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SUMMARY

Antibodies against the NANP repeat of circumsporo-
zoite protein (CSP), the major surface antigen of
Plasmodium falciparum (Pf) sporozoites, can protect
frommalaria in animalmodels but protective humoral
immunity is difficult to induce in humans. Here
we cloned and characterized rare affinity-matured
human NANP-reactive memory B cell antibodies eli-
cited by natural Pf exposure that potently inhibited
parasite transmission and development in vivo. We
unveiled the molecular details of antibody binding
to two distinct protective epitopes within the NANP
repeat. NANP repeat recognition was largely medi-
ated by germline encoded and immunoglobulin (Ig)
heavy-chain complementarity determining region 3
(HCDR3) residues, whereas affinity maturation
contributed predominantly to stabilizing the anti-
gen-binding site conformation. Combined, our find-
ings illustrate the power of exploring human anti-
CSP antibody responses to develop tools for malaria
control in the mammalian and the mosquito vector
andprovideamolecular basis for the structure-based
design of next-generation CSP malaria vaccines.

INTRODUCTION

Plasmodium falciparum (Pf) is a protozoan parasite with a com-

plex life cycle that causes malaria, a severe and potentially fatal
Immu
disease. Pf is transmitted to humans by infected female Anoph-

elesmosquitoes, which inject small numbers of sporozoites into

the skin during their blood meals. The infection is established

within hours after the injected sporozoites migrate to the liver

and invade hepatocytes. Upon further development, blood stage

parasites are released from the infected hepatocytes and un-

dergo successive rounds of multiplication in erythrocytes. The

increase in blood stage parasitaemia causes disease symptoms

and may lead to life-threatening complications without treat-

ment. In endemic areas, immunity to Pf develops slowly after

repeated infections but is rarely sterile (Bousema et al., 2014;

Doolan et al., 2009; Langhorne et al., 2008; Struik and Riley,

2004). Therefore, a major goal in vaccine development remains

to induce sterilizing immunity through anti-sporozoite antibodies

and T cell responses. The target antigen of themost advanced Pf

malaria subunit vaccine RTS,S is circumsporozoite protein

(CSP), the major sporozoite surface protein (Aikawa et al.,

1981; Cohen et al., 2010; Yoshida et al., 1980). Pf CSP consists

of an N-terminal domain, a central region consisting predomi-

nantly of NANP repeats, which differs in length between individ-

ual Pf strains, and a C-terminal domain. CSP plays a critical role

in thePlasmodium life cycle and is essential for parasite develop-

ment in the mosquito vector and the mammalian host (Cerami

et al., 1992; Frevert et al., 1993; Ménard et al., 1997; Sidjanski

et al., 1997).

The B cell response to CSP targets predominantly the central

NANP region. Antibodies against the NANP repeat can protect

from Plasmodium infection in animal models and anti-CSP titers

are associated with protection after RTS,S immunization (Foquet

et al., 2014; RTS,S Clinical Trials Partnership, 2015; Sumitani

et al., 2013; White et al., 2013). However, RTS,S shows relatively

low and short-lived efficacy, and serum antibody titers wane
nity 47, 1197–1209, December 19, 2017 ª 2017 Elsevier Inc. 1197
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quickly in the absence of repeated natural Pf exposure suggest-

ing that protective B cell memory against CSP may not form effi-

ciently (Crompton et al., 2014; Langhorne et al., 2008; Offeddu

et al., 2012; Portugal et al., 2013; Struik and Riley, 2004).

A deeper understanding of the molecular and functional charac-

teristics of human memory B cell antibodies can provide impor-

tant insights into the development of protective antibody

responses and facilitate the rational design of novel vaccination

strategies as demonstrated for other pathogens (e.g. RSV [Boy-

ington et al., 2013], HIV [Briney et al., 2016; Escolano et al., 2016;

de Taeye et al., 2015; Tian et al., 2016]). Here, we used single-cell

antibody cloning to determine the frequency and quality of hu-

man anti-CSP memory B cell antibodies that developed in

response to natural Pf exposure and defined the structural basis

of antigen recognition that underlies parasite inhibition.

RESULTS

Weak anti-CSP Memory B Cell Responses Develop after
Long-Term Natural Pf Exposure
To identify and isolate CSP-reactive memory B cells, we

collected blood samples for the isolation of mononuclear cells

from 80 healthy adults living in the malaria-endemic area of Lam-

baréné, Gabon (Figure 1A). Although the time-point of the last

infection was unknown, we assume that all of these donors

had a history of repeated Pf exposure. African donors showed

higher frequencies of total memory B cells compared to Pf

non-exposed European donors, likely reflecting differences in

the overall immune status and degree of exposure to pathogens

(mean = 31.2 ± SD = 15.1 and mean = 11.8 ± SD = 1.6, respec-

tively, Figure 1A). Using fluorescently-labelled CSP and MSP3, a

representative blood stage antigen, we determined the fre-

quency of CSP- andMSP3-reactive memory B cells in flow cyto-

metric analyses. We defined memory B cells as CSP-reactive

CD19+CD27+IgG+, CD19+CD27�IgG+, or CD19+CD27+

IgG� (Figure S1A). In the absence of acute Pf exposure and

high frequencies of circulating plasmablasts, a small fraction of

these cells might express the plasmablast marker CD38 (Keitany
Figure 1. Characterization of anti-CSP Memory B Cells

(A) Frequency of peripheral blood MBCs in healthy Pf exposed (Pf exp.) African

cytometry.

(B) Frequency of CSP-reactive MBCs in the same samples as in (A) (left). Frequen

the frequency of CSP-reactive MBCs after normalization to the respective non-e

(C) Representative anti-CSP IgG ELISA (left) for sera from the same Pf exposed do

corresponding area under curve (AUC) values for positive sera (right). Percentag

(D) Representative anti-MSP3 IgG ELISA (left) and corresponding AUC values for

positive sera is indicated.

(E) Percentage of anti-CSP and anti-MSP3 IgG or IgM positive sera from Pf expo

(F) Linear regression between percentage of CSP-reactive MBCs (B) and anti-C

representative non-exposed control (green circle).

(G) Sort gates for CSP-reactive B cells in four Pf exp. and one non-exp. donor afte

Bold numbers indicate donor IDs.

(H) Correlation between the frequency of CSP-reactive MBCs (B) and anti-CSP I

(I) Representative serum IgG immunofluorescence reactivity (red) with Pf sporo

donors as in (G and H).

(J) Mean IGHM and IGHG1-4 isotype distribution in the same donors as in (G)–(I

(K) IGHV, IGKV, and IGLV SHM base pair counts for all donors pooled.

n indicates the number of donors (A, B, and F) and the number of tested sera (C–

lines in (A–D and K) show arithmetic means. Dashed lines in (B–D) depict threshold

three independent experiments (C and D). Data in (B) were analyzed using Mann
et al., 2016). CSP-reactive memory B cells above background

(European donors with no history of Pf exposure) were detected

in 77/80 African donors albeit at relatively low frequency (mean =

0.15 ± SD = 0.1, range 0.03%–0.56%, Figure 1B) compared to

the frequency of memory B cells against MSP3 (mean = 0.9 ±

0.57, range = 0.2% - 2.8%. Muellenbeck et al., 2013). Overall

weak anti-CSP responses compared to MSP3 were also

observed at serum antibody level (Figures 1C and 1D). Only

45% and 4% of donors exhibited circulating IgG and IgM anti-

CSP antibodies, respectively, independent of the frequency of

anti-CSP memory B cells (Figures 1E and 1F).

To determine the molecular features of anti-CSP memory

B cell antibodies induced by natural Pf exposure, we selected

four donors with high (donors 71, 29) or intermediate (donors

40, 16) anti-CSP serum titers for the flow cytometric isolation

of single CSP-reactive memory B cells and subsequent Ig

gene amplification and sequencing (Figures 1G and 1H and

S1A). When used in immunofluorescence assays (IFA), only

sera from donors with high anti-CSP serum titers showed strong

IgG sporozoite reactivity (Figure 1I). Ig gene sequence analysis

determined that on average almost 30% of the CSP-reactive

memory B cells were IgM (range 11%–63%). As expected, these

antibodies had been cloned exclusively from cells that lacked

surface IgG expression demonstrating the validity of our gating

strategy and assumption that CSP-reactive IgG�memory B cells

are non-switched IgM expressing cells. Overall, IgG was the

most prominent isotype detected in three donors with a strong

contribution of IgG1 and IgG3, typically enriched in anti-CSP re-

sponses, whereas IgM was dominant only in donor 29 (Figures

1J and S1B) (Ikpa and Adebambo, 2011; John et al., 2008; Krish-

namurty et al., 2016; Noland et al., 2015). Independent of the

isotype, the vast majority of IGH, IGK, and IGL genes were so-

matically mutated indicating that the response in all donors

involved IgG+ as well as IgM+ memory B cells (Figures 1K and

S1C). This is in line with a recently reported role for IgM+memory

B cells in P. chabaudi infection in a rodent model (Krishnamurty

et al., 2016). Shared somatic hypermutations (SHM) in different

antibody genes from individual donors indicated that these cells
and in non-exposed (Pf non-exp.) European donors as determined by flow

cy of MSP3-reactive MBCs in a representative subset of samples compared to

xposed European donors (right).

nors (left, black lines) and one non-exposed donor (left, green line) as in (A) and

e of CSP-reactive sera is indicated.

anti-MSP3 IgG positive sera (right) for the same donors as in (C). Percentage of

sed donors identified in (C and D).

