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LINK INVARIANTS VIA COUNTING SURFACES

MICHAEL BRANDENBURSKY

Abstract. A Gauss diagram is a simple, combinatorial way to present a knot.
It is known that any Vassiliev invariant may be obtained from a Gauss diagram
formula that involves counting (with signs and multiplicities) subdiagrams of cer-
tain combinatorial types. These formulas generalize the calculation of a linking
number by counting signs of crossings in a link diagram. Until recently, explicit
formulas of this type were known only for few invariants of low degrees. In this
paper we present simple formulas for an infinite family of invariants in terms of
counting surfaces of a certain genus and number of boundary components in a
Gauss diagram. We then identify the resulting invariants with certain derivatives
of the HOMFLYPT polynomial.

1. Introduction.

In this paper we consider link invariants arising from the Conway and HOMFLYPT
polynomials. The HOMFLYPT polynomial P (L) is an invariant of an oriented link
L (see e.g. [9], [16], [21]). It is a Laurent polynomial in two variables a and z, which
satisfies the following skein relation:

(1) aP

(

+

)
− a−1P

(

−

)
= zP

(

0

)
.

The HOMFLYPT polynomial is normalized in the following way. If Om is an m-

component unlink, then P (Om) =
(
a−a−1

z

)m−1
. The Conway polynomial ∇ may

be defined as ∇(L) := P (L)|a=1. This polynomial is a renormalized version of the
Alexander polynomial (see e.g. [7], [15]). All coefficients of ∇ are finite type or
Vassiliev invariants.

One of the mainstream and simplest techniques for producing Vassiliev invariants are
so-called Gauss diagram formulas (see [10], [20]). These formulas generalize the calcu-
lation of a linking number by counting subdiagrams of special geometric-combinatorial
types with signs and weights in a given link diagram. This technique is also very
helpful in the rapidly developing field of virtual knot theory (see [12]), as well as in
3-manifold theory (see [17]).

Until recently, explicit formulas of this type were known only for few invariants of
low degrees. The situation has changed with works of Chmutov-Khoury-Rossi [3] and
Chmutov-Polyak [5], see also [14] for the case of string links. In [3] Chmutov-Kho-
ury-Rossi presented an infinite family of Gauss diagram formulas for all coefficients
of ∇(L), where L is a knot or a two-component link. We explain how each formula
for the coefficient cn of zn is related to a certain count of orientable surfaces of a
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2 MICHAEL BRANDENBURSKY

certain genus, and with one boundary component. The genus depends only on n and
the number of the components of L. These formulas may be viewed as a certain
combinatorial analog of Gromov-Witten invariants.

In this work we generalize the result of Chmutov-Khoury-Rossi to links with arbitrary
number of components. We present a direct proof of this result, without any prior
assumption on the existence of the Conway polynomial. It enables us to present two
different extensions of the Conway polynomial to long virtual links. We compare
these extensions with the existing versions of the Alexander and Conway polynomials
for virtual links, and show that they are new. In particular, we give a new proof of
the fact that the famous Kishino knot KT [13] is non-classical, by calculating these
polynomials for KT . Later we show that these formulas may be modified by counting
only certain, so-called irreducible, subdiagrams.

This leads to a natural question: how to produce link invariants by counting orientable
surfaces with an arbitrary number of boundary components? In this paper we deal
with a model case, when the number of boundary components is two. We modify
Chmutov-Khoury-Rossi construction and present an infinite family of Gauss diagram
formulas for the coefficients of the first partial derivative of the HOMFLYPT poly-
nomial, w.r.t. the variable a, evaluated at a = 1. This family is related, in a similar
way, to the family of orientable surfaces with two boundary components. Later we
modify these formulas in case of knots.

In the forthcoming paper [2] we show that, in case of closed braids, a similar count
of orientable surfaces with n boundary components (up to some normalization) is
related to an infinite family of Gauss diagram formulas for the coefficients of the n−1
derivative, w.r.t. the variable a in the HOMFLYPT polynomial, evaluated at a = 1.

Acknowledgments. I would like to thank Michael Polyak, who has introduced me
to this subject, guided and helped me a lot while I was working on this paper. I also
would like to thank the referee for careful reading of this paper and for his/her useful
comments and remarks.

Part of this work has been done during the author’s stay at Max Planck Institute for
Mathematics in Bonn. The author wishes to express his gratitude to the Institute for
the support and excellent working conditions.

2. Gauss diagrams and arrow diagrams

In this section we recall a notion of Gauss diagrams, arrow diagrams and Gauss
diagram formulas. We then define a special type of arrow diagrams which will be
used to define Gauss diagram formulas for coefficients of the Conway polynomial, and
for coefficients of some other polynomials derived from the HOMFLYPT polynomial.

2.1. Gauss diagrams of classical and virtual links. Gauss diagrams (see e.g. [8],
[10], [20]) provide a simple combinatorial way to encode classical and virtual links.

Definition 2.1. Given a classical (possibly framed) link diagram D, consider a col-
lection of oriented circles parameterizing it. Unite two preimages of every crossing of
D in a pair and connect them by an arrow, pointing from the overpassing preimage to
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the underpassing one. To each arrow we assign a sign (writhe) of the corresponding
crossing. The result is called the Gauss diagram G corresponding to D.

We consider Gauss diagrams up to an orientation-preserving diffeomorphisms of the
circles. In figures we will always draw circles of the Gauss diagram with a counter-
clockwise orientation.

Example 2.2. Diagrams of the trefoil knot and the Hopf link, together with the
corresponding Gauss diagrams, are shown in the following picture.

