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Abstract. Vibrational properties of molecular crystals are constantly used as
structural fingerprints, in order to identify both the chemical nature and the
structural arrangement of molecules. The simulation of these properties is
typically very costly, especially when dealing with response properties of materials
to e.g. electric fields, which require a good description of the perturbed electronic
density. In this work, we use Gaussian process regression (GPR) to predict
the static polarizability and dielectric susceptibility of molecules and molecular
crystals. We combine this framework with ab initio molecular dynamics to predict
their anharmonic vibrational Raman spectra. We stress the importance of data
representation, symmetry, and locality, by comparing the performance of different
flavors of GPR. In particular, we show the advantages of using a recently developed
symmetry-adapted version of GPR. As an examplary application, we choose
Paracetamol as an isolated molecule and in different crystal forms. We obtain
accurate vibrational Raman spectra in all cases with less than 1000 training points,
and obtain improvements when using a GPR trained on the molecular monomer
as a baseline for the crystal GPR models. Finally, we show that our methodology
is transferable across polymorphic forms: we can train the model on data for
one structure, and still be able to accurately predict the spectrum for a second
polymorph. This procedure provides an independent route to access electronic
structure properties when performing force-evaluations on empirical force-fields
or machine-learned potential energy surfaces.
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Gaussian Process Regression for Raman Spectra
1. Introduction

Machine-learning (ML) models are becoming increas-
ingly popular in the field of atomistic simulations,
providing a way to obtain data-driven physical in-
sights [T}, 2, B] and reduce the cost of simulations [4] [5].
Most efforts have been concentrated into predicting to-
tal energies and forces from atomic coordinates [6] [7 8]
5L, [9], 10, 1T}, 12], which are most often the largest cost in
a first-principles simulation. More recently, machine-
learning models have been also applied to the predic-
tion of response properties of molecules [13], T4} [T5, [16].
When dealing with the response of a material to an
applied field, the cost of a first-principles calculation is
often larger than that of force evaluation. This is thus
an area where one can also take advantage of super-
vised learning techniques in order to reduce the cost ab
initio simulations that that make use of such response
properties.

a) b) ) . o

Figure 1. The systems considered in this work for the prediction
of vibrational Raman spectra. (a) Isolated Paracetamol
molecule. (b) Paracetamol crystal form I (monoclinic). (c)
Paracetamol crystal form II (orthorhombic). Atomic color code:
hydrogen white, nitrogen blue, carbon grey, oxygen red. The
unit cell is drawn in black.

Vibrational Raman spectra are a good example
of a property that requires the knowledge of the
response of the system to electric field perturbations.
The Raman signal is very useful to monitor phase
transitions, as well as for the identification of
global and local structural patterns [I7, [I8] [19].
Any technique wused to calculate this property
requires the calculation of several instances of the
polarizability tensor (in molecules) or the dielectric
susceptibility (in crystals). Previously, some of
the present authors have shown that anharmonic
vibrational Raman spectra calculated through a time-
correlation formalism can be a powerful tool to identify
structural fingerprints in molecular crystals [20)]
21].  Within this formalism, it is necessary to
calculate ab initto molecular dynamics trajectories
and compute the response quantities for subsequent
atomic configuration, employing, for instance, density-
functional perturbation theory (DFPT) [22] 23 [24]
25, [20]. These calculations are computationally
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demanding, not only because of the tens of thousands
of force evaluations that need to be performed to
provide sufficient statistical sampling, but also because
each DFPT calculation is typically four times more
expensive than a force evaluation [21] This cost
is inherent to the method used and, to complicate
matters, there is no known empirical form that can
be used to easily fit the polarizability tensor.

We here investigate and propose frameworks
to obtain accurate predictions of dielectric response
functions for a number of consecutive molecular
dynamics (MD) configurations that are necessary
to converge simulated vibrational Raman spectra of
molecules and molecular crystals. In order to reach
this goal, we employ different flavors of Gaussian
Process Regression (GPR), which is a method that
has already been proven to be efficient in predicting
dielectric response properties [I3][15] 26]. In particular,
we compare standard GPR schemes with symmetry-
adapted GPR (SA-GPR)[27], which is advantageous
when describing tensorial quantities. For the former,
we exploit the internal structural rigidity of the
system in order to model each individual component
of the polarizability tensor, therefore remapping the
tensor learning problem onto many scalar regression
tasks.  For the latter, we employ a symmetry-
adapted representation of the system in order to
learn the irreducible spherical components of the
tensor in a covariant fashion. As a trial system we
consider the Paracetamol molecule and form I and
form II of the Paracetamol crystal, represented in
Fig. As we demonstrate below, SA-GPR comes
out as the methodology with the best performance.
When predicting the Raman spectra of crystals, both
methods can benefit from using a GPR trained on
the monomer as a baseline. We also find that our
model is transferable between different polymorphic
forms. Given that empirical and machine-learned
potential energy surfaces are becoming more accurate
for molecular crystals, the methodology proposed here
can be combined in a straightforward manner to such
potentials, giving access to the electronic polarization
and polarizability of crystals.