SP serum IgG ELISA AUC (C) from Pf exposed donors (open circles) and one

r pre-gating as in S1A. Cell frequencies for the gated populations are indicated.

gG ELISA reactivity (AUC) (C) for the same donors as in (G).

zoites and DAPI-stained Pf sporozoite nuclei (blue) (bars, 5 mm) for the same

) (circles) and for all donors pooled (bars). Error bars show SD.

E), or the number of Ig gene sequences (J and K) that were analyzed. Solid red

for CSP andMSP3 reactivity. Data are representative of two (A, B, G, and I) or

-Whitney test, ****p < 0.0001. See also Table S1.
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Figure 2. Functional In Vitro Characterization of CSP-Reactive MBC Antibodies

(A) Representative CSP-ELISA reactivity of recombinant monoclonal antibodies (mAb) (black lines) and positive (pos. ctrl., red line) and negative (neg. ctrl., blue

line) control antibodies. Dashed red line depicts threshold for CSP reactivity.

(B) Representative mAb immunofluorescence reactivity (red) with Pf sporozoites and DAPI-stained Pf sporozoite nuclei (blue) (bars, 5 mm).

(legend continued on next page)
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had originated from a common ancestor cell and underwent

clonal expansion and substantial diversification presumably dur-

ing germinal center reactions. Such clonally related cell clusters

of different sizes were identified in all donors and varied in their

degree of mutational diversity among the members (Figures

S1D and S1E). In donor 71, clonally related cells from 6/13 clus-

ters were also isolated from a blood sample two years later,

demonstrating that the clusters were stable over this time (Table

S1). All of these clusters had undergone class-switching to IgG1,

IgG2, or IgG3 subtypes, and the largest cluster comprised IgG1

and IgG3 cells.

Thus, natural Pf exposure induces weak anti-CSP serum and

memory B cell responses but individual IgG memory B cell

clones persist and diversify over years.

Anti-CSP Memory B Cell Antibodies Recognize the
Central NANPRepeat and Inhibit Sporozoite Traversal of
Hepatocytes
To assess the quality of the anti-CSP response, we cloned and

expressed the Ig genes of 208 memory B cells from the four

selected donors and measured the reactivity of the recombinant

monoclonal antibodies by enzyme-linked immunosorbent assay

(ELISA). Only 27 antibodies showed detectable CSP-ELISA and

whole sporozoite IFA reactivity at the concentrations tested (Fig-

ures 2A and 2B). These antibodies, cloned exclusively from the

donors with the highest anti-CSP serum titers, carried substan-

tial numbers of somatic mutations, and were either IgM or

class-switched (Table S2). With one exception, these antibodies

were CSP-specific and lacked cross-reactivity with unrelated

antigens (Figure S1F and Table S2). The majority of antibodies

recognized the NANP repeat, a well-known B cell epitope and

target of protective antibodies (Figure 2C) (Dups et al., 2014).

The repetitive nature of this region in the full-length CSP might

have contributed to the avidity-based isolation ofmemory B cells

expressing antibodies with low or undetectable CSP-ELISA and

IFA reactivity. This biological interpretation is supported by the

results of an independent study of a controlled human malaria

infection trial using the same CSP-based isolation strategy. In

this study, only few monoclonal antibodies with high CSP-ELISA

reactivity were cloned from memory B cells obtained after only

one Pf infection, whereas the majority lacked detectable CSP-

ELISA reactivity. However, after a second or third Pf infection

the majority of cloned antibodies were CSP-ELISA reactive

and only a few showed no detectable CSP-reactivity in ELISA

(Murugan et al., G.T., C.K., G.C., E. A.L., B.M., and H.W., unpub-

lished). We next examined the inhibitory activity of the cloned

antibodies. With one exception, all (26/27) Pf CSP-reactive

antibodies inhibited sporozoite traversal of hepatocytes in vitro
(C) ELISA AUC values for CSP and NANP10 reactivity of CSP-reactive mAb. Soli

(D) Pf hepatocyte traversal inhibition (inh.) by recombinant MBC mAb and contro

(E) Pf hepatocyte traversal inhibition (inh.) versus NANP10 ELISA AUC reactivity.

(F) Representative anti-CSP immunofluorescence reactivity (red) and DAPI-stain

(G) Representative microscopy pictures of Pb-PfCSP EEF cultures.

(H) Inhibition of Pb-PfCSP EEF development (dev.) by recombinant MBCmAb and

in (D) and (H) depict mean of three independent experiments, white circles repr

control antibody, Cytochalasin D (CytD) and negative control antibody are show

indicated MBC clusters, non-cluster antibodies are labeled in black. Data in (A) an

experiments, respectively. See also Figures S1 and S2 and Table S2.
(Figure 2D and Table S2). The degree of inhibition correlated

with the NANP repeat ELISA reactivity andwas similar for closely

related antibodies within individual clusters (Figure 2E). Thus, an-

tibodies derived from anti-CSP memory B cells induced by nat-

ural parasite exposure recognize predominantly the NANP

repeat and block hepatocyte traversal of Pf sporozoites in vitro.

Anti-CSP Memory B Cell Antibodies Block Hepatocyte
Infection
To determine whether the anti-CSP antibodies also inhibited

hepatocyte infection and subsequent sporozoite development

into exoerythrocytic forms (EEF), we generated a chimeric line

(Pb-PfCSP) of the rodent P. berghei (Pb) parasite in which the

endogenous Pb CSP gene was replaced with the full-length Pf

CSP gene by homologous recombination (Figure S2). Pb-PfCSP

developed equal sporozoite numbers in infected mosquitoes

compared to the parental Pb line and showed similar in vitro

infectivity based on EEF development in hepatocyte lines and

in vivo infectivity in wild-type mice (Figures S2F–S2H). All 26 Pf

inhibitory antibodies recognized Pb-PfCSP sporozoites and

inhibited their further development into EEF (Figures 2F–2H)

comparable to their inhibition of Pf cell traversal. Antibodies

125 and 663, two clonally related mutated IgG antibodies from

donor 71, and antibody 580, a mutated IgM antibody cloned

from a cluster of donor 29 (Table S2), showed the highest inhib-

itory activity (Figure S3A). These findings validate the use of the

chimeric Pb line to assess the infection blocking activity of our

antibodies and identified the most potent antibodies for further

functional analyses.

NANP-Reactive Memory B Cell Antibodies Inhibit
Malaria Transmission and Protect from Malaria
Infection
We tested whether exposure of sporozoites to anti-CSP anti-

bodies prior to transmission from the mosquito to the mamma-

lian host might impair sporozoite infectivity (Sumitani et al.,

2013; Yoshida and Watanabe, 2006). For this purpose, we

generated a transgenic Anopheles coluzzii mosquito line

(Aapp::125) expressing a FLAG-tagged single-chain Fv fragment

of antibody 125 in their salivary glands and infected them

with Pb-PfCSP (Figures S3B–S3D) (Sumitani et al., 2013; Yosh-

ida and Watanabe, 2006). Pb-PfCSP sporozoites were isolated

at normal numbers from the salivary glands of single-chain

Fv-expressing Aapp::125 compared to wild-type mosquitoes

but were impaired in their development into EEF in vitro (Fig-

ure S3E). To test whether the antibody fragment could also block

transmission in vivo, we allowed Pb-PfCSP-infected Aapp::125

and Pb-PfCSP-infected wild-type mosquitoes to blood-feed on
d red line shows arithmetic means.

l mAbs.

ed Pb-PfCSP sporozoite nuclei (blue) (bars, 5 mm).

control mAbs. n in (A, C, and E) indicates absolute number of testedmAb. Bars

esent mean of two technical replicates in independent experiments. Positive

n. Colored labels in (D), (E), (H) indicate clonally related antibodies from the

d (C) and in (B), (F), (G), and (H) are representative of three and two independent
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Figure 3. In Vivo Parasite Inhibitory Activity of CSP-Reactive MBC

Antibodies

(A) Parasite-free mice after exposure to bites of Pb-PfCSP-infected wild-type

(black line) or Aapp::125 mosquitoes (orange line) (n = 10 per group).

(B) Mean parasitaemia in infected mice after exposure to bites of Pb-PfCSP-

infected wild-type or Aapp::125 mosquitoes as in (A).

(C) Parasite-free mice after passive immunization with the indicated antibodies

before s.c. infection with Pb-PfCSP sporozoites (580, green, n = 6; 663,

orange, n = 7; negative control, black, n = 5 individual mice for every

experiment).

(D) Mean parasitaemia in infected mice after passive immunization with the

indicated antibodies before s.c. infection with Pb-PfCSP sporozoites as in (C).

(E) Bioluminescence analysis of FRG-huHep mice challenged with bites from

50 PfGFP-luc sporozoites-infected mosquitoes after passive immunization

with the indicated antibodies (580, n = 5; 663, n = 5; 125, n = 5; negative

control, n = 10 individual mice; circle, one mouse; bar, mean ± SEM). Parasite

burden was determined after normalization to the mGO53 control group.

