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Abstract Lattice computations of the high-temperature
topological susceptibility of QCD receive lattice-spacing cor-
rections and suffer from systematics arising from the type
and depth of gradient flow. We study the lattice spacing cor-
rections to χtop semi-analytically by exploring the behavior
of discretized Harrington–Shepard calorons under the action
of different forms of gradient flow. From our study we con-
clude that Nτ = 6 is definitely too small of a time extent to
study the theory at temperatures of order 4 Tc and we explore
how the amount of gradient flow influences the continuum
extrapolation.

1 Introduction

Quantum chromodynamics fields generically contain topo-
logical structure, which may play a role in some low-energy
phenomenology and have been treated extensively in the lit-
erature [1]. This paper shall put the focus on topology at
high temperatures T � Tc the (crossover) temperature. At
these temperatures, the topological susceptibility – the mean-
squared Q-value per unit 4-volume – is small, but it never-
theless plays a crucial role in the cosmological physics of the
QCD axion [2–7], should it exist. In this case, besides the now
rather well-determined value of the topological susceptibility
in vacuum [8], we also need the topological susceptibility in
the temperature range 3 Tc – 7 Tc [9,10], since this is the tem-
perature range where a cosmological axion density would be
established. The exploration of topological susceptibility at
high temperatures within QCD has recently become the topic
of intense investigation [11–18]. (For a recent review of the
axion see Ref. [19].)

At low temperatures, topology is dominated by long range
physics where the coupling is strong. In this regime, we have
little rigorous theoretical guidance for the form of the con-
figurations which predominantly contribute to the topologi-
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cal susceptibility. On the other hand, at high temperatures
the coupling is weak and Gross, Pisarski, and Yaffe [20]
demonstrated that the dominant configurations are expected
to be calorons (periodic instantons) with radius ρ of order
of half the inverse temperature. Smaller objects are sup-
pressed by the smaller coupling at short distances, and larger
objects are suppressed by their interaction with thermal
fluctuations. In general, at high temperatures, topological
objects are rare and can be treated singly (dilute instanton
gas).

At the temperature range relevant for axion cosmology,
topological objects should be dilute, but corrections to per-
turbation theory may be large. In particular, the calcula-
tion of the thermal corrections to the caloron action is not
secure due to the infrared issues of thermal fluctuations
which exist even at weak coupling in gauge theories [8,21].
Those can influence the environment of the caloron and
change the exact coefficient of the exp(−ρ2T 2) suppres-
sion of large calorons. Therefore a nonperturbative lattice
treatment would be very valuable. But this brings with it
some complications. Strictly speaking, there is no perfectly
clean and unambiguous definition for topology on the lat-
tice. After all, on a compact space without boundary, topol-
ogy partitions the space of smooth continuum configurations
into path-disconnected subspaces with different integer Q
values. But the space of lattice configurations is [SU(N )]N�

(with N� the number of lattice links), which is path con-
nected, precluding a continuous and integer definition of Q.
This problem has long been appreciated; Lüscher showed that
topology becomes well defined if we restrict to sufficiently
“smooth” lattice configurations, in the sense that all plaque-
ttes are suitably close to the identity [22]. That means that the
failure for a perfectly clean definition of topology on the lat-
tice lies with certain very non-smooth configurations, termed
“dislocations.”1

1 Of course topology can be given a rigorous definition, for instance,
by the signed sum of zero modes of a Ginsparg–Wilson [23] fermionic
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A modern tool for studying topology on the lattice is the
integration of a lattice discretized version of Q after the lat-
tice fields have been subjected to gradient flow [26,27]. This
definition has its roots in older studies employing cooling
[28–31], with gradient flow representing a better-controlled
and better-understood form of gauge-link cooling. With gra-
dient flow, a well-defined parameter t controls the extent of
smearing applied. Gradient flow tends to eliminate disloca-
tions [32], but since there is no clean distinction between
dislocations and small-but-physical instantons, it may also
destroy the smallest instantons which we want to keep.
This issue is addressed phenomenologically in most lattice
studies that attempt a calculation of the topological sus-
ceptibility, but we are surprised by the absence of a more
systematic study, which might help in understanding how
wide the flow time window actually is, and how large we
should expect the lattice artifacts in the topological suscep-
tibility to be. In other words, it would be useful to get a
better analytical understanding of how lattice spacing and
flow-depth effects may influence the determined topological
susceptibility.

