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From the very beginning of the miRNA era, Drosophila has

served as an excellent model for explanation of miRNA

biogenesis. Now Drosophila continues to be used in numerous

studies aiming to decipher biological roles of individual miRNAs

in a living organism. MiRNAs have emerged as an important

regulatory class that adjusts gene expression in response to

stress; therefore, it is particularly important to elucidate miRNA-

based regulatory networks that appear in response to

fluctuations in intrinsic and extrinsic environments. This review

explores the major advances in understanding condition-

dependent roles of miRNAs in adult stem cell biology using the

Drosophila ovarian germline stem cell niche community as a

model system.
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Introduction
MicroRNAs (miRNAs) are endogenous small RNAs that

negatively regulate gene expression at the posttranscrip-

tional level in a variety of eukaryotic organisms. Gener-

ation of the mature functional miRNA is a stepwise

process that depends on several key RNA-binding

enzymes [1–4] (Figure 1). Importantly, the efficiency

of miRNA production is highly stress-dependent [5].

Since miRNA discovery less than three decades ago,

it has been demonstrated that miRNAs play a role in

essentially all biological processes ranging from the

regulation of stemness, cell division, and differentiation

to stress-dependent adjustment of cellular metabolism

and organismal homeostasis [5–9,10��]. The Drosophila
www.sciencedirect.com 
germline was used to show for the first time that the

miRNA pathway is involved in the regulation of stem

cell division [11]. Later it was also found that the miRNA

pathway controls stem cell maintenance [12–14] and

indicates stage-specific conditions for stem cell self-

renewal and differentiation [15], revealing that miRNAs

are crucial components of the temporally and spatially

coordinated gene regulation network. These pioneering

studies were based on the analysis of phenotypes caused

by defects in critical enzymes required for miRNA

biogenesis, such as Dicer and Drosha, absence of which

would have a global effect on miRNA production (Fig-

ure 1). However, hundreds of different miRNA genes

have been identified in all metazoans, of which many are

phylogenetically conserved [16]. Like with any other

classes of regulatory genes, in order to have a global

perspective about biological roles of miRNAs, first it is

important to study individual cases. Unfortunately, cur-

rently only a few miRNA–target interactions have been

experimentally confirmed, and there are several reasons

why studies aiming to dissect the function of a single

miRNA and validate its relevant target appear to be

complex.

Firstly, it remains a key difficulty to unravel specific in
vivo functions for individual miRNAs since in well-con-

trolled lab conditions, the majority of studied miRNA

mutants are viable, fertile, and seemingly normal [17].

Secondly, while there are various databases and algo-

rithms using physical and chemical characteristics or

conserved sequences to predict miRNA–mRNA interac-

tions, they still give large numbers of false positives

[18,19]. Thirdly, bioinformatics predicts that one miRNA

can target up to 200 transcripts and one mRNA can be

targeted by multiple miRNAs, giving an enormous

amount of combinatorial possibilities. Therefore, associ-

ating causal targets to miRNA phenotypes continues to be

extremely challenging. Fourthly, the specific miRNA

function is highly dependent on the presence and levels

of its multiple targets which can compete for miRNA

binding [20]. Therefore, the possibility of miRNA-based

targeting depends not only on the expression levels of the

miRNA and its target, but also on the presence of other

endogenous RNAs. Finally, while the expression profile

of miRNA is very specific for tissue types and develop-

mental stages, it is also extremely sensitive to variations in

organismal physiology and stress [21,22,23�,24]. There-

fore, the efficiency of miRNA-based regulation even in

the same cell type appears to be highly stage-dependent

and condition-dependent.
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The miRNA pathway. MiRNAs are expressed in the nucleus as many

other genes by RNA polymerase II to form the primary miRNA

transcripts (pri-miRNAs). The hairpin structure of the pri-miRNA is

recognized by the nuclear RNase III enzyme, Drosha, which together

with its partner Pasha/DGCR8, cleaves pri-miRNAs into �70

nucleotide hairpin precursor miRNAs (pre-miRNAs). The pre-miRNA is

recognized and exported to the cytoplasm by Exportin-5. In the

cytoplasm, the pre-miRNA is further cleaved by another RNase III

enzyme, Dicer, into a �22 nucleotide RNA duplex, one strand of which

is preferentially loaded into one of the Argonaute proteins (Ago1 in

Drosophila). Together with Ago1 and associated proteins, the mature

miRNA forms the RNA-induced silencing complexes (RISC) and guides

it to the target mRNA leading to its translational repression.
Despite all these challenges, the great efforts of mul-