1-way ANOVA with Kruskal-Wallis **p < 0.001, F(4, 25) = 6.456. Data in (A) and

(B) are from three independent experiments andwere analyzed using Log-rank

Mantel-Cox test, ****p < 0.0001. See also Figure S3.
healthy mice. Blood stage parasites were detected in only 10%

of mice exposed to bites from infected Aapp::125 mosquitoes,

whereas 80% of mice exposed to infectious bites of wild-type

mosquitoes developed parasitaemia (Figure 3A). Notably, the
1202 Immunity 47, 1197–1209, December 19, 2017
single mouse infected by bites ofAapp::125mosquitoes showed

a 2-day delay in the development of blood-stage parasites sug-

gesting a substantial reduction in liver infection (Figure 3B).

Thus, expression of an anti-CSP single-chain Fv in the

mosquito salivary glands efficiently blocked parasite transmis-

sion to the mammalian host and strongly inhibited parasite

development in the single case when protection was not

complete.

To determine whether the antibodies would also protect mice

from Plasmodium infection after passive immunization, we

administered antibody 663, the clonal relative of 125 with slightly

better performance in the in vitro assays, and antibody 580 intra-

peritoneally (i.p.) one day prior to infection by subcutaneous

(s.c.) injection of Pb-PfCSP sporozoites (Figures 3C and 3D).

Passive immunization protected the majority of mice (91% and

72% for 663 and 580, respectively) from the development of

blood stage parasites (Figure 3C). The few animals in which

the antibodies did not fully control the infection, developed blood

stage parasitemia with a 2-day delay compared to control mice

(Figure 3D).

To further validate our findings in vivo, we extended our ana-

lyses to the humanized FRG-huHep mouse model, which sup-

ports the development of Pf liver stages and is used to determine

antibody-mediated inhibition of liver infection by biolumines-

cence after infection with a transgenic Pf parasite expressing

GFP and luciferase (Sack et al., 2017; Vaughan et al., 2012a,

2012b). Passive immunization with antibody 125, 663, or

580 one day before exposure to the bites of infected mosquitoes

strongly reduced parasite burden at the peak of liver infection

compared to control FRG-huHep mice (Figure 3E).

In summary, antibodies 125, 663, and 580 protected the ma-

jority of mice from Plasmodium infection and substantially

reduced hepatocyte infection and/or sporozoite development

in the few non-protected animals after passive immunization or

if expressed as single-chain Fv in the mosquito salivary gland.

Thus, the NANP-repeat-specific memory B cell antibodies are

potent inhibitors of malaria transmission and protect from para-

site infection.

Pf-Inhibitory Antibodies Recognize Two Distinct NANP
Conformations
To establish how the antibodies recognized the NANP repeat, we

structurally characterized 580- and 663-Fabs and their predicted

germline ancestors (580-g and 663-g). Co-crystal structures of

antibody with a NANP5 repeat peptide could be determined for

the 580-g-Fab and the 663-Fab to 1.6 Å and 3.15 Å resolution,

respectively (Figure 4 and Table S3). We observed strong elec-

tron density for at least seven of 20 PfNANP5 repeat peptide res-

idues in each structure, indicating that both antibodies bind to a

conserved core repeat (Figures S4A and S4B).

The antibodies showmajor differences in their antigen-binding

mode and recognize distinct conformations of the NANP5 pep-

tide. 580-g binds to an elongated conformation of the NANP5

peptide using a shallow interface between the light (L)- and

heavy (H)-chain (Figures 4A–4C). Four of the six 580-g comple-

mentary determining regions (CDRs) contact the peptide (with

HCDR1 and HCDR2 contributing no interactions), culminating

in 522 Å2 of buried surface area (Table S4). Interactions are domi-

nated by the HCDR3, centering on Arg100E that is stabilized by
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Figure 4. Crystal Structure and Interaction of NANP5 in Complex with 580-Germline (g)-Fab and 663-Fab

(A) Cartoon representation of the 580-g Fab variable region. The 580-g L- and H-chains are colored in yellow and salmon, respectively. NANP5 peptide is shown

as green sticks.

(B) Surface representation of the 580-g paratope. The 580-g LCDR1, 2, and 3 regions are colored in shades of yellow. The 580-g HCDR1, 2, and 3 regions are

colored in shades of salmon.

(C) Cartoon representation of the 580-g Fab variable region. Antibody residues that make H-bond contacts or form an aromatic cage surrounding prolines in the

NANP5 epitope are represented as sticks. Inter-chain H-bonds between the NANP5 and the 580-g-Fab are shown as black dashes, while intra-chain H-bonds are

shown as red dashes.

(D) Cartoon representation of the 663 Fab variable region. The 663 L- and H-chains are colored in cyan and orange, respectively. NANP5 peptide is shown as

green sticks.

(E) Surface representation of the 663 paratope. The 663 LCDR1, 2, and 3 regions are colored in shades of cyan. The 663 HCDR1, 2, and 3 regions are colored in

shades of orange.

(F) Cartoon representation of the 663 Fab variable region. Antibody residues that provide H-bond contacts or form an aromatic cage surrounding prolines in the

NANP5 epitope are represented as sticks. Inter-chain H-bonds between the NANP5 and the 663-Fab are shown as black dashes, while intra-chain H-bonds are

shown as red dashes. See also Figure S4 and Tables S3–S5.
contacts to several residues of NANP5 (Figure 4C and Table S4).

Additionally, germline-encoded LCDR1 and LCDR3 Tyr residues

L-27D, L-32, and L-92 stabilize binding through an aromatic

cage around Pro8 (Figure 4C).

In contrast, 663 binds the NANP5 peptide in a turn conforma-

tion via a deep cleft created by a radially oriented HCDR3 (Fig-

ures 4D–4F). All six 663 CDRs contribute to recognition of the

peptide with a total of 582 Å2 of buried surface area and the cen-

tral NPNA hydrogen-bonds exclusively to main-chain atoms

(Figure 4F and Table S5). The 663-bound peptide adopts a

type I b-turn (Figure 5A and Table S6) in strong agreement with

the previously determined crystal structure of an ANPNA peptide

(superposing well over the NPNA cadence with an r.m.s.d. of

0.40 Å) (Ghasparian et al., 2006). In contrast, the 580-g-bound

peptide adopts an elongated conformation (Figure 5B and

Table S6) that forms an asx type II turn (with a r.m.s.d. of

0.29 Å over the NPNA cadence of the previously described

NPNA crystal structure). Our peptide crystal structures are

consistent with previous studies that have shown dynamic equi-

librium between elongated and type I b-turn conformations with

NANP peptides (Dyson et al., 1990).
Crystal packing positions two 663-Fab paratopes facing one

another, with the C-terminus of one peptide and the N-terminus

of the symmetry-related peptide separated by 11.8 Å (Fig-

ure S4C). Thus, it is conceivable that two 663-Fabs bind one

NANP5 peptide in our structure (Fisher et al., 2017). 663-Fab

displayed a 10-fold higher affinity to CSP as compared to

580-Fab, with a much slower off-rate (Table S7), which is

consistent with the more extensive antibody-antigen interac-

tions observed in our co-crystal structure (Figures 4C and 4F,

Tables S4 and S5).

To investigate the overall topology of 580 and 663 binding

to full-length CSP, we performed size-exclusion chromatog-

raphy small-angle X-ray scattering experiments (SEC-SAXS)

on 580- and 663-Fab co-complexes with CSP from the 7G8

strain, which in contrast to NF54 contains only five NANP

repeats. Co-complexes were incubated in a near stoichio-

metric molar ratio of antibody to CSP, prior to SEC-SAXS.

580- and 663-Fab CSP co-complexes (Figure S5) revealed

that recognition of different core epitope conformations is

also associated with binding in slightly different orientations

(Figure 5C).
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Figure 5. NANP Repeat Epitope Structures

and Antibody Binding to Full-Length CSP

(A) Superposition of the 663 bound NANP5 peptide

with the previously described crystal structure of

an ANPNA peptide colored in orange (Ghasparian

et al., 2006). Intra-chain H-bonds are represented

as black dashes.

(B) Superposition of the 580-g bound NANP5

peptide with the previously described crystal

structure of an ANPNA peptide colored in orange

(Ghasparian et al., 2006). Intra-chain H-bonds are

represented as black dashes.

(C) The 663-Fab and 580-g-Fab crystal structures

docked into a SAXS envelope of 580-Fab-CSP

and 663-Fab-CSP co-complexes. CSP alone is

shown as surface and colored grey. See also

Figure S5 and Tables S6 and S7.
Combined, our X-ray crystallography and SAXS studies show

that the Pf inhibitory antibodies target two distinct CSP NANP-

repeat configurations.

Somatic Mutations Stabilize the Conformation of the
Paratopes
Next we explored the role of somatic mutations in generating

potent NANP binders in response to natural parasite expo-

sure. Antibodies 580 and 663 underwent a total of 39 and 58

SHM at nucleotide level, resulting in 27 and 32 amino acid ex-

changes, respectively (Figure S6). Expectedly, mutated 580

and 663 antibodies each bound with approximately 15-20-

and 140-260-fold higher affinity to both the NANP5 peptide

and the recombinant CSP than their unmutated 580-g and

663-g counterparts, respectively (Figures 6A–6D and Table

S7). Although CSP binding and Pf inhibition was reduced, it

was not completely abrogated, indicating that germline-en-

coded residues play an important role in CSP binding (Figures

6E–6H and Table S7).