In this paper we shall explore this issue by studying
exactly how much gradient flow destroys exactly what size
of Harrington–Shepard calorons [33]. This requires a lattice
implementation of the caloron, which we supply. We also
explore different implementations of gradient flow: (a) Wil-
son flow [27], (b) a recently proposed O (

a2
)
-improved flow

dubbed Zeuthen flow [34], and (c) an “overimproved” flow
in which we force the a2 errors in the flow action to have
the opposite sign as in Wilson flow. We are hardly the first
to implement discretized topological configurations on the
lattice [35–37] or to consider topology after cooling [29–
31,38,39]. But our emphasis is a little different; we want to
understand and control what size of dislocation/caloron sur-
vives what amount of flow, and what impact this may have
on the determination of the topological susceptibility at finite
lattice spacing and on the corresponding extrapolation to the
continuum limit.

A natural objection to our study is that, in the temperature
range of relevance, the coupling is still quite large. Therefore,
the actual topological objects from the lattice will not be clean
calorons, but will have large fluctuations. Nonetheless, gra-
dient flow will drive any topological object towards a caloron
solution in a much smaller amount of flow time than it takes
for the object to disappear, since the caloron is a stationary
point of the action up to a2 corrections. Therefore the actual

Footnote 1 continued
operator. However this definition is not unique, since there are multi-
ple choices for Ginsparg-Wilson operators. For instance, those opera-
tors constructed by the overlap method [24,25] are dependent on spe-
cific choices in the Wilson operator used to build the overlap operator.
Roughly speaking, dislocations are those configurations which will give
different values of topology for different implementation choices.

topological objects’ flow trajectories should be very similar
to those for calorons. (In fact, in the continuum, we could
even define the size of a topological object to be the size of
the caloron it approaches under gradient flow.) Therefore our
study can still shed light on how much flow removes what
size of topological object. Combining this with an estimate,
based on Gross Pisarski and Yaffe’s work, for the size distri-
bution of calorons, can illuminate what flow depths affect the
topological objects we want to keep, and what lattice spac-
ings may be too coarse to distinguish between dislocations
and physically relevant topological objects.

The paper is structured as follows: In Sect. 2 we collect our
definitions and define our topology configurations at finite
temperature. Section 3 then introduces the different flows and
flow actions. In Sect. 4 we compute ρcrit(t) which indicate
the value of the radius of a caloron that barely survived the
amount of flow time t . These curves are further used in Sect. 5
to estimate how lattice spacing systematics interfere with
flow effects in the approach to the continuum. An example
study at T = 4 Tc is used. Our conclusions can then be found
in Sect. 6.

2 Caloron discretization with Q = 1

The Harrington–Shepard caloron [33] can be understood as
the finite temperature generalization of the BPST instanton
[40]. The most straightforward way of constructing the solu-
tion is to recognize that one has to take into account the
infinite time copies that arise due to the compactification of
the Euclidean time direction whose inverse length plays the
role of temperature (β ≡ T−1). Following [41] we consider
a superpotential of the form

ΦHS(x) = 1 +
∑

k∈Z

ρ2

(x − zk)2

= 1 + πρ2 sinh 2π |x−z|
β

β |x − z|
(

cosh 2π |x−z|
β

− cos 2π(x0−z0)
β

) ,

(1)

with zk = (z0 + kβ, z) and ρ having length-units and play-
ing the role of the caloron radius. Concentrating on SU(2)
calorons, the gauge field continuum form is obtained via

Aa
μ(x) = ηaμν∂ν ln ΦHS(x) (2)

where ηaμν = ε0aμν + δaμδν0 − δaνδμ0 is the ’t Hooft sym-
bol (equivalently for η̄aμν the sign of the last two terms is
reversed and one obtains an anti-instanton with Q = −1)
[40]. The self-duality condition Fμν = 1