+

+

+

+

+

A classical link can be uniquely reconstructed from the corresponding Gauss diagram
[10]. Many fundamental knot invariants, such as the knot group and the Alexander
polynomial, may be easily obtained from the Gauss diagram. We are going to work
with based Gauss diagrams, i.e. Gauss diagrams with a base point (different from the
endpoints of the arrows) on one of the circles. If we cut a based circle at the base
point, we will get a Gauss diagram of a long link, see Figure 1.

+

+

+

+

Figure 1. Diagrams of based and long classical Hopf links together
with the associated Gauss diagrams.

+

+

+

Figure 2. Virtual trefoil and a virtual Hopf link with the corre-
sponding Gauss diagrams.

Note that not every collection of circles with signed arrows is realizable as a Gauss
diagram of a classical link, see Figure 2. The Gauss diagram of a virtual link diagram
is constructed in the same way as for a classical link diagram, but all virtual crossings
are disregarded, see Figure 2. Similarly to the case of long classical links, each non-
realizable Gauss diagram with a base point represents a long virtual link.

Two Gauss diagrams represent isotopic classical/virtual links (long links) if and only if
they are related by a finite number of Reidemeister moves for Gauss diagrams (applied
away from the base point) shown in Figure 3, where ε = ±1, see e.g. [4, 18, 19]. Note
that not all Reidemeister moves are shown in Figure 3 (for example third Reidemeister
moves with at least one negative crossing are not shown), but their generating set is,
see [19].
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Ω1 : ε Ω2 :
ε

−ε

Ω3 :

+

+

+

+

++

Figure 3. Reidemeister moves of Gauss diagrams.

Two Gauss diagrams represent isotopic classical framed links if and only if they are
related by a finite number of Reidemeister moves for framed Gauss diagrams. It
suffices to consider Ω2 and Ω3 of Figure 3 and substitute the move Ω1 by the move

ΩF
1 : −ε

ε

−ε

ε

Note that segments involved in Ω2 or Ω3 may lie on different components of the link
and the order in which they are traced along the link may be arbitrary.

2.2. Arrow diagrams and Gauss diagram formulas. An arrow diagram is a
modification of a notion of a Gauss diagram, in which we forget about realizability
and signs of arrows, see Figure 4.

Figure 4. Connected arrow diagrams.

In other words, an arrow diagram consists of a number of oriented circles with several
arrows connecting pairs of distinct points on them. We consider these diagrams up
to orientation-preserving diffeomorphisms of the circles. An arrow diagram is based,
if a base point (different from the end points of the arrows) is marked on one of the
circles. An arrow diagram is connected, if it is connected as a graph. Further we
will consider only based connected arrow diagrams, so we will omit mentioning these
requirements throughout this chapter, unless a misunderstanding is likely to occur. In
figures we will always draw the circles of an arrow diagram with a counter-clockwise
orientation.

M. Polyak and O. Viro suggested [20] the following approach to compute link invari-
ants using Gauss diagrams.



LINK INVARIANTS VIA COUNTING SURFACES 5

Definition 2.3. Let A be an arrow diagram with m circles and let G be a based
Gauss diagram of an m-component oriented (long, virtual) link. A homomorphism
φ : A→ G is an orientation preserving homeomorphism between each circle of A and
each circle of G, which maps a base point of A to the base point of G and induces
an injective map of arrows of A to the arrows of G. The set of arrows in Im(φ) is
called a state of G induced by φ and is denoted by S(φ). The sign of φ is defined as
sign(φ) =

∏
α∈S(φ) sign(α). A set of all homomorphisms φ : A → G is denoted by

Hom(A,G).

Note that since the circles of A are mapped to circles of G, a state S of G determines
both the arrow diagram A and the map φ : A→ G with S = S(φ).

Definition 2.4. A pairing between an arrow diagram A and G is defined by

〈A,G〉 =
∑

φ∈Hom(A,G)

sign(φ).

For an arbitrary arrow diagram A the pairing 〈A,G〉 does not represent a link invari-
ant, i.e. it depends on the choice of a Gauss diagram of a link. However, for some
special linear combinations of arrow diagrams the result is independent of the choice
of G, i.e. does not change under the Reidemeister moves for Gauss diagrams. Using
a slightly modified definition of arrow diagrams Goussarov, Polyak and Viro showed
in [10] that each real-valued Vassiliev invariant of long knots may be obtained this
way. In particular, all coefficients of the Conway polynomial may be obtained using
suitable combinations of arrow diagrams.

2.3. Surfaces corresponding to arrow diagrams. Given an arrow diagram A, we
define an oriented surface Σ(A) as follows. Firstly, replace each circle of A with an
oriented disk bounding this circle. Secondly, glue 1-handles to boundaries of these
disks using each arrow as a core of a ribbon. See Figure 5.

Figure 5. Constructing a surface from an arrow diagram.

Definition 2.5. By the genus and the number of boundary components of an arrow
diagram A we mean the genus and the number of boundary components of Σ(A).

Remark 2.6. Let A be an arrow diagram with n arrows and m circles. Then the Euler
characteristic χ of Σ(A) equals to χ(Σ(A)) = m − n. If A is connected, n ≥ m − 1.
If A has one boundary component, n 6= m(mod2).

Example 2.7. The arrow diagram with one circle in Figure 4 is of genus one, while
the other arrow diagram in the same figure is of genus zero. Both of them have one
boundary component.

Further we will work only with based connected arrow diagrams with one or two
boundary components.
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2.4. Ascending and descending arrow diagrams. In this subsection we define a
special type of arrow diagrams with one and two boundary components.

