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Universidad del Páıs Vasco, 20018 San Sebastián, Spain

The wide-band limit is a commonly used approximation to analyze transport through nanoscale
devices. In this work we investigate its applicability to the study of charge and heat transport
through molecular break junctions exposed to voltage biases and temperature gradients. We find
that while this approximation faithfully describes the long-time charge and heat transport, it fails to
characterize the short-time behavior of the junction. In particular, we find that the charge current
flowing through the device shows a discontinuity when a temperature gradient is applied, while the
energy flow is discontinuous when a voltage bias is switched on and even diverges when the junction
is exposed to both a temperature gradient and a voltage bias. We provide an explanation for this
pathological behavior and propose two possible solutions to this problem.

I. INTRODUCTION

Over the last decades great effort has been spent to
miniaturize electric circuits. The goal is to realize the
fundamental building blocks of electronic circuits, such
as transistors, on the scale of single molecules. There has
been a great success in shrinking electronic devices down
experimentally. In order to understand the properties of
molecular break junctions a quantum mechanical descrip-
tion of the device is required. Perhaps the most success-
ful and wide-spread theory to describe how charge flows
through a nanoscale junction is the so-called Landauer-
Büttiker approach1–3, which describes the charge trans-
port as a scattering problem. Essentially, the flow of
charge through a molecular junction is determined by the
transmission function of the device–describing how im-
pinging electrons are scattered–and the occupation func-
tion of the electrons in the (metallic) leads connected to
the junction.

In recent years there has been renewed interest in
addressing not only the charge flow, but also the en-
ergy (or heat) flow through nanoscale devices. Under-
standing how charge and energy flow depend on volt-
age and temperature biases across the device provides
crucial insight for the development of thermoelectric cir-
cuits, which could be used to convert waste heat into use-
ful electric energy4,5. Furthermore, recent experiments
demonstrate that local temperatures in nanoscale con-
ductors can be measured with a spatial resolution of tens
of nanometers6,7. A common path to address the effect
of temperature gradients across the nanoscale device is to
allow for different temperatures in the occupation func-
tions characterizing the leads in the Landauer-Büttiker
formula. Conceptually this can only be justified if the
leads are considered to be disconnected from the device
initially (partitioned approach). This artificial partition-
ing of the system, however, is problematic, for it assumes
that it is possible to perfectly decouple the leads from the

molecular junction–a rather optimistic assumption if one
considers atomic-scale devices. For times much larger
than the typical time-scale of molecular break junctions,
which are on the order of femtoseconds8–11, the assump-
tion on a decoupled initial state does not play a crucial
role. However, for transient dynamics the initial state
matters. As pump-probe experiments are now able to
investigate phenomena happening at this timescale12–15

it is important to properly describe the initial state.

An alternative to the partitioned approach is to couple
the device and leads at all times and trigger the charge
flow by switching a potential bias16. This partition-free
approach leads to the same steady state as the parti-
tioned approach, but the transient dynamics of the de-
vice will, in general, be different17. The advantage of
the partition-free approach is that the transient charge
and energy/heat flows are not spoiled by the dynamics
induced by connecting leads and device, because the elec-
tronic states in the device are allowed to hybridize with
the leads before any temperature or voltage bias is ap-
plied. Importantly, it is also possible to take into account
temperature differences in the leads within the partition–
free approach: We consider a thermo-mechanical poten-
tial, which couples to the local energy density of the
system–much like the usual electric potential couples to
the charge density18. This thermo-mechanical potential
acts as mechanical “proxy”19 for local temperature varia-
tions. An intuitive way to understand this is to consider
the occupation function, which is determined from the
ratio of the energy and the temperature. Accordingly,
a change in occupations due to a change in temperature
can alternatively be viewed as a change in energy keeping
the temperature fixed. The thermo-mechanical potential
allows to rescale the energy locally, thereby mimicking a
locally varying temperature. Applying this idea in the
context of transport means that different temperatures
in the leads are described by rescaling the bandwidth of
the leads20.
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FIG. 1. Molecular break junction: Schematic representation
of the system considered in this work. A single impurity site,
representing a molecular level with energy εc, is coupled via
hopping amplitudes Vα to metallic leads with a bandwidth
4tα (α = R,L). Charge and energy flow is triggered by ap-
plying a potential bias Uα to the leads and/or changing the
temperature Tα in the leads.