2εμνρσ Fρσ , implies
that a valid solution for Aμ(x) is obtained if ΦHS(x) obeys
the Poisson equation �ΦHS = 0.
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It is a tedious but straightforward exercise to check that
indeed this gauge field yields Q = 1 and S = 8π2. Notice
that it is given in singular gauge, meaning that there is a sin-
gularity at the center of the caloron when x = z.2 Next, we
use the path-ordered exponential map to obtain the expres-
sion for the lattice links as

Uμ(x) = P exp

[
a

∫ 1

0
dt Aμ

(
Γμ(x, t)

)]
, (3)

where Γμ(x, t) = x+taμ̂ is an appropriate parameterization
for the corresponding path connecting the two neighboring
lattice sites x and x +aμ̂ with t ∈ [0, 1] (no summation over
μ is implied in Eq. (3)).

In the case of an instanton (without periodic images), Aμ

commutes everywhere along a link, but this turns out not
to be true for the caloron. In order to compute the links we
rewrite Eq. (3) as a product of n shorter links,

Uμ(x) = lim
n→∞ P

n∏

k=1

exp

[
a

n
Aμ

(
Γμ

(
x,

2k − 1

2n

))]
, (4)

where in practice we use n ∼ 40 rather than taking the strict
n → ∞ limit. Periodicity is imposed in all four dimensions,
and while boundary effects are absent in the time direction,
our lattice field will have a discontinuity at the spatial edges
of the box. We ameliorate this problem with gradient flow
confined to the boundary region as described in App. A.

Finally the embedding into an SU(3) background is trivial
since a particular lattice gauge exists in which the links take
the following form:

USU(3)
μ =

⎛

⎝USU(2)
μ

0
0

0 0 1

⎞

⎠ . (5)

Therefore we are effectively considering SU(2) configura-
tions in this paper. This makes our study less general than
Ref. [36], who also consider calorons in the background of
nontrivial holonomy. Note, however, that if we are primarily
interested in high temperatures, nontrivial holonomy is not
likely to be relevant, since fluctuations create an effective
potential for the Polyakov loop which favors trivial holon-
omy [20].

3 Gradient flows

Gradient flow and its discretized version on the lattice
[26,27,42–45] have become an essential tool to reduce UV
fluctuations. In the continuum it defines a mapping of the

2 On the lattice, we will avoid the singularity by placing our topology
objects in between lattice points and unless stated otherwise we always
consider z = (z0, z) = 1

2 (β − a, L − a).

gauge fields Aμ(x) to smeared gauge fields Bμ(x, t), where
t is the so-called flow time, via the flow equation

∂t Bμ = DνFνμ, Bμ(x, 0) = Aμ(x). (6)

The right-hand side of this differential equation is nothing but
the classical equations of motion. Consequently, it will drive
the gauge field along the trajectory of steepest descent min-
imizing the action along the way. On the lattice the simplest
form reads

a2∂t Vμ(x, t) = −g2
0∂x,μSW[V ]Vμ(x, t), (7)

where Vμ(x, t) is the flowed gauge field with initial condi-
tion Vμ(x, 0) = Uμ(x) and SW denotes the Wilson plaquette
action. The Lie-algebra valued derivative of a general func-
tion of the link variables f (Uμ) is given by

∂ax,μ f (Uμ(x)) = T a d

ds
f
(

esT
a
Uμ(x)

)∣∣
∣∣
s=0

. (8)

Recently, an O (
a2

)
improved version of the flow equation

was developed in Ref. [34]. The so-called Zeuthen flow equa-
tion reads

a2∂t Vμ(x, t)

= −g2
0

(
1 + a2

12
∇∗

μ∇μ

)
∂x,μSSym[V ]Vμ(x, t), (9)

where SSym is the tree-level improved Symanzik action [46]
and the discretized adjoint covariant derivative is given by

a∇μ f (x) = Uμ(x) f (x + aμ̂)U †
μ(x) − f (x),

a∇∗
μ f (x) = f (x) −U †

μ(x − aμ̂) f (x − aμ̂)Uμ(x−aμ̂).