Definition 2.8. Let A be a based arrow diagram with one boundary component.
As we go along the boundary of Σ(A) starting from the base point, we pass on the
boundary of each ribbon twice: once in the direction of its core arrow, and once in the
opposite direction. A is ascending (respectively, descending) if we pass each ribbon
of Σ(A) first time in the direction opposite to its core arrow (respectively, in the
direction of its core arrow).

Remark 2.9. In order to define the notion of ascending and descending arrow di-
agrams we used the fact that all arrow diagrams are based and connected. The
position of the base point in a connected arrow diagram is essential to define an order
of passage.

Example 2.10. Arrow diagrams presented below are ascending (a), descending (b)
and neither ascending nor descending (c).

a b c

Denote by An,m (respectively, Dn,m) the set of all ascending (respectively, descending)
arrow diagrams with n arrows, m circles and one boundary component.

Example 2.11. The sets A2,1 and D2,1 are presented below.

A2,1 := and D2,1 :=

Definition 2.12. Let G be any Gauss diagram with m circles. We set

An,m(G) :=
∑

A∈An,m

〈A,G〉 Dn,m(G) :=
∑

A∈Dn,m

〈A,G〉

and define the following polynomials:

∇asc(G) :=

∞∑

n=0

An,m(G)zn ∇des(G) :=

∞∑

n=0

Dn,m(G)zn

These polynomials will play an important role in the next section. Now we generalize a
notion of ascending (descending) arrow diagram to arrow diagrams with two boundary
components. We would like to point out that in [2] this notion is generalized for arrow
diagrams with arbitrary number of boundary components.

Definition 2.13. Let A be an arrow diagram with two boundary components. As
we go along the component of ∂Σ(A) starting from the base point, we pass on the
boundary of each ribbon once or twice (since A is connected we must pass all ribbons
at least once). We call core arrows, which we pass only in one direction, the separating
arrows. Now we place another starting point • on the second component of ∂Σ(A)
near the first separating arrow which we encounter in the passage, and start going
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along this component of ∂Σ(A). A is ascending (respectively, descending) if we pass
each ribbon of Σ(A) first time in the direction opposite to its core arrow (respectively,
in the direction).

Example 2.14. Arrow diagrams below have two boundary components. Diagram
(a) is ascending and diagram (b) is descending. Separating arrows are shown in bold.

a b

Denote by A2
n,m (respectively, D2

n,m) the set of all ascending (respectively, descending)
arrow diagrams with n arrows, m circles and two boundary components.

Example 2.15. All diagrams in the set A2
2,2 are presented below.

Let G be any Gauss diagram with m circles. We set

A2
n,m(G) :=

∑

A∈A2
n,m

〈A,G〉 D2
n,m(G) :=

∑

A∈D2
n,m

〈A,G〉.

A state S(φ) corresponding to φ : A→ G for an ascending (respectively descending)
diagram A with one or two boundary components will be also called ascending (re-
spectively descending). It is useful to reformulate this notion in terms of a tracing of
a diagram G.

Definition 2.16. Given φ : A → G, a passage along the boundary of the surface
Σ(A) induces a tracing of G: we follow an arc of a circle of G starting from the base
point until we hit an arrow in S(φ), turn to this arrow, then continue on another arc
of G following the orientation and so on, until we return to the base point. In case of
two boundary components we repeat the same procedure starting near the image of
the first separating arrow. Then a state S(φ) is ascending (respectively descending),
if we approach every arrow in the tracing first time at its head (respectively at its
tail).

2.5. Separating states. In this subsection we define a notion of a separating state.
This notion will be extensively used in the following sections.

a b c

i

i j

j

2

1 1

2 1

2 2

1

Figure 6. Ascending and descending labeling. Here i, j ∈ {1, 2}.
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Definition 2.17. Let G be a based Gauss diagram. An ascending (respectively de-
scending) separating state S of G is a state S of G, together with a labeling of arcs
of G (i.e., intervals of circles of G between endpoints of arrows) by 1 and 2 such that:

(1) Each arc near α ∈ S is labeled as in Figure 6a (respectively in Figure 6b).

(2) Each arc near α /∈ S is labeled as in Figure 6c.

(3) An arc with a base point is labeled by 1.

Every separating (ascending or descending) state S in G defines a new Gauss diagram
GS with labeled circles as follows: We smooth each arrow in G which belongs to S,
see Figure 7, and denote the resulting smoothed Gauss diagram by GS . Each circle
in GS is labeled by i, if it contains an arc labeled by i.

Figure 7. Smoothing of an arrow.

Now we return to arrow diagrams with two boundary components. Let A ∈ A2
n,m or

A ∈ D2
n,m. We denote by σ(A) the set of separating arrows in A and label the arcs of

circles in A by 1 if the corresponding arc belongs to the first boundary component of
Σ(A) and by 2 otherwise.

Note that each homomorphism φ : A → G induces an ascending or descending sepa-
rating state S of G, by taking S = φ(σ(A)) and labeling each arc of G by the same
label as the corresponding arc of A.

Definition 2.18. Let G be a based Gauss diagram with m circles. Let S be an
ascending (respectively descending) separating state of G, A ∈ A2

n,m (respectively

A ∈ D2
n,m), and φ : A → G. We say that φ is S-admissible, if an ascending (respec-

tively descending) separating state induced by φ coincides with S.

Definition 2.19. Let S be an ascending (respectively descending) separating state
of G, and A ∈ A2

n,m (respectively A ∈ D2
n,m). In each case we define an S-pairing

〈A,G〉S by:

〈A,G〉S :=
∑

φ:A→G

sign(φ),

where the summation is over all S-admissible φ : A→ G. We set

A2
n,m(G)S :=

∑

A∈A2
n,m

〈A,G〉S and D2
n,m(G)S :=

∑

A∈D2
n,m

〈A,G〉S .

