English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional dissociation of pre-SMA and SMA-proper in temporal processing

MPS-Authors
/persons/resource/persons19991

Schwartze,  Michael
Minerva Research Group Neurocognition of Rhythm in Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19950

Rothermich,  Kathrin
Minerva Research Group Neurocognition of Rhythm in Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19791

Kotz,  Sonja A.
Minerva Research Group Neurocognition of Rhythm in Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwartze, M., Rothermich, K., & Kotz, S. A. (2012). Functional dissociation of pre-SMA and SMA-proper in temporal processing. NeuroImage, 60(1), 290-298. doi:10.1016/j.neuroimage.2011.11.089.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-5C4B-6
Abstract
The ability to assess temporal structure is crucial in order to adapt to an ever-changing environment. Increasing evidence suggests that the supplementary motor area (SMA) is involved in both sensory and sensorimotor processing of temporal structure. However, it is not entirely clear whether the structural differentiation of the SMA translates into functional specialization, and how the SMA relates to other systems that engage in temporal processing, namely the cerebellum and cortico-striatal circuits. Anatomically, the SMA comprises at least two subareas, the rostral pre-SMA and the caudal SMA-proper. Each displays a characteristic pattern of connections to motor and non-motor structures. Crucially, these connections establish a potential hub among cerebellar and cortico-striatal systems, possibly forming a dedicated subcortico-cortical temporal processing network. To further explore the functional role of each SMA subarea, we performed a meta-analysis of functional neuroimaging studies by contrasting activations according to whether they linked with either sensory, sensorimotor, sequential, non-sequential, explicit, non-explicit, subsecond, or suprasecond temporal processing. This procedure yielded a set of functional differences, which mirror the rostro-caudal anatomical dimension. Activations associated with sensory, non-sequential, and suprasecond temporal processing tend to locate to the rostral SMA, while the opposite is true for the caudal SMA. These findings confirm a functional dissociation of pre-SMA and SMA-proper in temporal processing.