(10)

The unexpected additional factor (1 + a2∇∗
μ∇μ/12) can be

understood as follows. We know that improvement requires
replacing square plaquettes with a linear combination of
squares and rectangles. The Symanzik action does this in
the four spacetime directions. The added term does it in the
flow-time direction. Ref. [34] have proven that this gives
a (tree-level) O (

a2
)

improvement of the flow equation. In
addition to these two we investigate a flow equation with an
overimproved action (precise definitions of these actions are
given in Sect. 4.1)

a2∂t Vμ(x, t) = −g2
0

(
∂x,μSOI[V ]) Vμ(x, t). (11)

We expect this flow equation to allow for stable topological
solutions under flow. Notice that the flow equations Eqs. (7),
(9), and (11) do not depend on g2

0 at all since the actions
themselves carry such a factor, too. We therefore omit g2

0
factors when not relevant for the discussion.

The goal is to study the effect of Eqs. (7), (9), and (11)
on our constructed clean topological configurations to learn
about how their topological properties are changed. This can
represent interesting information to better control systematic
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errors when performing lattice calculations of topological
observables with the help of flow.

4 Lattice caloron properties

Mainly we will focus on the measurement of the topologi-
cal charge Q and the action S which in the continuum take
the values Q = 1 and S = 8π2, respectively. Deviations
from these numbers occur on a finite lattice due to cutoff and
boundary effects. We will try to disentangle those to more
deeply understand the effect of flow.

4.1 Actions

Throughout this work we consider Lüscher–Weisz actions of
the form [46,47] (omitting g2

0 factors)

S(c0, c1) = 2

(

c0

∑

x

Retr
(
1 −UP(x)(1,1)

)

+ c1

∑

x

Retr
(
1 −UR(x)(2,1)

)
)

, (12)

where UP(x)(1,1) denotes the simple closed plaquette and
UR(x)(2,1) are 2 × 1 (and 1 × 2) rectangles where both loop
orientations are taken into account by the Retr operation.
A correct normalization requires c0 + 8c1 = 1. The three
actions going into the three different flow equations can be
summarized as follows:

S (1, 0) = SW (Wilson),

S (5/3,−1/12) = SSym (Symanzik),

S (7/3,−1/6) = SOI (Overimproved). (13)

Figure 1 explores how each action varies as a function of
the caloron size ρT , on a lattice with Nτ = 8 and an aspect
ratio of 6. We find that all actions start small and are sup-
pressed until about ρ = 1.6a, which is ρT = 0.2 for this Nτ

value. A rapid rise towards the expected value of 8π2 is then
observed, followed eventually by a rise above 8π2. These
two features – the rapid rise from zero towards 8π2, and
the eventual rise above this value – arise from different arti-
facts. The former is a lattice spacing artifact, which we now
explore. We overlay each curve with an estimate based on a
small-a expansion, taken to first nontrivial subleading order.
Specifically, the expansion of the Wilson action in operator
dimension takes the form

SW = −1

2
tr

{
FμνFμν

} + a2

12
tr

{
DμFμνDμFμν

} + · · · ,

(14)
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Fig. 1 Different actions together with the perturbative predictions as
a function of the caloron size. The caloron is placed at the center of
an 8 × 483 lattice. In this plot we used t0T 2 = 20/64 for reducing the
boundary effects (cf. App. A). Dotted lines indicate a small-a expansion
up to the first nontrivial correction

where each index is summed once. This leads to a2 correc-
tions to the caloron action. Inserting the caloron field from
Eqs. (1) and (2), a corresponding finite temperature integra-
tion

∫ 1/T
0 dτ

∫
d3x yields

SW = 8π2

[

1 + F(ρT )

(
a

ρ

)2

+ O
(
a

ρ

)4
]

. (15)

We have evaluatedF(ρT ) numerically and find that it is very
well fit by

F(ρT ) = −1

5
+ b(ρT )2 + O(ρT )4, (16)

with −1/5 the zero-temperature (instanton) value and b =
−0.758. The first (vacuum) effect is O(a2/ρ2); because of
it, the action is significantly smaller for ρ < 1.6a, and we
should consider such objects as “dislocations” rather than
true continuum-like calorons. The second term gives rise
to an O(a2T 2 = 1/N 2

τ ) correction, which is present at all
caloron sizes, and represents a size-independent mis-estimate
of the caloron action due to the lattice spacing. For the over-
improved case the a2 correction is the same but with opposite
sign. For the Symanzik case we have not evaluated the full
temperature-dependent O(a4) correction, but instead use the
O(a4) correction to the instanton action found by Ref. [48].
This is adequate because the correction is small for ρT ∼ 1
where thermal effects are expected.