3. Counting surfaces with one boundary component

In this section we review Gauss diagram formulas for coefficients of the Conway poly-
nomial ∇ obtained in [3, Theorem 3.5] for classical knots and 2-component classical
links.
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Theorem 3.1 ([3]). Let G be a Gauss diagram of a classical knot or 2-component
classical link L.

(2) ∇asc(G) = ∇des(G) = ∇(L),

where ∇(L) is the Conway polynomial.

Let G be a Gauss diagram with m circles. We give a direct proof of the invariance
of both ∇asc(G) and ∇des(G) under the Reidemeister moves which do not involve a
base point. This allows us to extend this result to m-component classical links and
also to define two different generalizations of the Conway polynomial to long virtual
links. At the end of this section we present some properties of these polynomials.

3.1. Invariants of long links. In this subsection we generalize the result of [3] to
m-component (classical or virtual) long links.

Theorem 3.2. Let G be a Gauss diagram of an m-component (classical or virtual)
long link L. Then ∇asc(G) and ∇des(G) define polynomial invariants of long links,
i.e. do not depend on the choice of G.

Proof. We prove that ∇asc(G) is an invariant of an underlying link. The proof for
∇des(G) is the same. It suffices to show that An,m(G) is invariant under the Rei-
demeister moves Ω1, Ω2 and Ω3 of Figure 3 applied away from the base point. Let

G and G̃ be two Gauss diagrams that differ by an application of Ω1, so that G̃ has
one additional isolated arrow α on one of the circles. Ascending states of G are in

bijective correspondence with ascending states of G̃ which do not contain α. But α

cannot not be in the image of φ : A→ G̃ with A ∈ An,m, because A should have one

boundary component. Thus An,m(G) = An,m(G̃).

Let G and G̃ be two Gauss diagrams that differ by an application of Ω2, so that G̃
has two additional arrows αε and α−ε, see Figure 3. Ascending states of G are in

bijective correspondence with ascending states of G̃ which do not contain α±ε. Note

that both αε and α−ε can not be in the image of φ : A→ G̃ with A ∈ An,m because A

has one boundary component. Ascending states of G̃ which contain one of α±ε come

in pairs S ∪ αε and S ∪ α−ε with opposite signs, thus cancel out in An,m(G̃). Hence

An,m(G) = An,m(G̃).

Let G and G̃ be two Gauss diagrams that differ by an application of Ω3, as shown in

Figure 3 (G is on the left and G̃ is on the right).

Then there is a bijective correspondence between ascending states of G and G̃. This
correspondence preserves the signs and the combinatorics of the order in which the
tracing enters and leaves the neighborhood of these arrows. The table below summa-
rizes this correspondence.



10 MICHAEL BRANDENBURSKY

1

2
3

1

2
3

1

3
2

1

3
2

2

1
3

2

1
3

1

2
3

1

2
3

1

3
2

1

3
2

2

3
1

2

3
1

3

1
2

3

1
2

2

1
3

2

1
3

1

2
3

1

2
3

1

2
3

1

2
3

2

1
3

2

1
3

1

2
3

1

2
3

1

3
2

1

3
2

1

2
3

1

2
3

For a better understanding of this table, let us explain one of the cases in details.
Denote the top, left, and right arrows in the fragment by αt, αl, and αr respectively.

Consider a state S ∪ αl ∪ αr of G which contains two arrows of the fragment. The
order of tracing the fragment depends on S. Only two orders of tracing may give an
ascending state:

States of G :

1in

2in
3in2out

3out

1out

or

1in 1out

3in
2in3out

2out

States of G̃ : 2out

1in 1out

3in
2in 3out

or

1in

2out3in
2in3out

1out

Here the three consecutive entries and exits from the fragment are indicated by 1in,

1out, 2in, 2out, 3in, 3out. In the first case, the corresponding state of G̃ is S∪αt∪αr.
Note that the pattern of entries and exits from the fragment is indeed the same as in

G. In the second case, the corresponding state of G̃ is S ∪ αt ∪ αl. The pattern of
entries and exits is again the same as in G. �

3.2. Properties of An,m(G) and Dn,m(G).

Theorem 3.3. Let G+, G− and G0 be Gauss diagrams which differ only in the
fragment shown in Figure 8. Then

(3) ∇asc(G+)−∇asc(G−) = z∇asc(G0) ∇des(G+)−∇des(G−) = z∇des(G0).
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+ −

Figure 8. A Conway triple of Gauss diagrams.

Proof. Again we will prove this theorem for ∇asc. Denote by m and m0 the number
of circles in G± and G0, respectively. It is enough to prove that for each n we have

(4) An,m(G+)−An,m(G−) = An−1,m0
(G0).

Denote the arrows of G+ and G− appearing in the fragment in Figure 8 by α+ and
α−, respectively. The proof of the skein relation is the same as in [3]. All ascending
states of G± which do not contain α± cancel out in (4) in pairs. Each ascending state
S ∪ α± of G± corresponds to a unique ascending state S of G0, and vice versa: if
S is an ascending state of G0, then (depending on the order of the fragments in the
tracing) exactly one of S ∪ α+ and S ∪ α− will give an ascending state on either G+

or G−. �

It is easy to see that both An,m(G) and Dn,m(G) depend on the position of the base
point when G is a Gauss diagram associated with a virtual link diagram. Let G

and Ĝ be two Gauss diagrams shown in Figure 9. Then A2,1(G) = 1, A2,1(Ĝ) = 0,

D2,1(G) = 0, D2,1(Ĝ) = 1.