In the following, Section [ introduces the general
machinery describing GPR and SA-GPR, as well as the
different representations fed to these algorithms. In
Section [3] we present applications on the Paracetamol
molecule and monoclinic form I crystal, showing for
the latter how our models can be refined by the
inclusion of molecular polarizability tensors. Finally,
we illustrate in Section [ the transferability of the
SA-GPR method, by predicting the Raman spectrum
of the orthorhombic form II crystal without prior

§ This number is clearly system- and settings-dependent, and
simply represents the estimate reported in Ref.[2]].
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knowledge of the corresponding values of the dielectric
respounse.

2. Theory

2.1. Vibrational Raman Spectra

The central quantity needed for simulating vibrational
Raman spectra is the static polarizability tensor c.
For simplicity, we will refer to the polarizability tensor
for all the rest of the paper, but one should keep in
mind that for solids the quantity of interest is rather
the electric susceptibility tensor of the system.

As discussed in Ref. [21] and others [28] 29], the
vibrational Raman spectrum can be calculated using
several approximations, the simplest of which is the
harmonic approximation. The framework developed
in this paper can be applied to the harmonic case,
as shown in the supplemental information, Fig. S8,
but we will here focus on the more challenging task
of applying it to the linear-response time-correlation
formalism, which includes all the anharmonicity of the
potential energy surface. In this formalism, vibrational
Raman intensities can be obtained from the Fourier
transform of the static polarizability autocorrelation
function [30] at thermodynamic equilibrium. In
particular, the so-called powder spectrum intensity is
given by a combination of the anisotropic and isotropic
contributions as

I(UJ) = Iiso(w) + g-[aniso(w) (1)
n [T )

liow) == [ dte™"(@(0)a(t))
n [T 1

Loniso(w) = o ~ dteil“’tl—O<Tr[d(()) d(t)]> )

where n is the number of atoms in the system,
the brackets (-) denote an ensemble average and Tr
represents the trace. & and & are, respectively, the
isotropic and anisotropic parts of the polarizability
tensor, defined as follows,

a=aol +a

1 -
a = g(am +ayy +a.;), Trja] =0. (2)

2.2. Component-wise Gaussian Process Regression

Gaussian process regression (GPR) is a well-
established method based on a kernel function that
measures the similarity between structures. In a
Bayesian language, a kernel represents the prior distri-
bution for the statistical correlations of the property
we aim to predict. In the usual supervised-learning
framework, a dataset of structures (i.e., atomic coor-
dinates) and associated polarizabilities is used to train
the model. Once the training is complete, the model is
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tested on a different set of configurations for which the
polarizability is in principle not known. If it is possible
to align the system to a reference structure, a straight-
forward way to apply this procedure to tensorial quan-
tities is to learn each component of the polarizability
tensor separately. In particular, a GPR prediction of
each individual polarizability component a.s reads

N
aAf(A) = a2+ wl’k(A,A;), (3)
j=1
where N is the number of configurations included
in the training set, v and § represent Cartesian
coordinates, w;"s are the regression weights that need
to be determined from the training data for each
component, and k is the kernel that couples the target
system A, with the training structure A;. The quantity
d?{% is the average (over the training set) of the o
polarizability component computed from an ab initio
method, which effectively allows the training to focus
on the fluctuation of the property with respect to a
known baseline value.

The kernel entering GPR is based on a Gaussian

similarity measure between structures A, given by
Ju(A)—u(A;)|?

k(A Aj) =e” 252 , (4)
with o being a hyperparameter that controls the
magnitude of the correlation between training points.
The value of o which needs to be tuned by cross-
validation to maximize the prediction accuracy (see SI,
section 1 for further details). w is a vector that has the
role of mapping the atomic coordinates of the structure
A to a given representation of dimension M.