The overimproved action possesses positive a2 correc-
tions and therefore develops a maximum. This will be of
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importance when flowing with this action as it will stabilize
calorons larger than the size where S is maximum, preventing
them from shrinking, “falling through the lattice,” and being
lost. As we will see, although promising, this approach does
not substantially help in the calculation of the topological
susceptibility.

The figure also features a rise in the action above 8π2 at
large caloron sizes; for the lattice considered in the figure,
this effect becomes larger than the a2 effects above about
ρT = 0.7. This is a finite-volume effect which is ameliorated
by going to a larger aspect ratio. It is also partly an artifact of
the way we construct the caloron solution, since we take prop-
erly into account the temporal periodicity but not the space
periodicity. In order to reduce this effect as much as possible,
we “flow the boundaries away.” What this means is that we
perform a space-time dependent flow where the core of the
configuration (where most of the topological charge is local-
ized) is unaffected while boundary effects are smoothed out.
A similar idea was used in Ref. [30] where a discretized ver-
sion of DμFμν(x) was measured on every space-time point
and an improved form of cooling was performed on those lat-
tice points that satisfied the bound DμFμν(x) > ε. In App. A
we explain our own procedure for reducing boundary effects
which we utilize throughout this work. From now on, when
setting up a topological configuration, we always implicitly
apply this procedure. Note that the gradient flow used to
reduce the boundary effects should not be confused with the
usual gradient flow that we apply for some calculations in
the remainder of this work.

4.2 Topological charges

The field-strength tensor Fμν(x) is the main building block
for constructing gauge operators like the topological charge.
Apart from the popular geometrical clover definition (4-
plaquette average), we considered an improved version
thereof. To this end, we implement an improved field-strength
tensor F̂ imp

μν free of O (
a2

)
errors by considering weighted

averages of 1 × 1 plaquettes and 2 × 1 rectangles [49,50].
We then study the two definitions

Qclov/imp = − 1

32π2 εμνρσ

∑

x

tr
(
F̂μν(x)F̂ρσ (x)

)
, (17)

where in each case

F̂clov
μν (x) = Fμν(x) + O

(
a2

)
,

F̂ imp
μν (x) = Fμν(x) + O

(
a4

)
.

(18)

As can be seen from Fig. 2, the improved topological charge
operator shows a much better behavior at all investigated
values of the radius. Notice that boundary effects are milder

0 0.2 0.4 0.6 0.8 1.0 1.2
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Q

Qclov

Qimp

Fig. 2 Two different discretizations of the topological charge operator
as a function of the caloron size on an 8 × 323 lattice

for the topological charge than for the action. We see only
advantages to using the improved definition.

4.3 Critical Radius

One of the relevant aspects we want to address in this paper
is the behavior of a discretized caloron configuration under
different flow equations. We see in Fig. 2 that, for Nτ = 8, a
caloron with ρT � 0.12 will have a Q value larger than 1/2,
if the measurement is made before any flow is applied. Of
course in practice such a measurement would be impossible,
since the Q of the caloron would be swamped by contribu-
tions from nontopological fluctuations. These disappear after
a modest amount of gradient flow. But calorons also shrink
and tend to disappear as flow is applied, precisely because
of the action corrections which we explored in Fig. 1. We
illustrate this effect in Fig. 3, which shows how the Q value
changes under flow for a “large” caloron with ρT = 0.5 on
an Nτ = 8 lattice. We see that, after some amount of time, the
measured topological charge abruptly collapses. This occurs
because flow causes the caloron to shrink, eventually abruptly
shrinking away and disappearing between lattice sites. At
least for Wilson and Zeuthen flow, any caloron will eventu-
ally disappear in this way. The collapse is slower for Zeuthen
flow because of the absence of a2 lattice-spacing corrections
to the action, but the a4 and finite-volume effects neverthe-
less eventually lead to collapse. For the overimproved action,
the action has a maximum which prevents flow from ever
destroying the caloron.
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Fig. 3 Topological charge Qimp as a function of flow time for a caloron
with ρT = 0.5, for three flow definitions and two box sizes (Nτ = 8
is fixed). Calorons Live much longer under Zeuthen flow, and forever
under overimproved flow