However, for classical links this is not the case. Our next theorem states that in the
case of classical links, both ∇asc(G) and ∇des(G) are independent of the position of
the base point.

G G

+ +

=

+ +

=^

Figure 9. Dependence on a basepoint.

Theorem 3.4. Let G be a based Gauss diagram of an m-component classical link L.
Both ∇asc(G) and ∇des(G) are independent of the position of the base point.

Proof. We will prove the independence of An,m(G) of the position of the base point,
the proof for Dn,m(G) is the same. We prove this statement by induction on the
number of arrows in G.

If G has no arrows, there is nothing to prove. Now let us assume that the statement
holds for any (classical) Gauss diagram with less than k arrows, and let G be a Gauss
diagram with k arrows. If k < n, then An,m(G) = 0 and we are done, so we may
assume that k ≥ n. Suppose that the base point lies on the i-th component of G.
We should prove that we may move the base point across any arrowhead or arrowtail
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on the i-th component, and to shift it to any other, say, j-th, component. Denote by
G1, . . . , G7 Gauss diagrams which differ only in a fragment which looks like

G1 G7G4 G5 G6G2 G3

i ji ji ji j i j i ji j

respectively. It suffices to prove that we have:

(5) An,m(G1) = An,m(G2) , An,m(G3) = An,m(G4) , An,m(G3) = An,m(G5).

Denote by α the arrow appearing in the fragment above. The first equality is immedi-
ate; indeed, in G1 and G2 there are no ascending states with one boundary component
which contain α (and all other ascending states are in a bijective correspondence).

To prove the second equation in (5), note that there is a bijection between ascending
states of An,m(G3) and An,m(G4) which do not contain α; the remaining ascending
states of G3 and G4 look exactly like the ones of G6 and G7, respectively; thus we
have

An,m(G3)−An,m(G4) = An−1,m0
(G6)−An−1,m0

(G7) = 0,

where m0 = m ± 1 is the number of circles in G6 and G7 and the second equality
holds by the induction hypothesis. It is worth to mention that since G3 and G4 are
diagrams of classical links, then so are G6 and G7.

The proof of the last equality in (5) is more complicated. We will use an inner
induction on the number r of arrows which have only their arrowtail on the i-th
component. If r = 0, then An,m(G3) = An,m(G5) = 0. Indeed, for r = 0 there are
no ascending states in G5 (since we cannot reach the i-th circle), so An,m(G5) = 0.
Also, since r = 0, i-th component of the link is under all other components, so we
may move it apart by a finite sequence of Reidemeister moves Ω2 and Ω3 applied
away from the base point, converting G3 into a Gauss diagram with an isolated i-th
component (here we use the fact that G3 is associated with a classical link diagram);
thus An,m(G3) = 0 by Theorem 3.2.

Let’s establish the step of induction. On both G3 and G5 pick the same arrow, which
has only its arrowtail on the i-th component, and apply the skein relation of Theorem
3.3 to simplify the corresponding Gauss diagrams. Diagrams on the right-hand side of
the skein relation have less than k crossings, so the right-hand sides are equal by the
induction on k; the remaining terms in the left-hand side are also equal by induction
on r. �

Corollary 3.5. Let G be a Gauss diagram of an m-component classical link L. Then

∇asc(G) = ∇des(G) = ∇(L),

i.e. for every n we have An,m(G) = Dn,m(G) = cn(L).

Proof. By Theorems 3.2 – 3.4, An,m(G) and Dn,m(G) are link invariants which satisfy
the same skein relation as cn(L). It remains to compare their normalization, i.e. their
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values on the unknot O. A standard Gauss diagram G(O) of an unknot consists
of one circle with no arrows. It follows that D0,1(G(O)) = A0,1(G(O)) = 1, and
Dn,m(G(O)) = An,m(G(O)) = 0 otherwise. Hence An,m(G) and Dn,m(G) have the
same normalization as cn(L) and the corollary follows. �

Example 3.6. Consider a 3-component link L and the Gauss diagram G of L shown
below:

− −

−−
4

1 2

3

The only ascending state of G is {3, 4}. It sign is +. Thus c2(L) = 1 and cn(L) = 0
for all n 6= 2, so ∇(L) = z2.

3.3. Alexander-Conway polynomials of long virtual links. In this subsection
we study properties of the polynomials ∇asc and ∇des for long virtual links, and
compare them with other existing constructions.

Let L be a classical or long virtual link and G be any Gauss diagram of L. Polynomials
∇asc(L) := ∇asc(G) and ∇des(L) := ∇des(G) were defined in [3], but the proof that
they are well defined for classical links with more than 2 components and for long
virtual links was not presented. By Theorem 3.2 and Corollary 3.5, ∇asc(L) and
∇des(L) are invariants of L, and if L is a classical link

∇asc(L) = ∇des(L) = ∇(L).

Note that for long virtual links it may happen that

∇asc(L) 6= ∇des(L).

For example, let G be a Gauss diagram of the long virtual Hopf link L shown in
Figure 2. Then ∇asc(L) = z, but ∇des(L) = 0. We denote by

∇asc−des(L) := ∇asc(L)−∇des(L).

This polynomial vanishes on classical links but, as we will see below, may be used to
distinguish virtual links from classical links.

Let D be a diagram of a (long) virtual link L and G its corresponding Gauss diagram.
Pick a classical crossing on D. A move on D and the corresponding move on G shown
in Figure 10 is called the virtualization move.