A wide-spread simplification used to describe transport
through nano junctions is the so-called wide-band limit
(WBL). The WBL assumes that the detailed structure of
the density of states in the leads is not important for the
description of transport, which substantially simplifies
computations. The WBL for charge transport is justified
when the bandwidth is large compared to the applied
bias21–27.

In this work we investigate whether the WBL can be
employed in conjunction with the thermo-mechanical po-
tential. An immediate question that comes to mind is:
What is the meaning of rescaling an infinite band? In the
following we will show that the steady state is well de-
scribed in the WBL, provided the WBL is taken properly.
The transient currents, however, exhibit peculiarities at
short times. Specifically, we see that the charge current
jumps at the initial time when the device is exposed to
a temperature gradient and, similarly, the heat current
behaves discontinuously when a voltage bias, but no tem-
perature bias, is switched on. Even more dramatically,
the heat current diverges as (t− t0)−1, with t0 being the
time at which a temperature and charge bias is applied to
the system. By comparing the WBL transient charge and
heat currents to results obtained at finite bandwidth, we
highlight that this pathological behavior of the WBL can
be attributed to the fact that–at short times–the natural
cut-off, provided by the finite bandwidth, plays a crucial
role for the dynamics.

II. MODEL AND METHOD

We consider a simple tight-binding model Hamiltonian
to describe a molecular break junction. A single molecu-
lar level is connected to two metallic leads (cf. sketch in

Fig. 1). The Hamiltonian reads

Ĥ = εcφ̂
†
cφ̂c +

∑
αk

εαkφ̂
†
αkφ̂αk

+
∑
αk

(
φ̂†αkV(αk)cφ̂c + φ̂†cVc(αk)φ̂αk

)
, (1)

where εc is the energy of molecular level, φ̂†αk and φ̂αk are
the field operators of the leads, with α = L(eft),R(ight)

and k labels the basis functions in the leads, and φ̂†c, φ̂c
represent the field operators associated to the molecular
level. The matrix elements V(αk)c = [Vc(αk)]

? take the
coupling between the molecular level and the leads into
account. The leads are modeled as non-interacting one-
dimensional tight-binding chains, i.e., the dispersion of
the electrons in the leads is given by

εαk = −2tα cos(k) + cα , (2)

where tα is the nearest neighbor hopping in lead α, yield-
ing a bandwidth of 4tα. The energy cα corresponds to
the center of the band of the lead α, i.e., it determines
the alignment of the band with respect to the chemical
potential, which we take to be at zero energy. Finally
the hopping to the central site is Vαk = Vα sin(k). The
embedding self-energy due to lead α is then given by

ΣR/A
α (z) =

∑
k

V(αk)cg
R/A
αk (z)V ?(αk)c

=
|Vα|2
tα

S

(
z − cα

2tα

)
, (3)

with g
R/A
αk (z) being the retarded/advanced Green’s func-

tion of the isolated lead α. The function S(z) is given
by

S(z) = z −
√
z − 1

√
z + 1 , (4)

where the character of the function S(z), i.e., whether
it is the advanced or retarded self-energy, is determined
by the sign of the imaginary part of z28. The Green’s
function for the molecular level is then simply given by

GR/A(z) =

[
z − εc −

∑
α

ΣR/A
α (z)

]−1
. (5)

The inverse of the imaginary part of the self-energy yields
a finite lifetime for the quasi-particles in the molecular
junction, and the real part of the self-energy shifts the
energy of the quasi-particles.

The WBL is defined as the limit tα → ∞ (infinite
bandwidth) while keeping the ratio |Vα|2/tα, which cor-
responds to the decay rate into lead α, constant. Ex-
panding the expression of the self-energy for large tα we
obtain [

ΣR/A
α (z)

]
WBL

= ∓i |Vα|
2

tα
= ∓iΓα

2
, (6)
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where the ∓ sign refers to the retarded/advanced self-
energy, respectively. As we can see from this expres-
sion, the only effect of the leads is to provide a decay-
mechanism for the quasi-particles.