The regression weights w7 are obtained by
minimizing a loss function regularized by an L2-
norm [3I] over the training set. This procedure leads
to the following expression

W = (K+91) 7 - Aays. (5)

where 1 is the identity matrix, K is the N x N
kernel matrix associated with the reference structures,
such that K;; = k(A;,A;),4,5 = 1,...,N, and 7 is
the regularization parameter which controls to which
extent the fitted data can deviate from the training
points. The quantity Acouys represents the vector
containing all N entries in the training set of Aai 5=

afs(Aj) — agy.

The efficiency of any GPR model strongly depends
on the quality of the representation that is encoded
in u(A) (see Eq. [J). For a representation to be
efficient, it should contain the least possible number
of elements to express the unicity of a given structure
and avoid redundant information. Among the vast
choice of representations one could think of, we will
mainly employ two different ones; one connected with

the GPR presented above, namely an atomic-density
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grid representation (AD), and one connected to the
symmetry-adapted Gaussian process regression (SA-
GPR) technique [27] presented in the next section,
namely A-SOAP kernels.

Atomic-density grids consist of a conceptually
simple representation. The procedure follows choosing
a body-fixed Cartesian reference frame centered on the
system under study, and defining a 3-dimensional grid
around it. For each grid-point r, we calculate the
atomic density distribution, defined as

ps(r) = exp <_|r—1;|2) ; (6)

where s identifies a specific atom type, r; are the
nuclear positions and 7, is an adjustable parameter.
The feature vector is given by u(A) = (ps(r)),s =
1,..., N, where Ny is the number of different atomic
species. For the applications shown in this paper, we
have chosen the same v, = 0.5 A for all species. Such
a representation is illustrated in Fig. where a 2-
dimensional cut of the paracetamol molecule density
distribution is presented.
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0.45
0.30
0.15
0.00

Figure 2. 2D view of the nuclear density distribution of the
Paracetamol molecule for a given structure. Each grid point is
represented by a colored sphere. Blue (red) indicates a low (high)
density.

We have used a grid of evenly-spaced points
spanning the maximal extension of the system,
although we note that more refined methods could
be utilized to define physically-motivated grid points,
based on the possible directions of vibrations of atomic
species [32].

Given that the components of the polarizability
tensor are not invariant to rotations in cartesian
space, a cartesian space representation of this quantity,
like the atomic densities, requires an alignment to
a reference structure. To do so, we have used the
Kabsch algorithm considering only heavy atoms [33]
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34]. We note that this alignment procedure is not
applicable to all systems, in particular for very flexible
molecules. For simple relatively rigid molecules, it is
known to work well, as has been shown for the case
of hyperpolarizabilities of water molecules before [13].
We will show below that even for a more complex
and relatively flexible molecule like paracetamol, this
representation still yields accurate predictions.

2.8. Symmetry-adapted Gaussian Process Regression
with \-SOAP Kernels

SA-GPR [27] represents a generalization of the
GPR formalism, where the tensorial nature of the
target property, together with its covariant 3D
transformations, are naturally incorporated within the
regression algorithm. This technique removes the need
of often arbitrary alignment procedures of the systems
(like the one described above) in order to predict
tensorial quantities of any rank. As such, the model
focuses only on the portion of variability of the tensor
connected with an internal structural distortion of the
molecular geometry, greatly improving the regression
performances.

A simplification of the learning problem can be
obtained if the target property is first decomposed
in its irreducible spherical tensor components. The
static polarizability (or the static susceptibility), in
particular, being a symmetric rank-2 tensor, can
be formally decomposed in an isotropic contribution
that transforms as a spherical harmonic of angular
momentum A = 0, and an anisotropic contribution
that transforms as a spherical harmonic of angular
momentum A = 2. The former contribution, aéo) = a,
being directly proportional to the trace of the tensor
(which is rotationally and translationally invariant),
can be learned in the usual manner by a standard GPR.
The entire tensorial nature is instead condensed in the
A = 2 contribution, a® = (a(_2%,oz(_2i,a((f),ozg?),aém),
which is related to the anisotropic part of the Cartesian
a-tensor & of Eq. by a linear transformation.
Within SA-GPR, the prediction of this contribution
is carried out by making use of a tensorial kernel
function k) (A, B), which is a matrix of size 5x5, that
describes at the same time the structural similarity
between molecular configurations and the tensorial
geometric relationship of order A\ = 2 between
these configurations, as detailed in Ref. [27]. In
general terms, such a kernel can be thought of as a
generalization of a scalar kernel function such as the
one introduced in Eq. which makes use of the
following covariant integration,