ε ε

Figure 10. The virtualization move.

Theorem 3.7. Let L and L1 be long virtual links. Then the following holds.
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(1) ∇asc(L#L1) = ∇asc(L)∇asc(L1) , ∇des(L#L1) = ∇des(L)∇des(L1), where
L#L1 denotes a long virtual link which is a connected sum of L and L1.

(2) Non-trivial coefficients of ∇des and ∇asc are not invariant under the virtual-
ization move

(3) Coefficients of ∇des(L) and ∇asc(L) are Vassiliev invariants in the sense of
both GPV [10] and Kauffman [12].

Proof. The proof of (1) is straightforward and follows from the definition of ∇asc and
∇des.

Now we prove (2). Consider even n first. Let n = 2k and let G and G1 be Gauss
diagrams of long virtual knots shown in Figure 11a and 11b respectively. Note that
G and G1 differ by an application of the virtualization move. Both G and G1 have
n+ 1 arrows. It is easy to check that

An,1(G) = −1 Dn,1(G) = 1, but An,1(G1) = Dn,1(G1) = 0.

+

−

−

+

−

−

ba

2k 2k

Figure 11. Diagrams of long virtual knots that differ by an applica-
tion of the virtualization move.

To prove the statement for odd n, add a Hopf-linked unknot to the above diagrams.

Now we prove (3). It is enough to prove that An,m(G) and Dn,m(G) are GPV finite
type invariants, because any GPV finite type invariant is automatically of Kauffman
finite type. But [10, page 12] implies, that any invariant given by an arrow diagram
formula with n arrows is GPV finite type of degree n. �

Remark 3.8. It follows from [6, Theorem 1.1], that (2) in Theorem 3.7 follows from
(3).

Let KT be a virtual knot with a virtual diagram shown in Figure 12. This knot is
called the Kishino knot. It has attracted attention for its remarkable property that it
is a connected sum of two diagrams of the trivial knot; it has trivial Jones polynomial,
Z ′KT

(t, y) = 0 (for the definition of Z ′ and its properties see [22] and Paragraph 3.4),

and the virtual knot group of KT is isomorphic to Z, see [13]. It was first proved to
be non-classical in [13]. We show that KT is non-classical using the polynomials ∇asc,
∇des and ∇asc−des.



LINK INVARIANTS VIA COUNTING SURFACES 15

Figure 12. A diagram of the Kishino knot.

Proposition 3.9. Polynomials ∇asc, ∇des and ∇asc−des detect the fact that KT is a
non-classical knot.

Proof. Recall that for any Gauss diagram G of a classical knot all these polynomials
are independent of the position of the base point. Consider two Gauss diagrams G

and Ĝ of KT which differ only by the position of the base point, see Figure 13.

+ +

−

−−
++

−
== GG ^

Figure 13. Gauss diagrams of the Kishino knot.

We have

∇asc(G) = 1− 2z2 + z4 ∇des(G) = 1 ∇asc−des(G) = −2z2 + z4 but

∇asc(Ĝ) = 1 ∇des(Ĝ) = 1− 2z2 + z4 ∇asc−des(Ĝ) = 2z2 − z4.

�

Remark 3.10. In order to prove Proposition 3.9, i.e. to prove that the Kishino knot
is not classical, it is enough to use Corollary 3.5, i.e. to show that ∇asc−des(G) 6= 0,
where G is a Gauss diagram shown in Figure 13.

3.4. Comparison with other constructions of Alexander-Conway polynomi-

als of virtual links. In [22] Sawollek associated to every link diagram D of a virtual
link L a Laurent polynomial Z ′D(t, y) in two variables t, y. He proved that Z ′D(t, y) is
an invariant of virtual links up to multiplication by powers of t±1, and that it vanishes
on classical links. He also showed that Z ′D(t, y) satisfies the following skein relation:

Z ′D+
(t, y)− Z ′D−

(t, y) = (t−1 − t)Z ′D0
(t, y),

where D+,D−,D0 is a Conway triple of diagrams shown in Figure 21. It is obvious
that both ∇asc(L) and ∇des(L) are crucially different from Z ′L(t, y) because both of
them do not vanish on classical links, but one can suspect that ∇asc−des(L) coincides
with Z ′L(t, y) after a possible renormalization and a change of variables z = t−1 − t.
Sawollek proved the following theorem:

Theorem 3.11 ([22]). Let D, D1, D2 be virtual link diagrams and let D1⊔D2 denote
the disconnected sum of the diagrams D1 and D2. Then

Z ′D1⊔D2
(t, y) = Z ′D1

(t, y)Z ′D2
(t, y).
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Note that∇asc−des(L⊔L) = 0 for any long virtual link L, but Z ′L⊔L(t, y) = (Z ′L(t, y))
2.

Thus ∇asc−des(L) is also different from Z ′L(t, y).

Other generalizations of Alexander polynomials to virtual links are derived from the
virtual and extended virtual link groups, see [22] and [23, 24] respectively.

1. Following [22] we denote by ∆L(t) a polynomial which is derived from the virtual
link group of a link L. It is well defined up to sign and multiplication by powers of t±1.
For every virtual link diagram D the associated polynomial is denoted by ∆D(t). In
contrast to the classical Alexander polynomial, the Alexander polynomial of [22] for
virtual links does not satisfy any linear skein relation as stated in the next theorem:

Theorem 3.12 ([22]). For any normalization AD(t) of the polynomial ∆D(t), i.e.,
AD(t) = εDt

nD∆D(t) with some εD ∈ {−1, 1} and nD ∈ Z, the equation p1(t)AD+
(t)+

p2(t)AD−
(t) + p3(t)AD0

(t) = 0 with p1(t), p2(t), p3(t) ∈ Z[t±1] has only the trivial so-
lution p1(t) = p2(t) = p3(t) = 0.