Indeed, analysis of unliganded 580-Fab and 663-g-Fab

crystal structures revealed that mutated residues rarely

generate additional contacts to the core Pf CSP epitope (Fig-

ures 7A and 7B). In 580, only a L-Lys30 to L-Arg30 mutation

presumably leads to new contacts with the Pro4 carbonyl of

the NANP epitope (Figure 7C). Core epitope recognition of

the mutated antibodies is largely mediated by germline-

encoded amino acids and HCDR3, whereas most affinity-

matured residues do not contact the core peptide, raising

the possibility of an expanded epitope in the context of

full-length CSP (Figures 7A and 7B). Several mutations in

580 (Figure 7D) and 663 (Figures 7E and 7F) lead to stabiliza-

tion of CDR conformations, rigidifying the antigen binding site

while preserving a similar surface electrostatic potential (Fig-

ures S7A–S7D). Accordingly, the 663 unliganded structure

reveals high conformational similarity in its CDRs compared

to the NANP5-bound structure, further supporting stabilization
1204 Immunity 47, 1197–1209, December 19, 2017
of the paratope as a means for

improved NANP-repeat recognition and

parasite inhibition (Figure S7E).

We conclude that core epitope recog-

nition of the mutated antibodies is largely
mediated by germline-encoded amino acids and HCDR3,

whereas most affinity-matured residues do not contact the

core peptide and instead stabilize the conformation of the anti-

gen-binding site.

DISCUSSION

Humoral immunity to natural Pf exposure is typically short-lived

and non-sterilizing, suggesting that protective B cell memory

against sporozoite antigens, including CSP, is formed ineffi-

ciently. However, the potency of anti-CSP memory B cell anti-

bodies has never been measured. Here we have shown that

natural parasite exposure generated anti-CSP memory B cells

that expressed Pf inhibitory antibodies suggesting that the over-

all strength of the response rather than the quality of CSP mem-

ory B cell antibodies might be insufficient to mediate long-lasting

protection. The small number of parasites that were injected

locally into the skin during natural Pf infection likely induced

only weak anti-CSP immune responses that were further sup-

pressed by the strong immune responses elicited by the high

load of systemic antigen from asexual blood stage parasites (Fo-

quet et al., 2014; Keitany et al., 2016; Scholzen and Sauerwein,

2013). Further, we have provided evidence that clonally

expanded cell clusters expressing potent anti-NANP repeat an-

tibodies could persist in the same donor over years demon-

strating that the induction of high-quality and stable memory B

cells is rare but possible. However, memory B cells protect

from infection only indirectly upon antigen-mediated reactivation

and differentiation into antibody secreting cells. This process

takes several days, whereas liver cell infection is established

within hours after sporozoite inoculation. Thus, the complexity

of the parasite life cycle rather than the inability of the human im-

mune system to induce memory B cells expressing protective

antibodies against CSP may be associated with the lack of ster-

ilizing immunity (Hoffman et al., 2002; Mordm€uller et al., 2017;

Roestenberg et al., 2009; Spring et al., 2013). Repeated booster



Figure 6. Functional Comparison of Affinity-Matured 580 and 663

Antibodies to Their Germline Reverted Ancestors 580-g and 663-g

(A) Representative sensograms (red and orange) and 1:1model best fits (black)

for CSP binding of the 580 Fab.

(B) Representative sensograms (red and orange) and 1:1 model best fits

(black) for CSP binding of the 580-g Fab.

(C) Representative sensograms (red and orange) and 1:1 model best fits

(black) for CSP binding of the 663 Fab.

(D) Representative sensograms (red and orange) and 1:1 model best fits

(black) for CSP binding of the 663-g Fab.

(E) SPR against NANP5 for the mutated (filled symbols) and germline (open

symbols) versions of antibody 580 (circles) and 663 (triangles).

(F) CSP ELISA of the mutated (solid green line) and germline (dashed green

line) versions of antibody 580.

(G) CSP ELISA of the mutated (solid orange line) and germline (dashed orange

line) versions of antibody 663.

(H) Pf hepatocyte traversal inhibition (inh.) of the indicated antibodies. Data are

from two independent experiments. Bars depict mean of two independent

experiments, white circles represent mean of two technical replicates in in-
immunizations might be required to reactivate the memory B cell

pool thereby indirectly sustaining sterilizing anti-CSP antibody ti-

ters that can prevent the establishment of the infection also in

vaccination settings.

The antibodies identified here efficiently prevented malaria

infection by inhibiting Plasmodium transmission from the mos-

quito vector to the mammalian host. During sporozoite develop-

ment in the mosquito, CSP is expressed already before the

invasion of salivary glands, offering an opportunity to exploit

human antibodies for the development of safe and efficient vec-

tor-based transmission-blocking strategies (Sumitani et al.,

2013). Because CSP is essential for sporozoite development

and invasion of the salivary glands, it seems unlikely that the

parasite would find mechanisms to evade antibody targeting.

Further, efficient blocking of parasite infection in a series of ani-

mal models used in this study suggests that the antibodies could

play an important role in mediating protection from Pf infection in

humans.We found that antibody 580 was overall less efficacious

than antibody 663 in all assays, although the differences were

not significant. Future experiments will have to corroborate these

findings to determine whether differences in the antigen-binding

mode or affinity might correlate with efficacy. Nevertheless, our

data demonstrate the power of mining the human anti-CSP anti-

body repertoire for better understanding of the complexity of

antibody-CSP interactions and to identify molecular correlates

of protection.

We found that the antibodies used primarily germline-en-

coded regions and the HCDR3 for recognition of the core

NANP repeat suggesting that the naı̈ve human B cell reper-

toire possesses the pre-requisites for effective interactions

with the CSP repeat independently of excessive somatic hy-

permutation. Somatic hypermutations predominantly led to

the stabilization of the antigen-binding site, a relatively com-

mon strategy of antibodies to improve affinity, but did not

engage into direct interactions with the core epitope (Wede-

mayer et al., 1997). In line with these findings, repeated whole

sporozoite immunizations in controlled human malaria infec-

tion of malaria naı̈ve volunteers under chemoprophylaxis

showed that protective memory B cell responses against the

NANP repeat are more likely to evolve from potent germline

precursors than by affinity maturation to the core epitope

(Murugan et al., G.T., C.K., G.C., E. A.L., B.M., and H.W., un-

published data). Therefore, our data support vaccination stra-

tegies that seek to activate strong germline responses against

the CSP repeat with immunogens designed using structure-

guided approaches, similar to strategies being explored

against other pathogens (Ekiert et al., 2009; Jardine et al.,

2013). Taken together, our findings illustrate the power of

exploring human anti-CSP antibody responses to develop

tools for malaria control not only in the mammalian host but

also in the mosquito vector. Future studies should assess

the impact immunogens with different NANP conformations

have on the quality of anti-CSP B cell responses as a basis

for the development of next-generation CSP vaccines.
dependent experiments. Positive control antibody, Cytochalasin D (CytD) and

negative control antibody are shown. Data in (A–E) and (F) and (G) are repre-

sentative of two and three independent experiments, respectively. Black solid

lines in (F) and (G) represent the negative control antibody. See also Table S7.
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Figure 7. Structural Comparison of Affinity-Matured 580 and 663 An-

tibodies to Their Germline Reverted Ancestors 580-g and 663-g

(A) Surface representation of the 580-g-NANP5 crystal structure. Antibody

residues are colored according to identity between the germline reverted

ancestors and affinity matured antibodies. Identical, similar, and different

residues are colored in grey, yellow, and maroon, respectively. HCDR3 resi-

dues are colored in dark grey.

(B) Surface representation of the 663-NANP5 crystal structure. Antibody res-

idues are color-coded as in (A).

(C) Mutation in 580 that leads to additional contacts between Fab and peptide.

(D) Mutations in 580 that lead to stabilization of the paratope.