k) (A, B) = / AR D (R)k(A, RB), (7)

where R represents the rotation operator and D (R)
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the associated Wigner-D matrix which has the role of
expressing the rotation of A\ = 2 spherical harmonics.
In this definition, the scalar kernel k(A, B) only needs
to be invariant under rigid translations and rotations
of the laboratory reference frame with respect to which
both A and B are defined. In the present work,
k(A, B) is given by a superposition of atom-centered
Gaussian densities, equivalent to the one used in the
popular Smooth Overlap of Atomic Position (SOAP)
kernel [35]. As such, the kernel of Eq. represents
the tensorial generalization of SOAP, usually called \-
SOAP, which recovers the scalar case of A = 0 as a
special limit [I4].

Formally, a covariant A = 2 prediction performed
with a symmetry-adapted kernel function of the same
order reads

kf,)i wz@)

a® (A)

Il
KMZ

ﬁ
Il
-

[K@) + 771} __1 a§»2) , (8)
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where ¢ and j run over the N reference configurations
used to train the regression model and 7 is the
regularization parameter. The set of tensorial
regression weights {wgz)} are determined by inverting
the (5 x N)? kernel matrix K associated with the
training structures, and projecting it on the vector of
2
g )
average of {a?)} over the training set is assumed to
be zero by symmetry. As such, no baseline of the
anisotropic part of the polarizability is adopted when
doing the regression.

reference tensors {a:"}. In doing so, the statistical

2.4. Errors and uncertainty estimations

In order to gauge the accuracy of the machine-learned
polarizability components, we calculate the root mean
square error (RMSE) normalized by the standard
deviation (STD) of the set we want to evaluate the
error on,

2
S (aME(A)) - aZi(4)))

o1 (a%5(Ay) - ash)?
where j represents the jth configuration, N is the
amount of points in the data set we consider, and
the bar here denotes the average of the polarizability
component over the dataset of interest.

Whenever the reference properties of the testing
data are not available, one cannot make use of Eq. @D
to evaluate the error of the predicted polarizabilities.
In these circumstances, one typically needs to estimate
the error made on the predicted properties by making
use of some a priori probabilistic criteria. In the

€yslo,m] = 100 X

» (9)
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particular case of GPR, the expected error associated
with a testing structure A, can be computed as e(A) =
k(A,A) — >, k(A Dk (I, J)k(J, A), where I and
J run over the training structures. As detailed in
Ref. [36], this strategy is however not very practical
because of its computational expense, so that other
kind of methods such as bootstrapping or subsampling
can rather be used to estimate the prediction errors. In
addition, in the particular case of the present work one
would like to propagate the error that occurs in the
prediction of a to the Raman spectrum. While this
error propagation would be difficult to carry out on
top of the GPR intrinsic covariance, it comes naturally
from a bootstrapping or subsampling scheme.

In this work, several subselections of the training
dataset are considered to obtain a propagated error
of the predicted Raman spectrum. In particular,
given Ngrg the number of training subselections
chosen, Nrs Raman spectra are computed from the
predicted polarizabilities. Then, the average and the
standard deviation of the predicted spectra over the m
subselections give the final Raman spectrum prediction
and the propagated estimated error respectively. The
downside of this approach is that this model works
under the assumption of an uncorrelated subsampling.
This is of course not true in general, so that one
needs to correct the model to take into account for
the underlying correlations. Following Ref. [36], a
maximum likelihood recipe can be adopted to linearly
scale the variance of the predictions by a constant
factor v2. The calibration of this scaling factor is
carried out by computing the actual prediction errors
of the polarizabilites over a suitably selected validation
set Nya, for which the reference polarizabilities are
known, and then considering

Nyal . .
1 |letprea () — atret(7)|I°
v = e ‘ 10
Nval ; 02(.7) ( )

where o2(j) are the variances of the predicted
polarizabilities. Once the value of v has been
determined, each polarizability prediction of a given
training model £ can be updated by considering

a, =a+v(agy —a) (11)
where & is the predicted polarizability averaged over
the training models. This definition guarantees that
upon computing the Raman spectrum for each model
k, the propagated uncertainty estimation associated
with the predicted Raman spectra will automatically
take into account the calibration of the variance
previously considered.