Expressing the field operators φ̂ in the Heisenberg pic-
ture and using their equations of motion, the charge and
heat currents are given by20,29–31:

Iα = −∂t
∑
k

〈φ̂†αk(t)φ̂αk(t)〉 , (7a)

Qα = −∂t
[∑

k

εαk〈φ̂†αk(t)φ̂αk(t)〉 (7b)

+
1

2

∑
kn

(
V(αk)n〈φ̂†αk(t)φ̂n(t)〉+ h.c.

)]
.

Note that we define the heat current Qα as the tempo-
ral change in the energy within the leads plus half the
coupling energy32.

III. TRANSPORT SETUP

In this work, we will investigate the validity of the
WBL in the case of dynamical heat and charge transport
in the junction described in the previous section. Once a
non-equilibrium situation is created by applying a poten-
tial bias and/or temperature gradient, transient dynam-
ics will take place and electrons will move, resulting in
charge and heat currents flowing across the junction. We
focus on the specific cases of quenches, i.e., the electric
and thermo-mechanical potentials suddenly change at a
certain time t0. Transient dynamics, induced by chang-
ing the potentials, occur on the order of a characteristic
time scale τ given by the inverse of the decay rate pro-
vided due to the leads, i.e.,

τ−1 =
∑
α

V 2
α

tα
. (8)

For times t � τ the junction will reach a steady state.
We choose the hopping VL = VR = V as our unit of
energy: the molecular energy level is taken to be at εc =
0.2V , the nearest neighbor hopping of the leads tL =
tR = 5V , the chemical potential defines the zero of the
energy, the center of the bands of the leads are aligned
with it (cα = µ = 0), and the (inverse) temperature
β = (kBT0)−1 = 100V −1.

For t < t0 the system is taken to be in thermal equi-
librium at temperature T0. In order to induce a charge
current through the junction the left lead is shifted up in
energy by U = 2V for t ≥ t0, i.e., the energy dispersion
of the left lead is given by

εLk =

{
−2tL cos(k) for t < t0,

−2tL cos(k) + U for t ≥ t0.
(9)

In order to describe a temperature gradient across the
junction–in addition to the potential bias–we apply a

(A)

t < t0

kBT0 kBT0

DOSL DOSR

fL(ǫ) fR(ǫ)

µ

ǫǫ

(B)

t ≥ t0

kBTL

kBT0

DOSL

DOSR

fL(ǫ) fR(ǫ)

µ

ǫǫ

UL

FIG. 2. Comparison of initial and steady state: (A) Initial
state of the junction. The leads–molecule system is equili-
brated at a unique temperature T0 and chemical potential
µ (represented by the dashed horizontal line). (B) Graphical
representation of the steady state. At t0 a thermo-mechanical
potential and the potential bias is applied. This results in
a steady state in which the occupation function of the left
lead corresponds to a Fermi function with TL = 2T0 and
µL = µ+ UL.

thermo-mechanical potential ψ = Tα−T0

T0
= 1 in the left

lead, which rescales the bandwidth for t ≥ t0. This
thermo-mechanical potential effectively doubles the tem-
perature in the left lead:

εLk =

{
−2tL cos(k), for t < t0
(1 + ψ)(−2tL cos(k) + U) for t ≥ t0.

(10)

Figure 2 sketches of the molecular junction in the initial
equilibrium and in the steady-state limit, showing that
in the steady-state the energy dispersion of the left lead
is broadened by a factor of two. In Fig. 3 we depict
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FIG. 3. Charge and heat currents: Transient charge (Iα)
and heat currents (Qα) flowing between the left lead (α =
L) and the right lead (α = R) and the molecular junction,
respectively. The results are obtained taking into account the
full frequency dependence of the embedding self-energy. The
currents are triggered by a sudden change in the temperature
and potential in the left lead at t0 = 0.

the time-dependent charge and heat currents through the
molecular junction. In this calculation, both, a charge
bias and a temperature gradient is applied across the
junction and we observe fast transient oscillation of the
currents on the timescale τ followed by a saturation to a
steady current.