It would be very useful to know more precisely, how much
flow destroys what size of caloron. To investigate this, we
first establish a definition of when we consider a caloron to
really exist: when the topological charge Q exceeds some
threshold, which we choose to be 1/2. (We see in Fig. 3
that the exact choice is almost immaterial.) This corresponds
well to the typical procedure one will use in determining the
topological susceptibility in a simulation: a configuration is
generated, Q is measured, and then its value is thresholded

0 0.2 0.4 0.6 0.8
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0.2

0.4

0.6

0.8
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1.2

D
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ρ
T
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(ρ
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×10−10

Nτ = 6
Nτ = 8
Nτ = 10
Nτ = 12
Nτ = 16
Nτ = 20
Nτ = ∞

Fig. 5 Integrand of Eq. (25) at T/Tc = 4 for Nτ = 6, 8, 10, 12, 16, 20.
The black solid curve represents the continuum case and corresponds
to the integrand of Eq. (20)

to an integer. The choice 1/2 corresponds to thresholding to
the nearest integer. We therefore define the critical radius of
a caloron where it becomes topological as

Qimp (ρcrit) ≡ 0.5. (19)

We can then study how flow causes lattice calorons to
shrink and disappear by investigating ρcrit as a function
of flow time, that is, what initial caloron radii ρ still have
Qimp > 0.5 after some flow depth t . This is shown in Fig. 4,

0 0.2 0.4 0.6
(tT 2)1/4

0

0.2

0.4

0.6

0.8

1.0

ρ
cr
it
T

Nτ = 6
Nτ = 8
Nτ = 10
Nτ = 12
Nτ = 16
Nτ = 20

0 0.2 0.4 0.6
(tT 2)1/6

0 0.05 0.1 0.15 0.2
tT 2

Fig. 4 Critical caloron radius (separating calorons which survive from those which collapse) as a function of flow depth for three types of flow,
and several different temporal lattice extents. Left: Wilson flow. Middle: Zeuthen flow. Right: Overimproved flow
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which can be used to look up how much flow is needed to
collapse calorons of a given size.

We see in the figure that ρcrit grows almost linearly with
t1/4, which is easily explained analytically. An ordinary per-
turbative fluctuation of momentum p decays as exp

(−p2t
)

(this is a leading result coming from Eq. (6)), and so doubling
the size requires four times the flow time, or t ∝ ρ2. How-
ever, calorons are nearly extrema of the action, up to a2/ρ2

corrections in the Wilson action, so we expect t ∝ ρ4
crit.

Therefore Fig. 4 plots ρcrit against t1/4 (Wilson case), which
would be a straight line for 1/Nτ � ρT � 1. The figure
shows that calorons also collapse under Zeuthen flow, though
more slowly (as the energy depends on scale only at O (

a4
)
,

we therefore expect t ∝ ρ6
crit) and, in fact, the curves show a

linear trend. Under overimproved flow calorons are preserved
above some critical size, which was the original motivation
for considering it [48].

5 Estimated a2 errors in the topological susceptibility

We want to apply our results to get a semi-analytical under-
standing of how both flow depth and a2 errors may influence
lattice determinations of the topological susceptibility at high
temperatures. Our goal is not to calculate the topological sus-
ceptibility per se, but to see how flow and lattice spacing may
influence its determination at finite lattice spacing.