2.5. Simulation and training details

To perform the ab initio calculations, we used the
FHI-aims [37] program package with light settings for
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all atomic species. We obtained aiMD trajectories
using the PBE functional with many-body dispersion
(MBD) corrections [38, [39], and employing a time
step of 0.5 fs. The polarizabily/susceptibility was
instead computed every 1 fs. Most of the data used
here was already available from references [20] and
[21]. For each system, we had 20 picoseconds of
simulation in the NVT ensemble at 300 K. From
this trajectory, a few thousands of configurations were
selected to define the training and test set of our
model. A full trajectory of 15 picoseconds in the NVE
ensemble was instead considered as our validation set
to assess the quality of our predictions, by comparing
the predicted Raman spectra to the ones obtained
with ab initio polarizabilities. We chose to train our
model on the NVT ensemble and predict on the NVE
ensemble. This choice is justified by the fact that
the portion of configurational space sampled in the
canonical ensemble is supposed to be larger than that
sampled in the microcanonical ensemble.

3. Results

In the following, we shall apply the previously
described methods to the Paracetamol system. Each
time we mention GPR, it is used in combination with
AD. Similarly, each time a mention we mention SA-
GPR, it is associated to A-SOAP.

3.1. Paracetamol molecule

We first consider the case of the isolated Paracetamol
monomer (Fig. [1] (a)). We constructed the training
dataset by selecting 2000 structures with farthest point
sampling (FPS) using the scalar SOAP metric from the
full NVT trajectory. For GPR, the three-dimensional
density field was constructed within a box of 6 x4 x2.5
A, where the molecule had its longest axis along the
x direction and the equilibrium geometry lied on the
xy plane, and the grid spacing was dr = 0.5 A. The
GPR was computed using ¢ = 10 and n = 1073,
Details about the optimization of the hyperparameters
are given in the supplemental information. Regression
performances are reported in Fig. [3|(a), where the error
e, given by Eq. [0} computed on 500 randomly selected
test structures (absent from the training set) out of the
total of 2000 is shown as a function of the number of
training monomers. ﬂ]]

Figure a) shows that the learning capability
of the model does not reach saturation within the
training set sizes explored. The learning of all the
polarizability components follow a similar slope, but
they are predicted with different accuracy because of

|| Learning performance when using only unprocessed atomic
coordinates are also shown in the SI, Fig. S2.

6

the strong anisotropy of the paracetamol molecule,
as follows. Because of the high 7-conjugation of the
system in the molecular plane, the system is much
more polarizable along the z-axis rather than along
other directions in this particular alignment, making
it harder for the learning algorithm to capture the
corresponding variations across the dataset. The ag,
component presents the largest error, going from about
40% with 300 training points to 17% with 1500 training
points. The best learning performance is instead
obtained for the o, component, where the prediction
error can be brought down to about 6%.

In order to wvalidate the model, we show
in Fig. the correlation between predicted and
computed polarizability components on the validation
set composed by the full independent NVE trajectory,
for a representative training size of 900 molecular
configurations, including the e for each component.
Although we observe a worsening of the predictions
when compared to the previous case, where we trained
and predicted on the same ensemble (and trajectory),
the predicted polarizabilities are still well correlated to
the reference values. The remaining question is how
these errors translate to the actual prediction of the
vibrational Raman spectrum.

In Fig we show a machine-learned Raman
spectrum averaged over 16 subselections of the training
set of 900 configurations each, along with its standard
deviation (see Sec. for a detailed discussion about
this procedure), and compare it to the one calculated
from fully ab initio data. We find that the estimated
variance has to be scaled by a factor of v2 = 2.0.
Despite a relatively small amount of training points,
the agreement with the reference spectrum is excellent
in the entire frequency range. As shown in Fig.
increasing the number of training points in the model
would decrease errors even further.

From Figs. and [B] it is clear that the error
we make on the polarizability components does not
translate directly into an error of similar magnitude
on the spectrum. This is a consequence of the fact
that the Raman intensities depend on the derivatives
of the polarizability components with respect to atomic
coordinates, and not on their absolute value.