tiple research groups have provided a vast amount of

data allowing us to gain a greater understanding of the

mechanisms of miRNA-based regulation and demon-

strated the importance of miRNAs in control of virtu-

ally all developmental processes. There is evidence

that miRNAs act as managers of cellular homeostasis

as they respond to fluctuations in environmental con-

ditions and stresses to readjust factors ensuring cellu-

lar homeostasis. In addition, miRNA-based regulatory

networks are managed via feedback-feedforward sig-

naling. This allows the reduction of transcriptional

noise and global fine-tuning of the gene expression

profile to guarantee the cell fate robustness [25–27].

This is particularly important for stem cell biology

since one of the key characteristics of stem cells is

their capability to maintain the continuous balance

between self-renewal and differentiation. Therefore,

understanding the biological roles of miRNAs, partic-

ularly in stem cells, has a great potential for regenera-

tive medicine.
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Drosophila germline stem cell niche
community as a model for adult stem cells
Using asymmetric cell division, stem cells acquired a

remarkable potential to reproduce themselves and gen-

erate differentiating daughter cells that must convert

from multi-potency to unipotency, while ceasing their

self-renewal capacity. These decisions must be robustly

controlled since any imbalance could lead to develop-

mental abnormalities, defective tissue homeostasis, or

cancer. In order to persist, adult stem cells must reside in

a specialized location, the stem cell niche, which itself is

as essential for stem cell well-being as the intrinsic stem

cell functions. The niche incorporates all cellular and

non-cellular constituents necessary for the adult stem

cell maintenance; moreover, the stem cell niche milieu is

capable to reprogram and to convert differentiated cells

into stem cells [23�]. Therefore, the best way to under-

stand stem cells is to study them in their ‘home’ envi-

ronment. Currently, only a few stem cell niche models

have emerged, among which the Drosophila germline

stem cell niche community undoubtedly is the best

studied and understood. Therefore, this review is

focused on recent findings that explain the role of

individual miRNAs in ovarian germline stem cells and

their niches.

Thanks to systematic genetic studies in Drosophila,
extensive transcription factor networks that coordinate

germline stem cell maintenance and stem cell niche

formation are well described [28,29]. In addition, it is

known that in the germline, the shift between stem cell

self-renewal and differentiation is controlled via inter-

locked feedback loops, which predominantly depend on

reciprocal translational repression safeguarding this fun-

damental cell fate decision [30]. Moreover, it has been

shown that gonads (testes and ovaries) are unusually rich

in miRNAs, many of which are unique, sexually biased,

and dynamically expressed [22], suggesting that miRNAs

help to maintain regulatory circuits that balance the

efficiencies of stem cell self-renewal and differentiation,

especially in response to organismal need and environ-

mental conditions.

The Drosophila ovary is a paired organ consisting of

individual ovarioles, which are strings of gradually devel-

oped egg chambers. At the anterior of each ovariole

resides a specialized structure called the germarium, at

the apex of which the germline stem cells are located.

Importantly, the germarium contains two types of ovarian

stem cell niches: (i) the germline stem cell niche that

maintains stem cells during the entire life of the organism

and (ii) the differentiation niche that regulates the pro-

ductiveness of germline differentiation. In the ovary, cells

of very different origins, the germline and the soma, co-

exist and actively communicate. Several screens have

been performed, which identified miRNAs that are

expressed in the ovarian germline, soma, or both
www.sciencedirect.com
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[22,31]. However, currently, only several examples of

miRNAs which cell-autonomously or cell non-autono-

mously affect stem cell self-renewal and differentiation

have been studied.

miRNAs cell-autonomously regulate GSC
maintenance and division
One example of such a miRNA is bantam, without

which germline stem cells are as rapidly lost as in

the absence of Dicer-1 [15,31,32]. bantam is an unusual

miRNA because, unlike most miRNA mutants, bantam
loss-of-function mutants are lethal, suggesting that this

miRNA regulates essential genes. In the imaginal discs,

bantam supports cell proliferation and confines apopto-

sis [33] and in a Myc-dependent manner enhances

tissue growth [34]. Moreover, the entire animal body

size depends on regulation of bantam since it coordi-

nates the crosstalk between steroid and insulin signal-

ing [34]. In particular, regulation of steroid production

by insulin signaling relies on the repression of bantam
activity. Importantly, bantam miRNA has similar func-

tions in the germline stem cells; it inhibits FOXO-

mediated transcription of the pro-apoptotic Smac/

DIA-BLO ortholog, Hid (Figure 2a). Interestingly, this

regulation is used by germline stem cells (but not their

daughters) to become resistant to radiation/chemical-

induced apoptosis [32]. These data support previous

findings which demonstrated that the miRNA pathway

is required for germline stem cell maintenance [12,15]

and show that there is at least one miRNA expressed in

the germline stem cells to intrinsically regulate their

fitness and resilience.

