English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Limited Resources Induce Bistability in Microtubule Length Regulation.

MPS-Authors
/cone/persons/resource/persons219458

Mitra,  Aniruddha
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons219112

Diez,  Stefan
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rank, M., Mitra, A., Reese, L., Diez, S., & Frey, E. (2018). Limited Resources Induce Bistability in Microtubule Length Regulation. Physical review letters, 120(14): 148101. doi:10.1103/PhysRevLett.120.148101.


Cite as: https://hdl.handle.net/21.11116/0000-0003-F66B-0
Abstract
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.