IV. RESULTS

In order to test the WBL we compute the time-
dependent charge and heat currents flowing from the
leads into the impurity in the WBL and compare the
results to calculations taking the full frequency depen-
dence of the lead self-energy [cf. Eq. (4) and Fig. 3] into
account. Specifically, we rescale the bandwidth of the
leads, making it effectively wider, while keeping the ratio
|Vα|2/tα constant. Hence, we use

V λα =
√
λVα , tλα = λtα , (11)

with a rescaling factor λ, which allows us to approach
the WBL as λ → ∞. We focus on two different scenar-
ios: 1) A situation where only a potential bias is applied
to the left lead [cf. Eq. (9)], 2) A situation where, both,
a potential bias and a temperature difference are applied
across the junction [cf. Eq. (10)]. The numerical algo-
rithm to compute the transient currents–taking the full
frequency dependence of the embedding self-energy into
account–has been already discussed in Ref. 33. In the
following we refer to these results as the “full” calcula-
tion. Very recently progress has been made in evaluat-
ing the time-dependent currents in tight-binding models
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I L
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λ = 64.0

λ = 256.0
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FIG. 4. Short-time dynamics of charge current: Time-
dependent charge current flowing from the left lead to the
impurity under the influence of a potential bias and a tem-
perature gradient. The full calculation approaches the WBL
result as the scaling factor increases. However, there is an
apparent discontinuity developing at t = 0 for λ→∞. While
in the full calculation the charge current always vanishes for
t→ 0, in the WBL a finite value is obtained.

within the WBL analytically34,35. It turns out that this is
also possible if a thermo-mechanical potential–describing
temperature gradients–is present. Accordingly, all WBL
results are obtained analytically. The explicit derivation
of the analytical expression will be presented elsewhere.

Steady state currents. For times much longer than
the characteristic lifetime τ the system reaches a steady
state. In general we find that the steady state currents
obtained in the WBL coincides with the results of the
full calculation when the scaling factor λ is increased.
However, there is a subtle point in the evaluation of the
heat current in the steady state: it turns out to be cru-
cial to take the WBL at the end of the calculation and
not inside the integral defining the steady state current.
The difference between taking the WBL inside the inte-
gral and taking the WBL after performing the integral
is only present if two leads at different temperatures are
connected to the same state in the device. This is triv-
ially the case for a molecular junction modeled by a single
site. We present a careful derivation in App. B showing
that the order of limits matters.

Transient charge current. The transient charge in-
duced by a potential bias alone is nicely reproduced in
the WBL [cf. App. A for the corresponding plots]. If a
temperature gradient–in addition to the potential bias–
is applied the charge current exhibits a jump at the ini-
tial time, but otherwise represents the full calculation for
times t & τ . In Fig. 4 we depict the charge current for
t � τ (a plot of Iα for t & τ is provided in App. A).
It can be shown analytically that the jump, ∆Iα, at the
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FIG. 5. Transient heat current driven by a potential bias:
Similar to the case of a charge current driven by a temperature
gradient [cf. Fig. 4] in the limit of infinite bandwidth, λ→∞,
the heat current develops a step at t0. This means that the
heat currents in the WBL tend to a finite value.

initial time is proportional to

∆Iα ∝ V̄α
(
Vα
tα
− V̄α
t̄α

)
, (12)

where the hopping amplitude inside the leads for t < t0
is denoted by tα and for t ≥ t0 by t̄α. Similarly, we
could write the coupling between lead α and the molec-
ular region as Vα before t0 and V̄α afterwards. In our
setup the couplings are held constant at all times, i.e.,
V̄α = Vα, and the temperature gradient is mimicked by
changing the hopping inside the leads as discussed in Sec.
III. Specifically, from Eq. (10) we have t̄L = (1 + ψ)tL,
which means that the charge current has a finite jump
when a temperature gradient is applied across the molec-
ular junction. Equation (12), however, suggests that the
jump can be avoided if the temperature bias is mim-
icked by scaling the couplings Vα in the same way as
the hopping inside the leads. This would imply that
V̄α/t̄α = Vα/tα, which is sufficient to make ∆Iα van-
ish even in the presence of a temperature gradient. We
stress that this cannot be achieved in the partitioned ap-
proach, because Vα is zero by definition for t < t0 if the
system is initially decoupled.