(E and F) Mutations in 663 that lead to stabilization of the paratope. See also

Figure S6.
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A. coluzzii (Ngousso strain) mosquitoes Harris et al., 2010 N/A

A. stephensi mosquitoes

A. gambiae 7b mosquitoes Pompon and Levashina, 2015 N/A
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FRG-huHep mice Yecuris, Inc. N/A

Female C57BL/6J mice Charles River Laboratories Cat# 000664; RRID:IMSR_JAX:000664
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Tiller et al., 2008 N/A
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Recombinant DNA

IGg1-, IGk- or IGl-expression vectors Tiller et al., 2008 N/A

pHLsec Aricescu et al., 2006 N/A

Software and Algorithms

Prism 6.07 GraphPad http://www.graphpad.com

R version 0.99.484 The R project for statistical

computing

http://www.R-project.org/

FACSDiVa version 8.0.1 Becton Dickinson Cat# 659528

FlowJo version V.10.0.8 Tree Star https://www.flowjo.com/solutions/

flowjo/downloads

ImageJ Rasband, 1997-2015 https://imagej.nih.gov/ij/download.html

Adobe Illustrator CS6 v16.0.3 Adobe http://www.adobe.com/de/products/

illustrator.html

LivingImaging N/A www.perkinelmer.de

AxioVision ZEN 2012 software Zeiss https://www.zeiss.com/microscopy/

int/products/microscope-software/

zen-lite.html

IgBlast Ye et al., 2013 https://www.ncbi.nlm.nih.gov/igblast/

Octet Data Analysis Software 9.0.0.6 FortéBio https://www.fortebio.com/octet-

software.html

XDS Kabsch, 2010 http://xds.mpimf-heidelberg.mpg.de

Phaser McCoy et al., 2007 https://www.phenix-online.org

Phenix Adams et al., 2010 https://www.phenix-online.org

Coot Emsley et al., 2010 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

SBGrid Morin et al., 2013 https://sbgrid.org

Pymol The PyMOL Molecular

Graphics System, Version 1.8

Schrödinger, LLC.

https://pymolwiki.org/index.php/

Main_Page

PRIMUS Konarev et al., 2003 https://www.embl-hamburg.de/biosaxs/

primus.html

DAMMIF Franke and Svergun, 2009 https://www.embl-hamburg.de/biosaxs/

dammif.html

DAMAVER Volkov and Svergun, 2003 https://www.embl-hamburg.de/biosaxs/

damaver.html

SignalP 4.1 Server Nielsen, 2017 http://www.cbs.dtu.dk/services/SignalP/

Signal Blast programs Frank and Sippl , 2008 http://sigpep.services.came.sbg.ac.at/

signalblast.html

GENEius Biolink Informationstechnologie

GmbH (Eurofins)

https://www.eurofinsgenomics.eu/en/

gene-synthesis-molecular-biology/

geneius.aspx
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hedda

Wardemann (h.wardemann@dkfz.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Healthy adult male and female volunteers (mean age 33.5 +/-15 (SD) years ranging from 18 to 85 years) were recruited during the dry

season (June-July 2014) in the greater area of Lambaréné, Gabon, Africa. Ethical approval was obtained by the Comité d’Ethique

Régional Indépendant de Lambaréné (No.006/2014) and the study was conducted according to the principles of the Declaration
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of Helsinki. Volunteers who providedwritten informed consent following information about the study were screened. Inclusion criteria

were: age >18 years, hemoglobin concentration >10g/dl, negative thick blood smear (Planche et al., 2001) and no acute symptoms of

disease. Exclusion criteria were: pregnancy, chronic infection, autoimmune disease, previous participation in a malaria vaccine trial,

cancer and immunosuppressive therapy. In addition, samples collected in July-August 2010 during the Bmem2010 study were used

(Muellenbeck et al., 2013). Some of the study participants of the Bmem2010 study, including donor 71, were re-sampled during the

dry-season of 2012.

Cell Lines
Human embryonic kidney HEK 293 T cells were cultured according to the manufacturer’s instructions. The cells were grown at 37 �C
and 8% CO2. The hepatocyte cell line HC04 (Sattabongkot et al., 2006) was cultured at 37 �C and 5% CO2 using HC04 complete

culture medium. This comprises of 428.75 ml MEM (- L-glu), 428.75 ml F-12 Nutrient Mix (+ L-glu), 15 mM HEPES, 1.5 g/l NaHCO3,

2.5 mM L-glutamine and 10% FCS. See ‘‘Key Resources Table’’ for details. Cell lines have not been authenticated.

Bacteria
MAX Efficiency� DH10B� Competent Cells were grown in LB medium for cultivation and in Terrific Broth for plasmid purification.

Bacterial shaker at 37 �C and 180 rpm was used for cultivation.

Pf Parasites
Pf NF54 (a kind gift of Dr. R. Sauerwein) and PfGFP-luc (Vaughan et al., 2012b) were used throughout this study. For gametocyte

production, asynchronous parasites were diluted to 0.8-1% parasitaemia and cultured for 15-17 days before mosquito infections.

Mosquito Rearing and Transgenesis
All mosquitoes were kept at 27-29 �C and 70-80% humidity. A. coluzzii (Ngousso strain) mosquitoes were used for the production of

PfNF54 sporozoites for traversal and IFA assays. A. coluzzii (Ngousso strain) XK docking line was used for transgenesis (Volohonsky

et al., 2015). A. stephensi mosquitoes were used for experiments with humanized FRG-huHep mice (see also Figure 3E) and for the

phenotypic analysis of Pb-PfCSP parasites (see also Figures S6E and S6H). A. gambiae 7b mosquitoes (Pompon and Levashina,

2015), an immunocompromised transgenic mosquito line derived from the G3 laboratory strain, were used for the characterization

and production of Pb-PfCSP sporozoites.

Mice
Female C57BL/6J mice (8-weeks old) were purchased from Charles River and handled in accordance with the German Animal Pro-

tection Law (x8 Tierschutzgesetz) and approved by the Landesamt f€ur Gesundheit und Soziales (Lageso), Berlin, Germany (project

numbers 411/08 and 0027/12). FRG-huHep mice were purchased from Yecuris, Inc. with a minimum serum human albumin concen-

tration of 3 mg/ml, indicating robust human hepatocyte repopulation. See ‘‘Key Resources Table’’ for details. Littermates were

randomly assigned to experimental groups which were kept in separate cages.

METHOD DETAILS

Flow Cytometry and Single Cell Sorting
Peripheral blood was obtained by venous puncture from participants positive for anti-CSP serum antibodies. For donor 71 we ob-

tained and used a second blood sample that was collected two years later. Peripheral mononuclear cells (PBMCs) were isolated us-

ing Percoll gradient density centrifugation (GE Healthcare). NF54 Pf CSP (Protein Potential LLC) and MSP3 were chemically coupled

to Alexa647 according to themanufacturer’s protocol (Invitrogen). Protein concentrations were determined using Nanodrop (Thermo

Scientific). CSP-reactive or MSP3-reactive memory B cells were analyzed on a LSR II instrument and isolated using an ARIA II cell

sorter (BDBioscience). Cells were stained using CSP-Alex647 (1:20; 0.6mg/ml) or MSP3-Alexa647 (1:20; 0.3mg/ml) and the following

antibodies: mouse anti-human CD19-PeCy7 (1:20, eBioscience), mouse anti-human CD27-FITC (1:5, BD) and mouse anti-human

IgG-Biotin (1:200, BD). Biotin was detected using Streptavidin Qdot605 (1:800, Life Technologies). 7AAD (1:200, Invitrogen) was

included in all stainings to exclude dead cells. The data were analyzed using FlowJo v10 software. For single-cell sorting, CSP-reac-

tive memory B cells were defined as 7AAD-CSP+CD19+CD27+IgG+, 7AAD-CSP+CD19+CD27+ IgG- and 7AAD-CSP+CD19+

CD27-IgG+. 7AAD-CSP+CD19+CD27+ IgG- cells were later confirmed to be IgM+ by sequence analysis. As all three cell populations

were isolated based on CSP-reactivity and thus Ig surface expression, we define them as CSP-reactive memory B cells.

Ig Gene Cloning and Recombinant Antibodies
Ig gene cloning and recombinant antibody production were performed as described before (Tiller et al., 2008). In brief, cDNA of each

single cell was generated using random hexamer primers. Ig heavy and corresponding Ig kappa or Ig lambda L-chain gene tran-

scripts were amplified using a semi-nested PCR strategy (Tiller et al., 2008). Amplicons were Sanger sequenced and cloned into hu-

man Igg1 and Igk or Igl expression vectors, respectively (Tiller et al., 2008). The corresponding heavy and light expression vector

DNAs were co-transfected into HEK293T cells (Invitrogen) and the recombinant antibodies were purified from supernatants using

Protein G beads (GE Healthcare). IgG concentrations were determined by ELISA.
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To generate a humanized version of the antibody 2A10 to use as a positive control cells from amurine 2A10 hybridoma cell line (BEI

Resources) were harvested and RNA was extracted according to the manufacturer’s protocol (Macherey Nagel). cDNA was gener-

ated as described previously (Tiller et al., 2008). Ig gene transcripts of the H- and kappa L-chain were amplified using the following

primers: heavy forward primer mIghV-Y/AgeI-081-fw: 5’-CTGCAACCGGTGTACATTCCCAGATCCAGTTGGTACAGTCTGG-3’,

reverse primer mIghJ-D/SalI-034-rv: 5’-TGCGAAGTCGACGCTGAGGAGACGGTGACTGAGG-3’, kappa forward primer mIgkV-P/

AgeI-084-fw: 5’-CTGCAACCGGTGTACATTCCGATATCCAGATGACACAGA CTACA-3’ and kappa revers primer: mIgkJ-B/BsiWI-

020-rv: 5’-GCCACCGTACGTTTTATTTCC AGCTTGGTC-3’. Gene transcripts were sequenced and cloned into the human Igg1

and Igk expression vectors. Antibody was then expressed and purified as described above.