Since ∇asc, ∇des and ∇asc−des satisfy the Conway skein relation, it follows that all of
them are different from ∆D(t) of [22].

2. Let L be a virtual link. The polynomial ∆1(L) of [23, 24] is a polynomial in
variables v, u and is well defined up to multiplication by powers of (uv)±1. If L is a
classical link, then ∆1(L) is equal to the Alexander polynomial in the variable uv. It
follows that ∇asc−des is different from ∆1, because ∆1 is not identically zero on the
family of classical links.

Given a virtual link L, we denote by L∗ the mirror image of L, i.e. a link obtained by
inverting the sign of each classical crossing in a diagram of L. The following corollary
was proved in [24].

Corollary 3.13 ([24], Corollary 5.2). Let L be a virtual m-component link. Then

∆1(L)(u, v) = (−1)m∆1(L
∗)(v, u)

up to multiplication by powers of (uv)±1.

In particular, for any virtual knot ∆1(K)(u, v) = −∆1(K
∗)(v, u).

Consider a mirror pair of long virtual knots K and K∗ with Gauss diagrams G and
G∗ shown in Figure 14.

=

++ − −

G= G*

Figure 14. A mirror pair of Gauss diagrams.

Then ∇asc(K) = ∇des(K
∗) = 1 + z2, ∇asc(K

∗) = ∇des(K) = 1. Thus both ∇asc and
∇des are different from ∆1(L) in [23, 24].

Another way to see that both ∇asc and ∇des are different from ∆1 is by finding a
virtual knot K, such that both ∇asc and ∇des detect that this knot is non-classical,
but ∆1(K) = 1 (so ∆1 does not distinguish this knot from the unknot). An example
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of such a knot K, together with a pair G and Ĝ of its Gauss diagrams which differ
by the position of the base point, is given in Figure 15. It was shown in [24] that
∆1(K) = 1.

=G
−

−

− −

=G^

−
−

− −

Figure 15. A virtual knot and two of its based Gauss diagrams.

We have

∇asc(G) = 1 + z2 ∇des(G) = 1 + z2 but

∇asc(Ĝ) = 1 + 2z2 + z4 ∇des(Ĝ) = 1.

It follows that both ∇asc and ∇des show that K is non-classical.

Finally, another generalization of the Alexander polynomial (related to the polynomial
Z ′ of [22]) to long virtual knots was presented in [1]. It is a Laurent polynomial ζ in a
variable t over the following ring T = Z[p, p−1, q, q−1]/((p− 1)(p− q), (q − 1)(p− q)).
This polynomial also vanishes on classical knots and thus ζ significantly differs from
∇asc and ∇des.

Question. Is it possible to derive ∇asc−des from ζ?

4. Counting surfaces with two boundary components

In this section we present a new infinite family of Gauss diagram formulas, which
correspond to counting of orientable surfaces with two boundary components. At the
end of this section we identify the resulting invariants with certain derivatives of the
HOMFLYPT polynomial.

4.1. Link invariants and diagrams with two boundary components. In this
subsection we define invariants of classical links using ascending and descending arrow
diagrams with two boundary components.

Recall that for every Gauss diagram G we defined notions of ascending and descending
separating states of G, see Subsection 2.5. Also, for every ascending (respectively
descending) separating state S of G and for an arrow diagram A ∈ A2

n,m (respectively

A ∈ D2
n,m) we defined, in the same subsection, a notion of S-admissible pairing

〈A,G〉S . Note that every ascending (respectively descending) separating state S of G
defines two Gauss diagrams G′S and G′′S as follows: G′S (respectively G′′S) consists of
all circles of GS labeled by 1 (respectively by 2), and its arrows are arrows of G with
both ends on these circles. All arrows with ends on circles of GS with different labels
are removed. The base point on G′S is the base point ∗ of G. The base point on G′′S is
placed near the first arrow in S which we encounter as we walk on G starting from ∗.
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If G is a Gauss diagram of a classical link L, then G′S and G′′S correspond to clas-
sical links L′S and L′′S , which are defined as follows. We smooth all crossings which
correspond to arrows in S, as shown below:

We obtain a diagram of a smoothed link LS with labeling of components induced
from the labeling of circles of GS . Denote by L′S and L′′S sublinks which consist of
components labeled by 1 and 2 respectively. Let m′ and m′′ denote the number of
components of L′S and L′′S respectively, and as usual let G′S , G

′′
S be the corresponding

Gauss diagrams. It is an immediate consequence of Definition 2.19 that

A2
n,m(G)S = sign(S)

n−|S|∑

i=0

Ai,m′(G′S)An−|S|−i,m′(G′′S)

D2
n,m(G)S = sign(S)

n−|S|∑

i=0

Di,m′(G′S)Dn−|S|−i,m′(G′′S),

where |S| is the number of arrows in S and sign(S) =
∏

α∈S sign(α).

It follows from Corollary 3.5 that for every n ≥ 0 we have

An,m′(G′S) = Dn,m′(G′S) = cn(L
′
S) and An,m′′(G′′S) = Dn,m′′(G′′S) = cn(L

′′
S)

. As an immediate corollary we get

Lemma 4.1. Let G be a Gauss diagram of an m-component link L. Then for every
n ≥ 0 and an ascending (respectively descending) separating state S of G we have

A2
n,m(G)S = sign(S)

n−|S|∑

i=0

ci(L
′
S)cn−|S|−i(L

′′
S)

D2
n,m(G)S = sign(S)

n−|S|∑

i=0

ci(L
′
S)cn−|S|−i(L

′′
S).