In Drosophila, the kinetics of adult germline stem cell

division is slow and can be influenced by the environ-

ment. The miRNA pathway deficiency makes stem

cells unresponsive to environmental signals that usu-

ally halt the cell cycle at the G1/S transition [11].

Germline stem cells lacking Dicer-1 are delayed in

the G1/S transition associated with the increased

levels of CDK-inhibitor p21/27/Dacapo [11]. Actually,

several miRNAs (miR-278, miR-7 and miR-309,
Figure 2a) that repress CDK-inhibitor p21/p27/

Dacapo have been identified [35]. Apparently, the

mechanisms regulating continuous self-renewal and

cell cycle progression may be stem cell exclusive

[36]; therefore, it is tempting to speculate that the

stem cell division mode is differentially fine-tuned by

miRNA-based targeting on cell cycle gate-keepers. It

would be important to identify other miRNAs that

influence the speed of stem cell division via adjust-

ment of mechanisms that control stem cell sensitivity

to environmental signals. Since miRNAs are also

involved in tumorigenesis [37], an interesting hypoth-

esis is that in cancer cells that also have atypical cell

cycle regulation, miRNAs could play similar roles.
www.sciencedirect.com 
miRNAs cell-autonomously regulate GSC
progeny differentiation
By their most general definition, stem cells are cells

capable to self-renew and produce differentiating cells.

Not unexpectedly, apart from being able to control stem

cell self-renewal processes (maintenance and cell divi-

sion), miRNAs have also been shown to be involved in

control of stem cell progeny differentiation. Currently,

two miRNAs that target factors required for proper ovar-

ian germline differentiation have been identified. miR-
184 has been shown to control germline stem cell differ-

entiation by tuning Saxophone (Sax) [38]. Sax is one of

the receptors of the bone morphogenetic protein (BMP)-

like receptor signaling pathway or Decapentaplegic

(Dpp) signaling in Drosophila. The Dpp pathway chiefly

governs stem cell maintenance and differentiation in the

female germline [39,40]. Dpp ligands are sent from the

somatic stem cell niche cells to induce Dpp signaling in

the adjacent germline stem cells, which results in phos-

phorylation of the transcription factor Mad (Mothers

against Decapentaplegic). pMad translocates to the

nucleus and represses Bam, expression of which is essen-

tial for the germline differentiation (Figure 2b). In the

absence of miR-184, Sax levels are increased, which

mimics overactivation of Dpp signaling and leads to

Bam repression in the germline stem cell progeny, delay-

ing their differentiation [38].

The second described example of cell-autonomous regu-

lation by a miRNA of an essential germline stem cell

differentiation factor is the case of stress-dependent

targeting of Rbfox1 by miR-980 [41��] (Figure 2b). Rbfox1

is a multifunctional protein; in the nucleus it acts as an

alternative splicing factor, while in the cytoplasm, it binds

30UTRs of several germline mRNAs and competes with

miRNAs for their binding sites [42�,43]. In particular,

Rbfox1 directly interacts with the 30UTR of pumilio (pum)
mRNA and blocks its translation [42�]. Pum is an RNA-

binding protein that controls germline stem cell self-

renewal by translational repression of multiple germ-

line-specific mRNAs, and its deficiency causes germline

stem cell loss by differentiation [30] (Figure 2b). Thus,

one of the functions of Rbfox1 is to regulate ovarian

germline stem cell progeny differentiation via repression

of pum mRNA. In addition to its RNA-binding domain,

Rbfox1 contains multiple low complexity sequence

domains (LCDs). Depending on its concentration,

Rbfox1 promiscuously associates and induces the assem-

bly of different types of RNA granules, such as stress

granules and P-bodies in the cytoplasm or Cajal bodies

and nucleoli in the nucleus [41��]. These RNA granules

are produced as a result of liquid-to-liquid phase separa-

tion of LCD-containing proteins; therefore, they are also

called ‘liquid organelles’ [44–47]. Currently, the posttran-

scriptional regulation of RNA metabolism in these orga-

nelles is considered to be a major stress response mecha-

nism [5,48,49]. Upon stress, miR-980 is downregulated
Current Opinion in Insect Science 2019, 31:29–36
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Figure 2
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Examples of cell-autonomous and non-autonomous regulation of germline stem cell behavior by miRNAs.(a) Schematic of an adult

germarium which contains two types of somatic GSC niches: the stem cell niche per se, which includes Terminal Filament Cells (TFCs, green,