Such a simple procedure is able to reproduce
almost perfectly a reference Raman spectrum with less
than 1000 training points on a desktop computer in
just a few minutes. Given the clear advantages of
SA-GPR to predict tensorial quantities, we compare
the effectiveness of this method, for which A-SOAP
kernels were constructed using a Gaussian width of
0.3A and an environment cutoff of 4.0A, to GPR
with AD representation. The corresponding learning
curve is shown in Fig. b). The improvement over
a standard GPR scheme is systematic at any training
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Figure 3. Prediction error (as defined by Eq. E[) on each component of the polarizability tensor of the paracetamol molecule with
different models. (a) Learning curves from GPR using atomic densities as a representation. (b) Learning curves from SA-GPR with

A-SOAP kernels.
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Figure 4. GPR polarizability tensor components versus

DFPT ab initio ones. The components were trained on 900
configurations coming from an NVT trajectory. The test set
contains 20000 configurations coming from an NVE trajectory.
Numbers in brackets indicate € for a given component.

set size, underlining the importance of automatically
incorporating the O(3)-covariance of the tensor at the
local scale. Equivalently to GPR, with 300 training
points, the a,, component presents the largest error
(about 14%), and it shrinks to only 6% with 1500
training structures. The best learning performance is
again obtained for the oy, component, for which the
prediction error remarkably goes below 2%.

As shown in Fig. |5l SA-GPR reproduces extremely
accurately also the ab initio Raman spectrum with
only 300 training points. Obviously, as reflected by the
learning curves, increasing the amount of points gets
rid of the errors everywhere, as exemplified in Fig. S4 of
the SI, where the machine-learned and ab initio spectra

are virtually indistinguishable.

3.2. Paracetamol crystal

We now turn our attention to the first crystalline
form of Paracetamol, containing four individual
Paracetamol molecules per unit cell, as shown in Fig.

(b).

8.2.1.  Direct approach Since we are now dealing
with a periodic system, any of the aforementioned
approaches are applied by first building a crystal
supercell. Then, the same procedure discussed in
the previous section is applied. A value of o = 40
has been selected to build the Gaussian kernel that
enters the GPR formalism, and 7 = 10™*. The three-
dimensional density field was constructed within a box
of 12 x 14 x 20 A3 and a grid spacing of dr = 0.75 A[q]
For SA-GPR, the A\-SOAP kernels were constructed
using the same parameters as before.

The training set is built by considering a random
selection of 2500 configurations belonging to a NVT
trajectory. A full NVE trajectory is once again
considered to test the quality of the predicted Raman
spectrum. Learning curves for both regression models
are shown in Fig. |§| (solid lines). When comparing the
two methods, we always use the same configurations in
both cases.

We observe that both the learning capability of
GPR and SA-GPR do not reach saturation when
increasing the number of training data, going from
81% (respectively 73% with SA-GPR) of error with
25 training points to 17% (respectively 11%) with
2000 of them; Again, making use of a kernel that is

9 No noticeable improvement was observed when using dr =

0.5 A.
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Figure 5. (black line) Raman spectrum GPR prediction of the Paracetamol molecule averaged over 16 different training models.
Each training model is obtained by a random subselection of 900 configurations over a total of 1100, while the prediction was made
on 20000 structures. (shaded area) standard deviation of the predicted spectra over the 16 models. (blue line) reference ab initio
Raman spectrum. (red dotted line) single SA-GPR prediction using 300 training points.
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Figure 6. Learning curves for the crystal polarizability tensor
on an NVT trajectory, using different approaches. Here the mean
error over all components is represented. Including molecular
polarizability greatly improves the model, both with GPR and
SA-GPR, especially with few training data.

built on a symmetry-adapted comparison between local
environments brings a large improvement. Overall,
however, for the same amount of training points, the
errors are much (typically between two and three
times) larger than for the monomer case.

3.2.2.  Incorporating molecular polarizability To im-
prove our results, we refined our models by using the
predictions of the non-interactig monomers included in
the molecular crystal.

Suppose we have a molecular crystal made of
Nmol molecular units (in the case of Paracetamol I,
Nmol = 4, while Ny, = 8 for Paracetamol II). Since
we have already learnt the polarizability tensors of

the individual molecules, we can grasp most of the
polarizability tensor of the crystal by summing up
the single monomers predictions. Eq. [3] is modified
according to

N
Q%L(A) = diﬁs’”ysm?a(«‘l)—o??ﬁz wik(A, Aj), (12)

j=1
where o> denotes the sum of the molecular polariz-
ability tensors. Specific details about the procedure
are explained in [Appendix A] An analogous expression
to Eq. [12)is obtained for SA-GPR.