Transient heat current. Turning to the transient heat
current we find that if only a potential bias is applied the
heat current of the full calculation is reproduced in the
WBL for times t & τ , but exhibits a jump at t0. The
short time behavior, t� τ is depicted in Fig. 5 (cf. App.
A for t & τ). Similar to the case of the charge current
induced by a temperature gradient, we can see that the
WBL approximates a discontinuity at t0 in the limit λ→
∞ in the full calculation. Again, the heat current in
the full calculation always vanishes as t → t0, but the
WBL leads to a finite step in the heat current already
in the presence of only a potential bias. In contrast to
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Q
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λ = 256.0

WBL
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FIG. 6. Heat current induced by temperature gradient: (A)
Transient heat current for time comparable to the quasi-
particle lifetime driven by a potential bias and a tempera-
ture gradient. For t & τ the WBL reproduces the full cal-
culations. (B) Transient heat current for t � τ . The heat
current in the full calculation exhibits a sharp spike which
increases in height, and gets closer to t0 as the bandwidth,
which is proportional to λ increases. The WBL results di-
verge as (t− t0)−1.

the charge current it is not possible to extract a simple
expression as Eq. (12), but instead the jump depends on
the details of the molecular junction, i.e., on the quasi-
particle energy levels.

If a temperature gradient is applied across the junc-
tion the heat current flowing from the left lead into the
molecule depends strongly on the bandwidth for short
times, even in the full calculation. In Fig. 6 we can see
that the heat current oscillates strongly for t . τ with a
frequency proportional to the bandwidth (which, in turn,
is proportional to λ). These oscillations correspond to
transitions between the band edges of the leads and have
been already observed in Ref. 33. In the WBL these os-
cillations are absent since there are no band edges, but
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FIG. 7. Fixing the short-time behavior of the currents: (A)
Transient charge current for times comparable to the quasi-
particle lifetime driven by a potential bias and a tempera-
ture gradient. (B) Transient heat current. In both panels we
compare the WBL results obtained by applying the thermo-
mechanical potential only inside the leads (I) to the WBL
currents obtained by applying the thermo-mechanical poten-
tial also to the coupling between the leads and the device (II).
The currents are normalized by their respective steady-state
limit.

instead the heat current diverges as

Qα ∼ V̄α
(
Vα
tα
− V̄α
t̄α

)
1

t− t0
. (13)

In the partition-free approach this divergence can be
tamed by rescaling the couplings Vα in the same way
as tα, i.e., by applying the thermo-mechanical potential
not only inside the leads but also on the boundary of the
junction. It turns out, however, that the sub-leading or-
der for the heat current exhibits a logarithmic divergence
as t → t0. This is shown in Fig. 7, where we compare
the transient charge and heat currents in the WBL scal-
ing only the hopping inside the leads (I) and scaling also

the coupling to the impurity (II). We can see that the
charge current starts from zero for both leads if also the
coupling VL is rescaled with the temperature, but it ex-
hibits a finite jump in the lead where the temperature
is changed if the temperature only rescales the hopping
inside the lead. For the heat current we see that currents
in all leads exhibit a logarithmic divergence as t→ t0 if,
both, tα and Vα is rescaled due to the change in temper-
ature. If only tα is rescaled we see the aforementioned
(t− t0)−1 divergence.

V. DISCUSSION AND CONCLUSION

In this work we have carefully examined the WBL
for the transient and steady-state charge and heat cur-
rents through a molecular break junction. While we find
that the long-time dynamics are faithfully captured in
the WBL, at short times the WBL deviates considerably
from a calculation taking the full frequency dependence
of the embedding self-energy into account. This can be
understood intuitively by considering that short times
implies a wide spread in energy, and, therefore, the dy-
namics will be sensitive to whether the self-energies have
a high frequency cut off (or decay) or whether they are
constant for all frequencies. Specifically we have shown
that the charge current induced by a temperature gra-
dient, and the heat current induced by a potential bias,
exhibit an unphysical jump at the initial time, when the
system is suddenly quenched. Even more dramatically,
the heat current diverges shortly after the quench if in
addition to the potential bias also a temperature gradi-
ent is applied to the system. We have shown that these
unphysical behaviors of the charge and heat current due
to a temperature quench can be mitigated by considering
that the temperature change not only affects the metal-
lic leads, but also the boundary between the leads and
the molecular junction. Since, in practice, this boundary
is not sharply defined, we consider this a legitimate fix
for the WBL. We stress that this fix can only be applied
in the partition-free approach to the transport problem,
i.e., when the coupling between the metallic lead and the
molecular junction is already taken into account in the
initial state of the system (before the quench). While
this fix renders the charge current physical, in the sense
that the initial current vanishes, the divergence in the
heat current remains, but is only logarithmic.

