English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Control of a Lateral Helicopter Side-step Maneuver on an Anthropomorphic Robot

MPS-Authors
/persons/resource/persons83808

Beykirch,  K
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84111

Nieuwenhuizen,  FM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84255

Teufel,  H
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84114

Nusseck,  H-G
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83842

Butler,  JS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beykirch, K., Nieuwenhuizen, F., Teufel, H., Nusseck, H.-G., Butler, J., & Bülthoff, H. (2007). Control of a Lateral Helicopter Side-step Maneuver on an Anthropomorphic Robot. In AIAA Modeling and Simulation Technologies Conference and Exhibit 2007 (pp. 1010-1017). Reston, VA, USA: American Institute of Aeronautics and Astronautics.


Cite as: https://hdl.handle.net/21.11116/0000-0003-D80E-B
Abstract
Our society relies more and more on flight simulation for pilot training to enhance safety and reduce costs. But to meet the highest level of general technical requirements for simulators set forth by the FAA and EASA requires high-cost equipment. To make simulator use more accessible, reduced costs might be achieved with novel simulator designs and/or through research to improve the performance of existing designs. This report explores the use of such a novel design, based on an anthropomorphic robot arm to reproduce an experiment designed to evaluate flight simulator motion requirement for helicopter pilot training. Results compare promisingly well to those from a large, high-performance facility where the original work was performed.