Enzyme-Linked Immunosorbent Assay
96well plates (Costar) were coated overnight at 4 �Cwith 40 ng/well of N-terminally truncated PfCSP (CSP) with the amino acids 123-

411 (kind gift from Silvia Boscardin) (Tewari et al., 2010), 100 ng/well NANP10-repeat (Alpha Diagnostic Intl Inc.), 10 mg/ml insulin

(Sigma Aldrich) or 5 mg/ml LPS (Sigma Aldrich) solution in PBS. ELISA plates were blocked for 1 h with 4%BSA in PBS (serum ELISA),

1% BSA in PBS (antigen ELISA) or blocking buffer (1x PBS, 0.05% (v/v) Tween20, 1 mM EDTA) (IgG concentration ELISA). Coated

plates were incubated with the serum or recombinant monoclonal antibodies at the indicated concentrations for 1 h at RT. Bound

antibodies were detected by goat anti-human IgG or goat anti-human IgM secondary antibody coupled to horse-radish-peroxidase

(HRP) (Jackson Immuno Research) diluted 1:1,000 in 1% BSA in PBS which was then detected using an ABTS substrate solution

complimented with H2O2 (Roche). The optical density (OD) at 405 nm was determined on an M1000Pro plate reader (Tecan). Graphs

were created and area under curve (AUC) values were calculated using GraphPad Prism 6.07. 2A10 (Zavala et al., 1983) was used as

a positive and mGO53 (Wardemann et al., 2003) as a negative control.

Generation of Chimeric Pb Parasites
To generate the chimeric parasites where the Pb csp coding sequence (CDS) (Pbcsp; PBANKA_0403200) has been replaced by the

Pf csp CDS (Pfcsp; PF3D7_0304600), we used a 2-step GIMO transfection protocol (Lin et al., 2011; Salman et al., 2015) and the

transgenic p230p locus of the reporter Pb ANKA parasite line Pb ANKA-GFP-Luceef1a (676m1cl1) (parental). The fusion protein of

GFP and firefly luciferase (LUC-IAV) is expressed under the constitutive Pbeef1a promoter. The reporter-cassette is integrated

into the neutral p230p locus in chromosome 3. In the first step we deleted the Pb csp CDS and replaced it with the positive-negative

selectable marker, to create a Pb csp deletion GIMO line (PbANKA-DCSP GIMO). In order to do this, we generated a construct

(pL1929) that is based on the standard GIMO DNA construct pL0034. This construct contains the positive-negative (hdhfr::yfcu) se-

lection marker (SM) cassette, and was used to insert both the Pbcsp 5’ and 3’ gene targeting regions (TR), encompassing the full

length promoter and transcription terminator sequences, respectively, and was transfected into the parental Pb ANKA-GFP-Luceef1a
parasites (676m1cl1) using standard methods of transfection (Janse et al., 2006). The following primers were used:

Primers for the DNA Constructs for the Generation of the Chimeric Parasite Line
DNA Construct Primer No. Primer sequences* Restr. sites Frag. size (bp) Description

pL1972, pL1929 1178 catgggcccTTAAGACATAAAAGGGAATA

TGGAATATACTAGC

ApaI 1584 PbCSP 5’-UTR promoter

sequence, F

1179 atccgcggTAGCTAATTTTCTCATCATG

AATTGGGATC

SacII PbCSP 5’-UTR promoter

sequence, R

1180 atcccgggAGCTTTAATTAAATAAACAT

TACGCATG

XmaI 939 PbCSP 3’-UTR sequence, F

1181 ataagaatgcggccgcATAATATATATTAGG

AGAATTAACCAATGCTG

NotI PbCSP 3’-UTR sequence, R

1011 cccgctcgagCGCCAATTCATGATGAG

AAAATTAGC

XhoI 1235 PfCSP, F

1012 ataagaatgcggccgcCTTTATCTAATTAA

GGAACAAGAAGGATAATACC

NotI PfCSP, R

Restr.: Restriction; Frag.: Fragment; No.: Number

*restriction site sequence are in bold and underlined
Transfected parasites were selected inmice by applying positive selection by providing pyrimethamine in the drinking water (Janse

et al., 2006). Transfected parasites were cloned by limiting dilution (Salman et al., 2015), resulting in the PbANKA-DCSP GIMO line

(line 2251cl1).

In the second step we replaced the positive-negative SM in the PbANKA-CSP GIMO genome with the Pf csp CDS by GIMO trans-

fection to create the Pb chimeric CSP replacement line. This was achieved bymodifying the construct used in the first step (pL1929);
e5 Immunity 47, 1197–1209.e1–e10, December 19, 2017



specifically, the hdfhr::yfcu SM cassette was removed and replaced with Pf csp CDS sequence, generating plasmid pL1972. The Pf

csp CDS was amplified from genomic DNA of the Pf NF54 strain. The pL1972 construct was sequenced to ensure there were no

mutations in the Pf csp CDS using the primers listed above. The constructs were linearized using ApaI and NotI restriction enzymes

outside of the 5’ and 3’ TRs before transfection. The construct was used to transfect parasites of the PbANKA-CSP GIMO line (line

2251cl1) using standard methods of GIMO-transfection (Lin et al., 2011). Transfected parasites were selected in mice by applying

negative selection by providing 5-fluorocytosine (5-FC) in the drinking water of mice (Salman et al., 2015). Negative selection results

in selection of chimeric parasites where the hdhfr::yfcu SM in the csp locus of PbANKA-CSP GIMO line is replaced by the CDS of Pf

csp. Selected chimeric parasites were cloned by themethod of limiting dilution. Correct integration of the constructs into the genome

of chimeric parasites was analyzed by diagnostic PCR-analysis on gDNA and Southern analysis of pulsed field gel separated chro-

mosomes as described elsewhere (Janse et al., 2006). Primers used for PCR genotyping are listed here:

Primers for Genotyping of the Chimeric Parasite Line
Primer No. Description Primer sequences *

1011 PfCSP F cccgctcgagCGCCAATTCATGATGAGAAAATTAGC

1012 PfCSP R ataagaatgcggccgcCTTTATCTAATTAAGGAACAAGAAGGATAATACC

1042 Pb5’CSP promoter integration F AGAGACAAACCAACCTTAGGAAC

1043 Pb5’CSP promoter integration R CTTCCATAGCACTGGTATTCCTG

1044 Pb3’CSP UTR integration F AGTTAGAATAAAGCCTGGCTCTG

1045 Pb3’CSP UTR integration R TTACTATTCGTGCCCATTACGAC

1048 hDHFR-yFCU (+/-SM) F ATCATGCAAGACTTTGAAAGTGAC

1049 hDHFR-yFCU (+/-SM) R CATCGATTCACCAGCTCTGAC

1054 PbCSP F CCAAAGGAACTTAAACGAGCTATG

1055 PbCSP R CTTATACCAGAACCACATGTTACG

No.: Number

This method creates chimeric ‘gene replacement’ Pb parasites that lack the Pb csp CDS but express Pf CSP (PbANKA-PfCSP(r)PbCSP; line 2257cl2)

(short: Pb-PfCSP) under the control of the Pb csp regulatory sequences.

*restriction site sequences are in bold and underlined
Mosquito Transgenesis
The transgenesis construct contained a reporter cassette with a gene encoding DsRed2 under the control of a nervous system-spe-

cific 3xPax3 promoter and SV40 terminator. The single-chain antibody (scFv) sequence was designed by linking the variable regions

of the H- and L-chain of monoclonal antibody 125 by a glycine-rich linker (GGGGSGGGGSGGGGS). The Anopheline salivary gland-

specific anti-platelet protein gene (Aapp) signal peptide was identified by SignalP 4.1 Server (http://www.cbs.dtu.dk/services/

SignalP/) and Signal Blast programs (http://sigpep.services.came.sbg.ac.at/signalblast.html) and fused to the N-terminus of the

scFv 125 sequence (sc125), whereas the Flag tag (DYKDDDDK) was fused to the C-terminus. The sequences were codon-optimized

with the GENEius online tool using A. gambiae codon preference table (Volohonsky et al., 2015), synthesized and sequenced (Euro-

fins). The anti-CSP scFv125 single-chain antibody gene was placed between the promoter of Aapp (AGAP009974) (Yoshida and

Watanabe, 2006) and the SV40 terminator. Transgenes were assembled into pDSAR vectors and insertion into the XK docking

line in the mosquito genome was mediated by 4C31 integrase (Volohonsky et al., 2015). Because of the homozygous lethality of

the insertion, each generation of dsRed2-positive Aapp::125 heterozygous females was purified by COPAS sorting (Union Bio-

metrica) and back-crossed with wild-type males (Ngousso strain). Expression of the transgene at transcript and protein level was

confirmed by quantitative Real-Time-PCR and by immunoblotting using the anti-FLAG antibody, respectively (see also Supplemental

Figures S3C and S3D).

In Vivo Plasmodium Infections
Female C57BL/6micewere passively immunized (4-6 per group) by i.p. injection of 400 mgmonoclonal antibody in 100 ml of PBS. One

day later, Pb-PfCSP sporozoites (5*103) were injected s.c. into the mouse tail. For bite-back experiments, mice were exposed to the

bites of wild-type or Aapp::125 transgenic mosquitoes 18-19 days post Pb-PfCSP infection (range 1-9 infectious bites per mouse).