Current Opinion in Insect Science 2019, 31:29–36 www.sciencedirect.com
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and is not available for Rbfox1 mRNA targeting, increas-

ing Rbfox1 protein levels. This induces the widespread

formation of various Rbfox1-positive liquid organelles,

which modulate nuclear and cytoplasmic RNA biogene-

sis. This subsequently promotes cell survival upon stress

[41��]. Remarkably, Rbfox1 per se is regulated by a

miRNA and at the same time, it influences the ability

of other miRNAs to interact with their targets. In addi-

tion, Rbfox1 can facilitate the assembly of various sub-

cellular sites where mRNA processing and turnover,

including mRNA–miRNA interaction, is occurring.

Recently, a novel, intriguing hypothesis of gene expression

regulation called ‘the Rosetta stone of a hidden RNA

language’ was proposed in which competing endogenous

RNAs (ceRNAs), such as messenger RNAs, transcribed

pseudogenes, and long noncoding RNAs use miRNA-

binding sites as letters to ‘talk’ to each other [50]. Depend-

ing on their expression levels, they compete for miRNAs,

which creates a complex network that considers the pool of

various cellular RNAs as an active community that harmo-

nizes gene expression. This communication appears to be

particularly important in the control of cell fate acquisition

by stem cell progeny and in cancer development [51–53].

The example of Rbfox1 and –miR-980 interaction adds an

additional layer of complexity to the ceRNA model, where

Rbfox1 acts as an interferent in the hidden RNA language.

Rbfox1 is targeted by miRNAs, while simultaneously com-

peting with miRNAs for binding sites in the 30UTRs of
(Figure 2 Legend Continued) blue) and Cap Cells (CpCs, yellow) and the d

stem cell niche is the lifetime residence for the Germline Stem Cells (GSCs,

Cells (FSC, sage) that give rise to the follicular epithelium cells (FECs, sage)
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different mRNAs (Figure 2b). Moreover, via Rbfox1-

dependent formation of various RNP granules, it manages

large scale RNA metabolism. Interestingly, the stress-

dependent miR-980 is positioned at the top of this intricate

signaling cascade, which regulates gene expression under

stress in the germline cells.

miRNAs cell non-autonomously regulate GSC
progeny differentiation under stress
To preserve the lifelong continuity of self-renewing

divisions in an environment where most of the other cells

are quiescent, adult stem cells must reside in the stem cell

niche. Communication between stem cells and their

niches adjusts stem cell division and differentiation to

organismal needs; therefore, it is logical that systemic

signaling that reflects the general physiological status of

the organism should be involved in coordination of stem

cell self-renewal. Interestingly, it has been shown that

steroid hormones act via dependent miRNAs to regulate

the cellular identity of somatic cells that form the germ-

line differentiation niche and coordinate the speed of

germline differentiation [54]. This is attuned by the

steroid-induced let-7 miRNA, which via the feedback

loop downregulates the transcription factor and ecdysone

signaling repressor Abrupt [54,55] (Figure 2c). Depend-

ing on the strength of steroid hormone signaling that is

dynamically readjusted in accordance with internal and

external cues, cellular sexual identity, cell cycle mode,

shape, and most importantly, adhesiveness of somatic
ifferentiation niche made of Escort Cells (ECs, olive). Importantly, the
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, which enwrap differentiating egg chambers as they pinch off the
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cells in the differentiation niche are modified [22,54,56].