Figure [0] shows the advantage of using the
molecular baseline for the regression models (dashed
lines). The improvement is most noticeable for models
based on few training points. Molecular baselining
leads to a large decrease in error of about 25% for
both GPR and SA-GPR. Upon increasing the number
of training points, the difference diminishes, but an
improvement remains visible. It is worth noticing that,
from 250 training structures on, the direct application
of SA-GPR (without any molecular baseline) performs
better than the GPR scheme with the baseline. Note
that the prediction accuracy can be improved even
further if one scales the molecular polarizability tensors
so that their average matches that of the full crystal,
as illustrated in the SI, Fig. S9.

Figure [7] shows the effect of the baselining
procedure on the predicted SA-GPR Raman spectrum,
when one increases the amount of training points.
Several observations can be made. First, just like
for the monomer, high frequencies require more
training points to be reproduced, be it with a direct
prediction or by including molecular polarizability
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Figure 7. Raman spectrum of paracetamol I coming from an NVE trajectory, using either directly A-SOAP SA-GPR, or augmenting
this description by including molecular polarizabilities. The training was done on NVT structures, the number of which is indicated
in each row, while the spectrum was computed over 15000 consecutive NVE configurations.

tensors. Second, including o greatly enhances the
spectrum intensity accuracy when few training points
are used. This is especially true at high frequencies,
where the improved model already gives the right
structure of the peaks, albeit not with the right
intensity, while the direct learning does not show any
peak in this region. Overall, the predicted spectrum
is extremely well reproduced when employing enough
training points.

Figure [8] shows the (calibrated) estimated error
and the average Raman spectrum prediction. In
this case, different learning models have been first
defined by considering 16 random subselections, each
of them made of 80% of the training dataset. Then,
for each of these learning models, the polarizabilities
of the full NVE trajectory have been predicted and
the associated Raman spectra have been computed.
We then estimated the standard deviation of these
predictions according to the procedure detailed in
Sec. According to the assumed strong correlations
between the random subselections performed, we find
that the estimated variance has to be increased by
roughly an order of magnitude, i.e., v?> = 10.9. One
can observe that the excellent agreement between the
reference and predicted spectrum at low frequencies
is consistent with a negligible estimated error, while
larger discrepancies and error bars can be observed in
the high-frequency domains.

4. Extrapolation on other polymorphic forms

Within the A-SOAP formalism, the polarizability of
the system is effectively decomposed in local atom-
centered contributions that are summed in order to
obtain the final predicted value of «. This implies
that the information is learned at the local scale
and, as such, can be transferred across systems that
share a similar chemical nature. In the case of
paracetamol polymorphs, one can think of predicting
the polarizability of the the form IT crystal (Fig. (1| (c))
with the model trained on form I only. Since different
polymorphic forms are mainly distinguished by the
different intermolecular interactions, major difficulties
in this extrapolation procedure are expected to be
associated with the low-frequency (intermolecular)
modes of the molecular crystal.

As detailed in the SI (Fig. S10), we observed
a small offset in the time series of some of
the polarizability components. In particular, the
predicted time series is very well reproduced for a,,,
while there is a systematic underestimation of ay,
and overestimation (by the same amount) of a...
Remarkably, because of the error cancellation between
the oy, and the ., predictions, the trace of the
tensor is reproduced with about the same level of
accuracy as the first crystal form. All the complexity
of the extrapolation procedure is thus condensed in
predicting the anisotropic part of «, highlighting the
importance of conformational arrangements of the
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Figure 8. (black line) Raman spectrum prediction of paracetamol form-I averaged over 16 different training models. Each training
model is obtained by a random subselection of 2000 configurations over a total of 2500. (shaded area) standard deviation of the
predicted spectra over the 16 models. (blue line) reference ab initio Raman spectrum.

monomers within the crystal in characterizing the
nature of the polymorphic form.

Fig.[9]shows the predicted Raman spectrum, when
training SA-GPR on 2000 structures already used for
the first polymorphic form, averaged again over 16
subselections. Although a few discrepancies in terms of
intensity can be observed, and the standard deviation
is overall higher than for the direct prediction of the
first polymorph, the general lineshape is excellent, and
all the main features of the ab initio spectrum are
reproduced. We underline the difference in behaviour
in contrast to Fig. |8t now, high frequencies are better
described and errors are more pronounced at low
frequencies. This suggests indeed that the training
basis is missing some environments specific to form
II, which are necessary to fully reproduce the low
frequency features.