Blood parasitaemia was assayed by daily tests of Giemsa-stained thin blood smears and a minimum of 100 microscopic fields were

counted. After onset of parasitaemia, mice were monitored every 6-12 h for severe neurological and behavioral symptoms typical of

experimental cerebral malaria (ECM) defined as hunched body position, grooming alteration, ataxia, paralysis, or convulsions (Lack-

ner et al., 2006) or using the rapid neurological and behavioral test (RMCBS) (Carroll et al., 2010). Mice with ECM symptoms or with a

RMCBS score % 5 (out of 20) were sacrificed immediately.
Immunity 47, 1197–1209.e1–e10, December 19, 2017 e6

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://sigpep.services.came.sbg.ac.at/signalblast.html


Passive antibody transfer and challenge experiments with PfGFP-luc sporozoites using FRG-huHep mice were performed as

previously published (Ishizuka et al., 2016) (Sack et al., 2017). Hepatocyte donor-matchedmice were administered i.p 150 mg/mouse

of monoclonal antibody in 200 ml of PBS the day before challenge. Mice were infected by exposing them to mosquitoes (n=50, 50%

infection rate with an average of >10 oocysts/mosquito). Parasite liver burden was assessed as previously published (Ishizuka et al.,

2016) using an IVIS imaging system and LivingImage software. To determine ‘‘% of control’’ parasite liver burden, the average total

flux (photons/second) of all control mice was averaged and the ‘‘% of control’’ for eachmouse was calculated as a percentage of this

value. Results are expressed as a percentage of the average parasite liver burden of mice given control monoclonal antibodymGO53

(Wardemann et al., 2003).

Immunofluorescence Assay
Pf NF54, Pb-PfCSP or Pb parental salivary gland sporozoites (4*104/well) were air-dried overnight on 8-well microscopy slides

(Medco) pre-coated with 3% BSA in RPMI. After fixation with 4% paraformaldehyde (PFA, Alfa Alsar), sporozoites were blocked

with 10% FCS/PBS and then incubated for 45 min at 37 �C or 1-2 h at RT in duplicates with 20-25 ml of serum or monoclonal anti-

bodies (100 mg/ml) diluted in 10% FCS/PBS. The monoclonal antibody 2A10 was used as a positive control for Pf (Zavala et al., 1983)

and Pb-PfCSP and 3D11 (Yoshida et al., 1980) for Pb sporozoites. Bound antibodies were revealed by incubation for 45 min at 37 �C
or 1h at RT with a Cy3-conjugated goat anti-human-IgG (diluted 1:1,000; Jackson Immuno Research) or an Alexa Fluor�488 goat

anti-mouse IgG (diluted 1:1,000; Life Technologies), respectively. Images were acquired on an AxioObserver Z1 fluorescence micro-

scope equipped with an Apotome module (Zeiss) using the 63x objective or a DMI-300B Leica fluorescence microscope. Images

were analyzed using the AxioVision ZEN 2012 software (Zeiss) and ImageJ (Rasband, 1997-2015).

Sporozoite Hepatocyte Traversal Assay
Traversal assays were performed as described elsewhere (Behet et al., 2014). Briefly, 6*104 cells/well of a human hepatocyte cell line

(HC-04, MRA-975, deposited by Jetsumon Sattabongkot) were seeded into a 96-well plate (Greiner, TPP and Costar) and incubated

for 24 h at 5%CO2 and 37 �C (70%confluency). IsolatedPf salivary gland sporozoites (105) were pre-incubatedwith 100 mg/mlmono-

clonal antibodies in 50 ml for 30min on ice. 5*104 sporozoites per well were then seeded in duplicates onto HC-04 cells in presence of

0.5 mg/ml dextran-rhodamine (Molecular Probes) and a final antibody concentration of 50 mg/ml. As a negative control sporozoites

pre-treated for 5min on ice with the actin polymerization inhibitor Cytochalasin D (1.25 mg/ml, Sigma Aldrich) were used. Non-treated

sporozoites were used as a positive control and non-infected cells incubatedwith dextran-rhodamine were used as background con-

trol. The plates were centrifuged for 10 min at 3,000 rpm at RT without brakes. After 2 h, cells were trypsinized and fixed in 1%PFA in

PBS. Dextran-rhodamine positive cells were quantified by flow cytometry (LSR II, BD Biosciences). Sporozoite cell traversal rates

were determined after correction for background dextran incorporation in non-infected cells. Sporozoite traversal of untreated spo-

rozoites was set as 0% traversal inhibition.

Exoerythrocytic Forms Developmental Assay
HC-04 cells (104 /well) were seeded into a rat collagen (BD Biosciences) pre-treated 96-well plate with transparent bottom (Nalgene

International). Pb-PfCSP salivary gland sporozoites (104) were pre-incubated for 30min on ice with or without 50 mg/ml (antibody 125

in Extended Data Fig. 5e) or 100 mg/ml monoclonal antibodies. Pb-PfCSP sporozoites were then added to the cells in triplicates and

the plate was centrifuged at 110xg for 1 min at RT. After 2 h of incubation extracellular sporozoites were removed by three washes

with 2% combined penicillin and streptomycin solution with 5 mg/ml fungizone and one time without fungizone. Two days later, the

cells were fixed with 4% PFA for 15 min at RT before permeabilization with 50 mM NH4Cl2 (Sigma Aldrich), 3% FBS, 0.3% Triton

(Sigma Aldrich) for 1 h at 37 �C. Development of exoerythrocytic forms (EEFs) was examined using rabbit anti-GFP antibody

(1:1,000; Abcam) diluted in permeabilization buffer for 1 h at 37 �C and AlexaFluor�555 conjugated anti-rabbit-IgG antibody

(1:1,000; Molecular Probes). Nuclei were stained with DAPI (1.25 mg/ml, Molecular Probes). Images were acquired in the 96 well

plates on an AxioObserver Z1 fluorescence microscope equipped with an Apotome module (Zeiss, 10x objective). EEF numbers

were counted using the AxioVision ZEN 2012 software (Zeiss). EEF development of untreated sporozoites was set as 0% of EEF

inhibition.

Quantitative Real-Time (RT)-PCR
Aapp::125 transcripts were examined by quantitative RT-PCR in the thoracic and abdominal segments of the transgenic mosquitoes.

Total RNA was extracted from thoraxes and abdomens of 15 mosquitoes with TriReagent (Sigma Aldrich) according to the manufac-

turer’s protocol. Total RNA (2 mg) was converted into cDNA using the RevertAid H Minus Reverse Transcriptase kit (Fermentas) and

random hexamers (Fermentas). Quantitative PCR reactions were run on a StepOnePlus� RT-PCR instrument (Applied Biosystems)

using the Fast SYBR�GreenMaster mix (Applied Biosystems) according to themanufacturer’s protocol. Specific primers amplified a

66 nt fragment connecting the signal peptide and the scFv (VB739: 5’-GAAGTTTCTACTGCTTGTGGCTAGTGT-3’ and VB740:

5’-AGCTGGATCTGGGCGGATA-3’).

Immunoblotting
Transgenic Aapp::125 mosquitoes were cut with micro-scissors (World Precision Instruments) along the abdomen-thorax junction.

Thoraxes and abdomens of 15mosquitoes were ground in 50mMTris HCl, 150mMNaCl, 1%Triton, 0.1%SDS (Sigma Aldrich) in the
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presence of 1x Protease Inhibitor Mix (Roche), incubated on ice for 10min and centrifuged at maximal speed (13,200 rpm) for 15min.

Total protein extracts (25 mg) were separated on a 10% SDS-PAGE in reducing conditions and transferred to a nitrocellulose mem-

brane (GE Healthcare), according to the manufacturer’s protocol. Membranes were blocked with 5% milk (BioRad) and 0.1%

Tween20 (Sigma Aldrich) in PBS and incubated with polyclonal anti-FLAG antibody (1:1,000; Sigma Aldrich). Polyclonal antibodies

against blood born protein prophenoloxidase 2 (PPO2) (1:15,000) served as loading control (Fraiture et al., 2009). Goat anti-rabbit

HRP-conjugated antibodies (Pierce, Thermo Scientific) were used at 1:10,000. Bound antibodies were detected by reaction with

Pierce ECL Western Blotting Substrate (Pierce, Thermo Scientific).

Fab Production
VK and VH regions were cloned into expression vectors upstream of human Igk and Igg1 constant regions, respectively, as previously

described (Tiller et al., 2008). IgGwere transiently expressed in HEK 293F cells and purified via Protein A affinity chromatography (GE

Healthcare). Fabs were generated by papain digestion, and purified via an additional Protein A chromatography step, followed by

cation exchange chromatography (MonoS, GE Healthcare), and size exclusion chromatography (Superdex 200 Increase 10/300

GL, GE Healthcare).

CSP Production
CSP full length (7G8 strain) was cloned into pHLsec for transient expression in HEK293 cells. CSP was purified via HisTrap Ni-NTA

(GE Healthcare) and size exclusion chromatography (Superdex 200 Increase 10/300 GL, GE Healthcare) prior to binding studies.

Germline Reversion
Germline genes of cluster 2 (580) and cluster 4 (663) were designed using the predicted germline V(D)J gene segments of the H- and

L-chain of the respective antibody according to IgBLAST and IMGT. The addition of random N-nucleotides in the CDR3 region of the

H-chain during somatic recombination does not allow reversion of this region of the H-chain.
Alignment of nucleotide and amino acid sequences of the HCDR3 and KCDR3 for Cluster 2 and their inferred germline sequence.