We will do so by approximating the distribution of topo-
logical objects using the dilute instanton gas (DIGA) approx-
imation. We incorporate the known one-loop renormalization
contributions to the caloron [20], and estimate the topolog-
ical susceptibility by integrating over all instanton sizes. In
the continuum this quantity is given by

χ (T/Tc) � 2
∫ 1/Λ

Nf =0

MS

0
dρ D(ρ)G(πρT ), (20)

with

D(ρ) = dMS

ρ5

(
8π2

g2(μ = ρ−1)

)6

exp

(
− 8π2

g2(μ = ρ−1)

)
,

(21)

the vacuum density of instantons with size ρ, and

G(λ) = exp
(
−2λ2 − 18A(λ)

)
, (22)

A(λ) = − 1

12
ln

(
1 + λ2

3

)
+ α

(
1 + γ λ− 3

2

)−8
, (23)

the thermal corrections, first computed by Gross, Pisarski,
and Yaffe [20]. The parameter values in these expressions are

α = 0.0128974, γ = 0.15858, and dMS = e5/6

π2 e−4.534122.

The running of the coupling g2(μ) can be found in Ref. [51]
and Tc/Λ

Nf=0
MS

= 1.26 is taken from Ref. [52]. The product of

D(ρ) and of G(πρT ) in Eq. (20) leads to an integrand with
a broad peak near ρT � 0.4 (solid black curve in Fig. 5),
which is then the typical size for the calorons which dominate
the topological susceptibility.

In performing a lattice Monte-Carlo study, the practitioner
chooses an action for sampling configurations. The choice
is logically independent from the choice of action used in
gradient flow, but it can be equally impactful. In particular,
if the lattice study is based on sampling with the Wilson
action, something we assume throughout this section, then
the continuum action 8π2 in Eq. (21) should be replaced by
the lattice Wilson action of a caloron from Eq. (15), leading
to an a2 correction to D(ρ):

Dlat(ρ, T/Tc, Nτ ) =

D(ρ) exp

[

− 8π2

g2(μ = ρ−1)

(
1

ρT Nτ

)2

F (ρT )

]

. (24)

This rests on an assumption that the coefficient in front of
the dimension-6 a2-suppressed operator (DFDF) takes its
tree level value. Realistically we expect corrections from,
e.g., the renormalization of the a2 action correction and from
higher-order effects in G(πρT ), so our results here should
be viewed only as estimates, based on the best tools we have
available, for how a2 effects will affect the caloron density
on the lattice.

To estimate the topological susceptibility as measured on
the lattice, we integrate this modified caloron density over
those caloron sizes which are not destroyed by gradient flow
– which is precisely all ρ > ρcrit as determined in Fig. 4. We
therefore write

χlat(T/Tc, Nτ , tT
2)

= 2
∫ 1/Λ

Nf =0

MS

ρcrit(tT 2,Nτ )

dρ Dlat

(
μ = ρ−1, T/Tc

)
G(πρT ).

(25)

We illustrate the integrand for several Nτ values in Fig. 5.
Figure 6 shows the resulting estimate of the topological

susceptibility which we would obtain by working at a given
Nτ and applying a given amount of gradient flow. The lattice
corrections to the action raise the contributions in the peak
of Eq. (20) near ρT � 0.4. But lattice artifacts also dramati-
cally increase the number of dislocations with ρ ∼ a, as we
see from the integrand in Fig. 5. If these two scales, a and
0.4/T , are well separated, then gradient flow can erase the
dislocations with little impact on the typical calorons. That
is, there will be a minimum in the integrand of Fig. 5, and
we can use Fig. 4 to choose a flow depth which will erase
calorons below this minimum. This leads to a plateau in the
susceptibility over a range of flow depths, as seen in Fig. 6.
For coarser lattices such as Nτ = 6, 8, examining Fig. 5, it
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Fig. 6 Estimated effect of lattice artifacts on the topological susceptibility, at T/Tc = 4 and for Nτ = 6, 8, 10, 12, 16, 20, as a function of the
flow depth tT 2. Left: Wilson flow. Middle: Zeuthen flow. Right: Overimproved flow. The solid line denotes the continuum limit
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Fig. 7 Left: Continuum extrapolation Eq. (25) at T/Tc = 4 at fixed (Wilson) flow time. Right: Logarithm of left plot. The black point represents
the continuum value