5. Conclusions

In this work, we proposed GPR models to predict
vibrational Raman spectra, based on learning po-
larizability and susceptibility tensors obtained from
density-functional perturbation theory. As an exam-
ple, we applied our methodology to predict anharmonic
Raman spectra of the Paracetamol molecule and two
polymorphs of the Paracetamol crystal. The method-
ology also works for simpler harmonic Raman intensi-
ties. The use of an ensemble of models to estimate the
uncertainty in the polarizability tensors allows us to
propagate the error estimation from the ML prediction
of the polarizability tensors to the vibrational spectra,
by generating an ensemble of spectra out of which it
is simple to compute frequency-dependent confidence
intervals.

We showed that for the molecule, a standard

GPR scheme that takes as input a nuclear density
representation on a 3D grid works extremely well
and enables one to reproduce Raman spectra almost
perfectly with a low amount of training points. For
the crystal, such a scheme, albeit possible, is more
difficult to apply for several reasons: The difficulty
to compare crystal structures with different unit cell
sizes, the redundancy of information contained in a
fixed grid-based representation, and the volumetric
increase of grid-points with system size. We have
shown that a smoother solution is to use a symmetry-
adapted GPR scheme, used here in combination
with the A-SOAP representation [27]. Such a
scheme yields accurate predictions for molecules and
crystals, due to its capability to better capture the
local structural information in a covariant fashion.
Moreover, since A-SOAP is a local descriptor, it is
easy to treat larger systems sizes and even transfer
models to other polymorphs. We have shown this
transferrability by successfully predicting the Raman
spectrum of Paracetamol II with a model trained only
on Paracetamol form I. This suggests the possibility of
predicting Raman spectra of any polymorphic form, as
long as a model trained in one of them is available.
In addition, for all models presented, we observe
a considerable improvement when using previously-
trained GPR models for the molecular units as a
baseline for the crystal prediction, thus reducing the
amount of more costly calculations that must be
available for training the model. In a similar manner,
it is also straightforward to extend this framework to
other ensembles (e.g. NPT) or path-integral molecular
dynamics simulations, which include the quantum
nature of the nuclei.

The models we presented regard the electronic
electric-field response properties, and can be extended
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Figure 9. (black line) average Raman spectrum prediction of paracetamol form-II associated with the same 16 training models

already used for the prediction of paracetamol form-I. (shaded area) standard deviation of the predicted spectra over the 16 models.

(blue line) reference ab initio Raman spectrum.

to dipoles and higher-order responses. They can thus
be seamlessly combined with empirical potentials or
other machine-learned potentials that give access to
forces. This presents an alternative route to including
the training of such quantities directly into these
potentials [40], which can present a higher level of
complexity.

Finally, we remark that even though we applied
our framework to polarizabilities and Raman spec-
troscopy, applying it to any other kind of spectroscopy,
like infrared, sum-frequency generation, etc., would
be straightforward, as long as the electronic-structure
data is available.
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Appendix A. Molecular baselining with GPR

When trying to predict the polarizability tensor of
the crystal from its individual molecular components
within the GPR and AD representation scheme, one
should consider that each molecule is oriented in a
specific direction that differs from the one we trained

the molecule on. In order for the regression model
to recognize the orientation at hand, we first need
to find the relationship between the orientation of
the molecules in the crystal and the one used in
the molecular GPR procedure described in The
scheme is depicted in Fig. [AT]

O

Figure A1l. Schematic explanation of the molecular baselining
process for the GPR approach. An individual molecule of the
crystal is first rotated by a rotation matrix R to match the
alignment of a reference structure, on top of which we calculate
the polarizability using Eq. El, and we then rotate back. We
repeat this process for every molecule in the unit cell, and sum

the resulting polarizability tensors to obtain a>.

Each geometry G, corresponding to the ith
molecule of the mth structure is thus rotated by a
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rotation matrix R;,, as

Giiﬁ = leGlm ) (Al)
where ¢ = 1---Npo. Finally, once a molecular
polarizability ol is predicted we rotate the tensor
back to its original orientation inside the crystal, i.e.,

ai“,‘;l = Ri;iafrf?;m"lRim ) (A.2)

Having defined the sum of molecular polarizabilities

a” as
Nmol

a” =" o, (A.3)
i=1

we consider the regression target

Aays = a%y® — a5 — (a¥ —a%) | (A4)

where, once again, the bar denotes the average over the
training set. Equation [3] becomes

N
i (A) = a2 +als(A)—ads+ > wik(A, A;) .(A5)

Yo Y6
J=1

An analogous expression is obtained for SA-GPR, but
the rotation and alignments previously described do
not need to be carried out explicitly since the rotational
covariance of the tensor is built in the structure of the

method.
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