In order to address this, we see two possible solutions:
1) In an actual experiment temperature gradients and

potential biases will never be switched on infinitely fast,
so a description as a sudden quench is questionable–to
say the least–considering short time transient dynamics.
It seems plausible that any kind of continuous switching
will lead to a physical result (zero initial charge and heat
currents).

2) The second possible “solution” concerns the very
definition of the energy or heat current between the leads
and the device29–31. In this work, the heat current Qα
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has been defined as the change in time of the internal
energy of the leads plus half of the coupling energy. Al-
ternatively, the energy current Jα from a certain lead α
could be defined excluding the energy associated with the
coupling to the device. The divergence at small times is
due to the internal energy of the leads, which occurs in
both the energy (Jα) and the heat current (Qα). How-
ever there is yet another possible definition of the energy
flowing between the leads and the device, i.e., we can de-
fine an energy current, Eα, via the change of the energy
stored in the device itself excluding the coupling. This
leads to an expression ∂t〈H〉 =

∑
αEα, where 〈H〉 is the

expectation value of the energy inside the junction. For
a simple one-site model we have trivially Eα = εcIα, i.e.,
the new energy current is proportional to the charge cur-
rent. However, for a multi-state device region, this is not
necessarily the case.

We point out that from a numerical point of view it
would be highly desirable to employ the WBL to compute
transient charge and heat currents, because it affords an
analytical solution in terms of the quasi-particle states
and energies in the molecular device. Harnessing this an-
alytical solution would allow for an efficient simulation of
mesoscopic devices. An approach somewhat intermedi-
ate between taking the full frequency dependence of the
self-energy into account and the WBL, could be to ap-
proximate the self-energies by Lorentzians, which provide
a self-energy with the proper decay at high frequencies
while allowing also for a (semi-)analytic solution of the
transport problem22,24.

In this work we only consider the non-interacting case.
Through the Keldysh formalism36–38 a generalization of
the Landauer-Büttiker formula for interacting electrons
is also possible39. There is a very interesting alterna-
tive approach for tackling the interacting transport prob-
lem using time-dependent density-functional theory (TD-
DFT)40,41, where the interacting problem is mapped onto
a fictitious noninteracting problem. This implies that
the Landauer-Büttiker formula applies. The effect of the
electron-electron interaction is taken into account via an
effective potential, which renormalizes the effective bias
driving the charge flow42–44. Furthermore, the coupling
to a thermo-mechanical potential can be used to gener-
alize TD-DFT to allow for a direct description of charge
and energy flow45,46. We are confident that the com-
bination of these approaches holds promise for studying
the transient charge and energy flow in large molecular
junctions for interacting systems.

ACKNOWLEDGMENTS

F. G. E. has received funding from the European
Union’s Framework Programme for Research and In-
novation Horizon 2020 (2014-2020) under the Marie
Sk lodowska-Curie Grant Agreement No. 701796. R.
T. and M. A. S. acknowledge funding by the DFG
through the Emmy Noether programme (SE 2558/2-1).

A. R. acknowledges financial support from the European
Research Council(ERC-2015-AdG-694097) and Grupos
Consolidados (IT578-13).

Appendix A: Additional plots for the transient
currents

In this appendix we provide additional plots comparing
the full results to the WBL. Figure 8 shows the transient
charge currents for times comparable to the quasi-particle
lifetime τ (upper panel) and for very short times (lower
panel). It clearly shows that the WBL represents the
λ→∞ limit of the full calculation.

Fig. 9 shows the charge and heat current for times
comparable to the quasi-particle lifetime. The charge
current is shown for the second scenario, i.e., when a
potential bias and a temperature gradient is applied. The
heat current is shown for the first scenario, i.e., when
only a potential bias is applied at t0. We see that in
both cases the WBL currents correspond to the λ → ∞
currents obtained in the full calculation for times t ≥ t0.
However, in the WBL both currents approach a finite
value for t→ 0 as discussed in Sec. IV.