is not clear where to cut to separate calorons from disloca-
tions, and there is no associated plateau in Fig. 6. Therefore
Nτ = 6, 8 will likely not be sufficient to give results which
are stable against the amount of flow, but larger Nτ will, espe-
cially if we use Zeuthen flow. Overimproved flow is good for
completely “cleaning” a configuration of perturbative fluc-
tuations, but in terms of eliminating small instantons, it is
effectively equivalent to using a specific fixed depth of Wil-
son flow. Therefore it is not preferred if we want flexibility

in choosing the size of caloron/dislocation which we elimi-
nate.

Finally, we consider the extrapolation to zero lattice spac-
ing in Fig. 7. The lattice spacing corrections are very large
even for Nτ = 10, and a simple extrapolation in χ can easily
lead to a negative result. But that is because the a2 errors are
best viewed as a correction to the logarithm of χ , as we see
in Eq. (24). If we extrapolate in terms of ln(χ), the procedure
works much better.
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6 Conclusions

We have constructed calorons on the lattice. We find that
they possess most of the action and topological charge if
ρT � 1/Nτ , and nearly all of the charge and action if
ρT � 2/Nτ . Wilson flow destroys small calorons, with pro-
gressively more flow destroying larger calorons, as expected.
Our work expresses this in a quantitative fashion, in Fig. 4.

Also, if a lattice study were to flow each topologically
nontrivial configuration until it loses topological character
(Qimp < 0.5), and keep track of the distribution of flow
depths needed, then a plot as the one in Fig. 3 could be used
to turn this result into a size distribution of the topological
objects observed on the lattice.

Using our results to estimate the a2 errors which arise
when computing the topological susceptibility χ(T ) on the
lattice, we find that Nτ = 6 is insufficient to be in the scaling
regime (probably Nτ = 8 as well), and lattice spacing errors
are expected to lead to a severe overestimate of χ(T ) at finite
a, which may lead to negative values if we extrapolate χ(T )

against a2. It is more natural to extrapolate ln (χ(T )) against
a2, because this corresponds better to the way in which a2

errors enter in the susceptibility.
Note that the inclusion of light quarks in Eq. (22) would

change the factor −2λ2 to −(2 + Nf/3)λ2, which makes the
dominant size of calorons smaller. Therefore, since ρT Nτ

becomes smaller, the corrections in Eq. (24) become larger
(since F is negative), and the value of Nτ needed to reach
scaling will be still larger.
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A reducing boundary effects

In writing down caloron field configurations, we cannot avoid
the discontinuity at the spatial boundaries of our box. We will
try to minimize the damage by smearing out the boundary dis-
continuities with gradient flow. Consider the caloron placed
at the center of the lattice and denote the lattice spatial extent
as L . We then flow the links using a flow time that depends
on the relative distance

d =
√

(x − z)2 (26)

of the base point of the link Uμ(x) and the center of the
instanton. The flow time depth gets modified as

t (d) =

⎧
⎪⎨

⎪⎩

0, d < L
4

t0
2

(
1 + sin

[ 4π
L

(
d − 3

8 L
)])

, L
4 ≤ d ≤ L

2

t0, d > L
2

(27)
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Fig. 8 Caloron topological charge (left) and Wilson action (right) for different values of t0T 2 as defined in Eq. (27) on an 8 × 483 lattice
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where t0 is the “normal” flow time. This is nothing but a
smooth interpolation between zero flow (close to the center
of the caloron) and full flow (close to the boundary). With this
procedure we reduce boundary effects while the core of the
caloron remains unaffected. In Fig. 8 we show both the topo-
logical charge and the Wilson action of the caloron for dif-
ferent values of t0. We observe that the Wilson action suffers
significantly more from boundary effects than the topolog-
ical charge. Applying this modified version of Wilson flow
indeed reduces boundary effects. We find that a flow time of
t0T 2 = 5/N 2

τ is sufficient to satisfactorily reduce most of
the boundary effects.
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