Since somatic and germline cells in the ovary are attached

via the cadherin-dependent homophilic cell adhesion,

cadherin levels must correlate on the membranes of

the adjacent cells. Therefore, alterations in somatic cell

adhesiveness have a direct effect on cell adhesion pro-

teins expressed in the germline. Cadherins bind signaling

molecules, for example Armadillo (Drosophila b-catenin),
which concurrently with its role in the cell adhesion, acts a

transcriptional factor of Wingless (Wg or Wnt in verte-

brates) signaling. Therefore, steroid signaling from the

soma via direct cell contacts adjusts Wg signaling in the

germline, the efficacy of which has a positive effect on

germline differentiation. In particular, Wg-based regula-

tion occurs via chromatin modifications, such as histone

H2B monoubiquitination, which permits the germline

stem cell progeny to begin the differentiation program

[54]. These data demonstrate a model in which, in

response to external cues, the soma influences the tempo

of germline differentiation via miRNAs.

Another interesting aspect is that in gonads, the steroid-

induced miRNA let-7 maintains the sexual identity of the

somatic cells [22]. Although the signaling cascade that

determines sexual identity has been comprehensively

studied and is well characterized, the idea that specific

signals are required to preserve sexual identity during

adult life is quite novel. The data from Drosophila estab-

lish miRNAs as important managers shaping sexual

dimorphism and form the foundation of future work

addressing the functions of miRNAs in maintenance of

cellular sexual identity.

Also, miRNAs have been shown to adjust cell signaling in

order to shape adult oogenesis to fluctuating diet. In

particular, the miR-310s cluster targets multiple factors

of the diet-dependent Hh pathway to guarantee its quick

and robust downregulation upon starvation [10��]
(Figure 2c). Hh signaling has multiple means to control

ovarian germline stem cell division and differentiation in

a cell non-autonomous manner: (i) Hh ligand is produced

by the stem cell niche cells, which deliver it to the

differentiation niche cells to manage the GSC population;

(ii) activated Hh signaling restricts production of BMP

ligands in both niches to permit germline stem cell

progeny differentiation; (iii) the amount of Hh ligand

is sensed by follicle stem cells (FSCs) to coordinate the

speed of follicular epithelium cell division with germline

differentiation [10��,57,58�]. In the somatic stem cell

niche cells, the miR-310s expression is highly dynamic

and nutrition-sensitive, and it is currently undetermined

how miR-310s expression is adjusted in response to nutri-

tional deficit. However, in other tissues, their expression

is modulated by stress-sensitive nitric oxide signaling that

nitrosylates histone deacetylases, which positively influ-

ences gene expression via histone modifications

[21,59,60]. Hh signaling is a principal pathway known
Current Opinion in Insect Science 2019, 31:29–36 
to regulate dietary stress-response in stem cells [61,62]

and interestingly, the miR-310s act upstream of this

signaling. These data demonstrate that miRNAs trans-

duce the information about the nutritional status of an

organism to an essential signaling pathway, which via

stem cell niche signaling controls stem cell behavior. This

implies that miRNAs are promising agents capable to

control stem cells upon fluctuating dietary conditions.

miRNAs cell-autonomously regulate GSC
niche formation
Not only do miRNAs play important roles in the adjustment

of germline stem cell maintenance and differentiation dur-

ing adulthood, a miRNA has been identified that influences

the process of stem cell niche formation. Induced by the

steroid pulse, miR-125 acts as an intermediary between

temporal steroid and spatial Notch signaling to aid in the

process of the stereotypical germline stem cell niche assem-

bly (Figure 2c). Interestingly, the steroid–miR-125–Notch

signaling cascade is used to reprogram Notch signaling status

of theposterior terminalfilamentcell, which becomes Delta-

sending and activates Notch signaling in the adjacent CpC

precursors [63��]. MiRNA-mediated Notch signaling repro-

gramming allows TFC to become the inducer of the hexag-

onal stem cell niche pattern. Since hexagonal tiling is the

most stable pattern in nature, this mechanism optimizes the

stem cell niche architecture [63��]. This is extremely impor-

tant, sincenichecellsarenot renewableandat thesametime,

they must assemble into a structure that could function as a

lifelong residence for stem cells, and notably, a miRNA is

instrumental in this critical process of stem cell niche

establishment.

Conclusions
In summary, the research about miRNA functions in

Drosophila stem cells and their niches provides new

knowledge regarding the mechanisms and logic of

miRNA-based regulation, which has great potential for

regenerative medicine applications. By studying miRNAs

in the germline, we have not only identified additional

players in signaling cascades regulating stem cell behavior

but have also discovered new mechanisms utilized by

stem cells and their niches that allow them to be main-

tained as a properly functioning community that is easily

adjustable to organismal needs.
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