beams hit the cavity, one coming directly from
the beam splitter and the one, that has just left another arm. In the notations of Chen
(2003), quadrature operators of light entering and leaving the arm can be identified
with two indices I J , e.g., aI J

c , where I stands for the either of two beams, L or R, and
J stands for the either of two arms (J = E, N ). Here R marks the light beam that first
enters North arm and then travels the interferometer in the right direction (clockwise),
and L marks the beam travelling the interferometer in the opposite (counterclockwise)
direction after entering the interferometer through the East arm. Thus, single lossless
arm I/O relations read, assuming high-finesse arm cavities (TITM � 1, for general
case see Appendix B.2.1):

bI Jc = e2iβarm(Ω)aI J
c , (182)

bI Js = e2iβarm(Ω)[aI J
s − Karm(aI J

c + a Ī J
c )]

+ eiβarm(Ω)
√
2Karm

√
2xJ

hSQLL
, (183)
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with Ī indicating the other beam than I , i.e., R̄ = L and L̄ = R, hJ = xETMJ − x ITMJ is
the arm elongation induced by signal force (e.g., gravitational wave tidal force), and

Karm = Θarmτ

Ω2

2 TITM
1 − 2

√
RITM cos 2Ωτ + RITM

� 2Θarmγarm

Ω2(γ 2
arm + Ω2)

, (184)

βarm = arctan

(
1 + √

RITM

1 − √
RITM

tanΩτ

)

� arctan (Ω/γarm) , (185)

with Θarm = 4ω0Parm/(McL) and Parm = Pc/4, where Pc is the total optical power
circulating in both arms and γarm = TITM/(4τ) is the half-bandwidth of an arm cavity.
The final, approximate expressions above are obtained assuming that cavity linewidth
and signal frequency are much smaller than cavity free spectral range νFSR = (2τ)−1.
This approximation nearly breaks down for detectors with arm length � 10 km, like
Einstein Telescope, at frequencies of the order of 10 kHz, therefore we present exact
formulae as well.

Then, it is straightforward to derive full Sagnac I/O-relations, using junction equa-
tions for the fields at the output beam splitter (ring-cavity topology):

âRN = p̂ + î√
2

, âLE = p̂ − î√
2

, ô = b̂
LN − b̂

RE

√
2

, (186)

as well as continuity relations between the beams that leave one arm and enter the
other:

âRE = b̂
RN

, âLN = b̂
LE

. (187)

The resulting I/O-relations for lossless zero-area Sagnac interferometer then read:

[
ôc
ôs

]
= e2iβSI

[
1 0

−KSI 1

] [
îc
îs

]
+
[

0√
2KSI

]
eiβSI

h

hSQL
, (188)

with coupling constant KSI defined as:

KSI = 4Karm sin2 βarm � 4ΘSIγarm

(Ω2 + γ 2
arm)2

, (189)

where ΘSI ≡ 4Θarm and additional phase shift:

βSI = 2βarm + π

2
. (190)

One can now calculate spectral density of quantum noise of the zero-area Sagnac,
using Eq. (9), where transfer matrix T and response vector t read:
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T = e2iβSI
[

1 0
−KSI 1

]
, t = eiβSI

[
0√
2KSI

]
. (191)

Therefore, one gets this simple expression for spectral density (it is the same for all
tuned interferometers with balanced homodyne readout of quadrature bζ and vacuum
state at the dark port, save to the expression for K):

Sh = h2SQL
2

{
[KSI − cot ζ ]2 + 1

KSI

}
. (192)
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