Appendix B: Derivation of the steady-state energy
current

Here we present the analytical evaluation for the
steady-state energy current discussed in Sec. IV. In our
derivation we consider a generic Hamiltonian of the form

Ĥ = Φ̂
† ·H · Φ̂ +

∑
αk

εαkφ̂
†
αkφ̂αk

+
∑
αk

(
Φ̂†αkV

†
αk · φ̂+ Φ̂

† · V αkφ̂αk

)
, (B1)

which is the generalization of Hamiltonian introduced in
Sec. II, Eq. (1) to multiple states in the molecular junc-
tion. We denote vectors in the single-particle state space
of the impurity by bold symbols, e.g., Φ or V αk, and ma-
trices by underlined bold symbols, e.g., H. In the WBL
the retarded (R) and advanced (A) Green’s function are
given by

GR(z) =
∑
n

RnA
†
n

z − ωn
, (B2a)

GA(z) =
∑
m

AmR
†
m

z − ω?m
. (B2b)

The vectors Rn are the right eigenvectors of the retarded
eigenproblem and the vectors Am are the right eigenvec-
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FIG. 8. Time-dependent charge current flowing from the left
lead to the impurity when only a potential bias is applied.
Upper panel shows the current for times comparable to τ ,
while the lower panel depicts the transient current at t� τ .

tors to the corresponding advanced eigenproblem, i.e.,(
H − i1

2
Γ

)
·Rn = ωnRn , (B3a)(

H + i
1

2
Γ

)
·An = ω?mAm . (B3b)

They are normalized by requiring A†m ·Rn = δnm. The
Landauer-Büttiker formula for the energy current explic-
itly reads

Jα = i
∑
α′

∑
nm

R†m · Γα ·RnA
†
n · Γα′ ·Am

×
∫ ∞
−∞

dε

2πi
ε [f(εα)− f(εα′)]

1

ε− ωn
1

ε− ω?m
, (B4)

where we introduced the short hand εα = βα

β (ε − Uα),

with βα being the (inverse) temperature, and Uα the po-
tential in lead α (note that βα/β = [1 + ψα]−1). Using

0 1 2 3 4

t/τ

−0.1
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0.1

0.2

0.3

0.4
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0.6

I L
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WBL
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t/τ

−0.1

0.0

0.1

0.2

0.3

0.4

Q
L
τ
/V
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λ = 4.0

λ = 16.0

λ = 64.0

λ = 256.0

WBL

FIG. 9. Upper panel shows the time-dependent charge current
flowing from the left lead to the impurity when a potential
bias and temperature gradient is applied across the junction.
Lower panel shows the heat current induced by applying a
potential bias only.

the representation of the Fermi function in terms of a
Matsubara summation, i.e.,

f(z) =
1

2
− 1

β

∑
f

1

z − izf
, (B5)

with the Matsubara poles zf = (2f + 1)π/β, we arrive at

Jα = −i
∑
α′

∑
nm

R†m · Γα ·RnA
†
n · Γα′ ·Am

×
[
Cαnm − Cα

′

nm

]
, (B6)

with

Cαnm =
1

β

∑
f

∫ ∞
−∞

dε

2πi

ε

εα − izf
1

ε− ωn
1

ε− ω?m
. (B7)
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Using

ε

(ε− ωn)(ε− ω?m)
=

ωn
ωn − ω?m

1

ε− ωn
+

ω?m
ω?m − ωn

1

ε− ω?m
(B8)

we can further decompose

Cαnm =
1

ωn − ω?m
[Fαn + (Fαm)?] , (B9a)

Fαn = ωn
1

β

∑
f

λ2
∫ ∞
−∞

dε

2πi

1

εα − izf
1

ε− ωn
. (B9b)

The integral can be evaluated by closing the integration
contour in the upper half of the complex plane, leading
to

Fαn = ωn
1

β

∑
f>0

1

izf − ωnα
. (B10)

The sum (B10) does not converge, but it can be combined

with the corresponding sum from Cα
′

nm, i.e.,

Fαn − Fα
′

n = ωn
1

β

∑
f>0

(
1

izf − ωnα
− 1

izf − ωnα′

)
= ωn

∑
f>0

ωnα − ωnα′

(izf − ωnα)(izf − ωnα′)
. (B11)