Antibody aa HCDR3 nt HCDR3

Cluster 4

436 DPGGDSSPAGRTWFDP GATCCGGGAGGAGATAGCAGCCCCGCGGGGAGAACCTGGTTCGACCCC

580 DPGGDSSPAGRTWFDP GATCCGGGAGGAGATAGTAGTCCCGCGGGGAGAACCTGGTTCGACCCC

674 DPGGDSSPAGRTWFDP GATCCGGGAGGAGATAGCAGCCCCGCGGGGAGAACCTGGTTCGACCCC

678 DPGGDSSPAGRTWFDP GATCCGGGAGGAGATAGCAGCCCCGCGGGGAGAACCTGGTTCGACCCC

germline DPGGDSSPAGRTWFDP GATCCGGGAGGAGATAGTAGTCCCGCGGGGAGAACCTGGTTCGACCCC

Cluster 2

007 LLIFENDVGIDF CTTCTTATATTTGAGAATGATGTGGGGATAGACTTC

350 LLILDSSEGVDF CTTCTTATCTTAGACAGTAGTGAGGGGGTAGACTTC

349 LLILESDVGVDF CTTCTCATATTAGAGAGTGATGTGGGGGTAGACTTC

125 LLILESDVGVDF CTTCTTATATTGGAGAGTGATGTGGGGGTAGACTTC

316 LLILETDMGVDF CTTCTTATATTAGAGACTGATATGGGGGTAGACTTC

191 LLIYESDVGVDF CTTCTTATATATGAGAGTGATGTGGGAGTAGACTTC

663 LLIYESDVGVDF CTTCTTATATATGAGAGTGATGTGGGAGTAGACTTC

germline LLILESDVGVDY CTTCTTATATTGGAGAGTGATGTGGGGGTAGACTAC

Antibody aa KCDR3 nt KCDR3

Cluster 4

436 QQYYSSPIT CAGCAATATTATAGTAGTCCGATCACC

580 QQYYSSPIT CAGCAATATTATAGTAGTCCGATCACC

674 QQYYSTPIT CAACAATATTATAGTACTCCGATCACC

678 QQYYSSPIT CAGCAATATTATAGTAGCCCGATCACC

germline QQYYSTPIT CAGCAATATTATAGTACTCCTATCACC

Cluster 2

007 VQTVQAPYA GTACAAACTGTGCAAGCTCCGTACGCT

350 LQTVQAPYS CTCCAAACTGTGCAAGCTCCTTACAGT

349 VQTVQAPYT GTGCAAACTGTACAAGCTCCCTACACT

125 VQTVNTPYA GTGCAAACTGTAAATACTCCGTATGCA

(Continued on next page)
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Continued

Antibody aa KCDR3 nt KCDR3

316 VQTVQVPYT GTGCAAACTGTACAAGTTCCGTACACT

191 VQTVQVPYT GTGCAAACTGTACAAGTTCCGTACACT

663 VQTVQVPYT GTGCAAACTGTACAAGTTCCGTACACT

germline MQALQTPYT ATGCAAGCTCTACAAACTCCCTACACT

aa: amino acid; HCDR3: H-chain complementarity determining region 3; nt: nucleotide; KCDR3: kappa chain complementarity determining region 3

CDR3 regions of the H-chain were thus inferred from the most commonly used residue at each position of the CDR3 regions of all clonally related clus-

ter members of the respective antibody. CDR3 regions of the L-chain were reverted to complete germline.
Biolayer Interferometry Binding Studies
BLI (Octet RED96, ForteBio) experiments were conducted to determine the specificity and binding kinetics of 580-g-Fab, 580-Fab,

663-g-Fab and 663-Fab for Pf CSP (7G8 strain). Pf CSP was diluted to 10 mg/ml in kinetics buffer (PBS, pH 7.4, 0.01% (w/v) BSA,

0.002% Tween20) and immobilized onto Ni-NTA (NTA) biosensors (FortéBio). Following establishment of a stable baseline with

loaded ligand in kinetics buffer, biosensors were dipped into wells containing 2-fold dilution series of Fab. Tips were then dipped

back into kinetics buffer to monitor the dissociation rate. Kinetics data were analyzed using FortéBio’s Data Analysis software

9.0, and curves were fitted to a 1:1 binding model.

Crystallization and Structure Determination
Purified 580-g-Fab and 663-Fab were concentrated to 12 mg/ml and diluted to 10 mg/ml with NANP5 (10 mg/ml) in a 1:5 molar ratio

prior to crystallization trials. Crystals for 580-g-Fab-NANP5 grew in 10% (v/v) isopropanol, 100 mM HEPES pH 7.5, 20% (w/v) PEG

4000 andwere cryoprotected in 10% (w/v) glycerol. Crystals for 663-Fab-NANP5 grew in 100mM tri-sodium citrate pH 5.5, 20% (w/v)

PEG 3000 and were cryoprotected in 15% (w/v) glycerol. 580-Fab, 663-g-Fab and 663-Fab were crystallized in their unliganded

forms. Crystals of 580-Fab grew in 100 mM MES pH 5, 1.6 M (NH4)2SO4 and were cryoprotected in 20% (w/v) glycerol. Crystals

of 663-g-Fab grew in 100 mM Tris pH 8.5, 200 mMMgCl2, 20% (w/v) PEG 4000 and were cryoprotected in 10% (w/v) glycerol. Crys-

tals of 663-Fab grew in 200 mM di-ammonium hydrogen citrate, 20% (w/v) PEG 3350 and were cryoprotected in 15% (w/v) glycerol.

Data were collected at the 08ID-1 beamline at the Canadian Light Source (CLS), processed and scaled using XDS (Kabsch, 2010).

The structures were determined by molecular replacement using Phaser (McCoy et al., 2007). Refinement of the structures was car-

ried out using phenix.refine (Adams et al., 2010) and iterations of refinement using Coot (Emsley et al., 2010). All software was ac-

cessed through SBGrid (Morin et al., 2013).

SAXS Data Collection and Processing
SAXS data were collected at the BioSAXS 18-ID-D beamline at the Argonne Photon Source. 580-Fab and 663-Fab were co-com-

plexed with Pf CSP (7G8 strain) in a 1.7:1 molar ratio of Fab to Pf CSP. Data on Pf CSP alone was also collected. Samples were

applied to an in-line SEC-SAXS instrument at a flow rate of 0.7 ml/min, and images were collected after 1s exposure. Buffer control

samples were derived from regions in the SEC-SAXS profile preceding elution of the sample and were used to correct the scattering

curves. Approximately 10 frames from the SEC peak were averaged to generate an idealized scattering curve using PRIMUS (Fig-

ure S5A) (Konarev et al., 2003). The Kratky and Guinier plots were inspected to assess the presence of unfolding, aggregation or ra-

diation damage (Figure S5C). The radius of gyration was determined from the Guinier plot using AutoRg (Konarev et al., 2003). The

distance distribution function P(r) was obtained by indirect Fourier transform, which generated an estimate of the Dmax and the Porod

volume (Figure S5D). The apparent molecular weight was estimated by dividing the Porod volume by 1.7. Twenty ab initio models

were generated using DAMMIF (Franke and Svergun, 2009) and averaged using DAMAVER (Volkov and Svergun, 2003). Chimera

was used to visualize and dock the atomic structures into the SAXS envelopes.

Surface Plasmon Resonance
SPR measurements were performed with a BIACORE T200 (GE Healthcare) instrument docked with a series S sensor chip CM5 (GE

Healthcare). Anti-human IgG antibodies in 10 mM HEPES with 150 mM NaCl at pH 7.4 (running buffer) were immobilized by amine-

coupling using a human antibody capture kit (GEHealthcare) following themanufacturer’s protocol. Equal concentrations of the sam-

ple and control antibody mGO53 (Wardemann et al., 2003) were captured in the sample and reference flow cell, respectively. After

stabilizing the flow cells with running buffer at 10 ml/min flow rate for 20 min, NANP5 dissolved in running buffer was injected at

different concentrations: 0, 0.015, 0.09, 0.55, 3.3 and 20 mM.Maintaining the flow rate of 30 ml/min allowed the association and disso-

ciation of NANP5 for 60s and 180s, respectively, at 25 �C. Regeneration of both flow cells with 3 M MgCl2 was conducted after each

run. The data were fit using a 1:1 binding model or steady state kinetic analysis using the BIACORE T200 softwareV2.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics were performed using R version 0.99.484 and GraphPad Prism 6.07. Normality of distribution was tested for all quantitative

data sets by the Shapiro-Wilk test. Parametric or non-parametric tests were applied accordingly and are stated in the figure legends.
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P values < 0.05 were considered significant (****: p<0.0001, **: p<0.001) and indicated in the figures. Mantel-Cox test was used for

comparison of mice survival. Plots were produced using GraphPad Prism 6.07, Adobe Illustrator CS6 v16.0.3, ImageJ (Rasband,

1997-2015) and R version 0.99.484 using the ggplot2 package (R Development Core Team, 2008).

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this report are available from the corresponding authors upon reasonable request.

The crystal structures reported in this manuscript have been deposited in the Protein Data Bank, www.rcsb.org (PDB ID codes

6AZM, 5BK0, 5BK3, 5BK5 and 6AZX).
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