Expression (B11) can be summed explicitly using

1

β

∑
f>0

1

izf − x
1

izf − y
=
D(−x)−D(−y)

x− y , (B12)

where we defined

D(z) ≡ − 1

2πi
ψ0

(
1

2
− izβ

2π

)
, (B13)

in terms of the Digamma function ψ0(z). This leads to
the final result

Cαnm − Cα
′

nm =
ω?m

ω?m − ωn
[D(ω?mα)−D(ω?mα′)] (B14)

+
ωn

ωn − ω?m
[D(−ωnα)−D(−ωnα′)] ,

where we used that [D(z)]? = −D(−z?), which follows
from [ψ0(z)]? = ψ0(z?), we can see that the expression
for the energy current is a real number.

In the derivation presented above we have replace the
frequency dependent self-energies by the frequency inde-
pendent WBL approximation inside the integrand. In
the following we will repeat the calculation keeping a
“minimal” frequency dependence, i.e.,

ΣR/A
α (ε) ≈ 1

2
Γα

λ

ε± iλ , (B15)

which reduces to the WBL as λ→∞. Only at the end of
the calculation we will take the limit λ → ∞. Equation

(B15) implies that in the integral for Fαn we have an
additional factor of

λ4

(ε− iλ)2(ε+ iλ)2
= ∂x∂y

λ2

(ε− iλx)(ε+ iλy)

∣∣∣∣
x=y=1

.

(B16)

Accordingly, we have

Fαn = ωnλ
2∂x∂y (B17)(

1

β

∑
f

1

iλxa − izf
1

iλ(x+ y)(iλx− ωn)

+
1

β

∑
f>0

(
βα

β

)2
(izf − iλxα)(izf + iλyα)(izf − ωnα)

)
x=y=1

.

Now we use∑
f

1

z − izf
= D(z)−D(−z) , (B18a)

∑
f>0

1

izf − a
1

izf − c
1

izf − c
(B18b)

=
D(−a)

(a− b)(a− c) +
D(−b)

(b− a)(b− c) +
D(−c)

(c− b)(c− b) ,

to arrive at

Fαn = ωnλ
2∂x∂y

(
D(iλxa)

iλ(x+ y)(iλx− ωn)

+
D(iλya)

iλ(x+ y)(iλy − ωn)

+
D(−ωnα)

(ωn − iλx)(ωn + iλy)

)
x=y=1

. (B19)

From the asymptotic expansion of the Digamma func-
tion, ψ0(z) ∼ log(z), it follows that

D(iλzα) ∼ −
log
[
zβα

2π

]
2πi

, (B20)

which, in turn, leads to the asymptotic expansion

Fαn ∼ ωn∂x∂y
(
D(−ωnα)

xy

+
log
[
λxβα

2π

]
2πi(x+ y)x

+
log
[
λyβα

2π

]
2πi(x+ y)y

)
x=y=1

. (B21)

Combining the terms due to the different leads yields

Fαn − Fα
′

n ∼ ωn
(
D(−ωnα)−D(−ωnα′)

− i 1

2π
log [βα/βα′ ]

)
. (B22)
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Equation (B22) does not depend on λ anymore and we
can safely take the limit λ → ∞, because the neglected
terms in the asymptotic expansion are of order λ−1.

Plugging Eq. (B22) into Eqs. (B9a) and (B6) finally gives

Jα = −i
∑
α′

∑
nm

R†m · Γα ·RnA
†
n · Γα′ ·Am

×
(

ωn
ωn − ω?m

[D(−ωnα)−D(−ωnα′)]

+
ω?m

ω?m − ωn
[D(ω?mα)−D(ω?mα′)]

)

+
1

2π

∑
α′

Tr [Γα · Γα′ ] log

(
Tα
Tα′

)
. (B23)

The first term corresponds to the result when taking the
WBL inside the integral. The second term is the correc-
tion if, instead, the WBL is taken after the integration.
This correction term vanishes if there is no temperature
gradient between the leads. Furthermore, it vanishes if
the coupling matrices do not overlap in the single-particle
state space of the molecular Hamiltonian. In the results
presented in this work this correction is crucial in order
to reproduce the steady-state heat currents in the WBL.
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