Summing over all ascending (descending) separating states S, we obtain

Corollary 4.2. Let G be any Gauss diagram of an m-component link L. Then for
every n ≥ 0 we have

A2
n,m(G) =

n∑

k=1

∑

S,|S|=k

sign(S)
n−k∑

i=0

ci(L
′
S)cn−k−i(L

′′
S)

D2
n,m(G) =

n∑

k=1

∑

S,|S|=k

sign(S)

n−k∑

i=0

ci(L
′
S)cn−k−i(L

′′
S)

where the second summation is over all ascending and descending separating states S
of G respectively.
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It turns out that both A2
n,m(G) and D2

n,m(G) are invariant under Ω2 and Ω3:

Theorem 4.3. Let G be any Gauss diagram of an m-component link L. Then
A2

n,m(G) and D2
n,m(G) are invariant under Reidemeister moves Ω2 and Ω3 which

do not involve the base point.

Proof. We will prove the invariance of A2
n,m(G); the proof for D2

n,m(G) is the same.

Let G and G̃ be two Gauss diagrams that differ by an application of Ω2, so that G̃
has two additional arrows αε and α−ε, see Figure 3. Ascending states of G are in

bijective correspondence with ascending states of G̃ which do not contain α±ε. Note
that αε and α−ε can not be both in the image of φ : A→ G with A ∈ A2

n,m, because

A is an ascending diagram with two boundary components. Ascending states of G̃
which contain one of α±ε come in pairs S ∪ αε and S ∪ α−ε with opposite signs, thus

cancel out in A2
n,m(G̃). Hence

A2
n,m(G) = A2

n,m(G̃).

Now, let G and G̃ be two Gauss diagrams that differ by an application of Ω3, see Figure

3 (G is on the left and G̃ is on the right). Denote the top, left, and right arrows in the
fragment by αt, αl, and αr respectively. There is a bijective correspondence between

ascending separating states of G and G̃, such that none of the arrows αr, αl and αt

belong to these states. Indeed, we may identify separating states of G and G̃ which
have the same arrows and the same labeling of arcs. For any such separating state S

we have A2
n,m(G)S = A2

n,m(G̃)S by Lemma 4.1 and Theorem 3.2.

An ascending separating state of G or G̃ may contain either exactly one arrow of
the fragment i.e. αr or αl or αt, or it may contain both arrows αr and αl. There

is a bijective correspondence between ascending separating states of G and G̃ which
contain αl. Two possible cases of this correspondence (which differ by the labeling) are
shown in Figure 16 and Figure 17. Abusing the notation we denote the corresponding

ascending separating states by Sr, Sl, St, Slr, and S̃r, S̃l, S̃t, S̃lr.

G
~

1
2

2

1 1

1
1

1

2

1 1
1
1

12 2

2
1

L

LS

~S L ~S

LSS

~
S

G

Figure 16. Identifying ascending separating states containing αl.

In both cases, links L′S and L′′S constructed from G and G̃ are isotopic, thus by

Lemma 4.1 A2
n,m(G)S = A2

n,m(G̃)
S̃
. The situation with ascending separating states

which contain αr is completely similar and is omitted.



20 MICHAEL BRANDENBURSKY

1
2

2

12 1

2
2
2

1

12 2

2
1

2
2
2

G
~

S

~
S

LS LS

L ~SL ~S

G

Figure 17. Identifying other ascending separating states containing αl.

The correspondence of ascending separating states which contain αl∪αr or αt is more
complicated. One of the two possible cases is summarized in Figure 18.

St L t L t

2 2
1

1
1

G

1

22 2

G
~

St
~

L t
~

L t
~

1 1
2
22

2

222

Slr L lr L lr

2 2
2

1
2

G

1

12 2

Figure 18. Comparison of ascending separating states of G and G̃.

Links L̃′t, L
′
t and L′lr are isotopic, thus

ci(L̃′t) = ci(L
′
t) = ci(L

′
lr).

For ci(L̃
′′

t ) we have:

ci

(
+ +

)
= ci

(
+ −

)
+ ci−1

(
+

)
= ci

( )
+ ci−1

(
+

)
.

The first equality is the skein relation of Theorem 3.3, and the second equality holds
by the invariance of ci under Ω2. Hence

ci(L̃
′′
t ) = ci(L

′′
t ) + ci−1(L

′′
lr).
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Slr
~G

~

G
~

St
~

St

1 12

1

1 1
2
2

1 1 1

2 2
1

1 1 1

1
1

G

2
2

2
1 1

1

2

1

L lr
~

L t
~

L t

L lr
~

L t
~

L t

Figure 19. Comparison of other ascending separating states of G and G̃.

Denote by k the number of arrows in St, where St is shown in Figure 18. Note that

the number of arrows in S̃t and Slr is k and k + 1, respectively. Thus

n−k∑

i=0

ci(L̃
′
t)cn−k−i(L̃

′′
t ) =

n−k∑

i=0

ci(L
′
t)cn−k−i(L

′′
t ) +

n−k−1∑

i=0

ci(L
′
lr)cn−k−i−1(L

′′
lr).

Note that sign(S̃t) = sign(St) = sign(Slr), thus by Lemma 4.1

A2
n,m(G̃)

S̃t
= A2

n,m(G)St +A2
n,m(G)Slr

.

The second possible case (which differs by labeling) is shown in Figure 19. Abusing

the notation we again denote the corresponding ascending separating states by St, S̃t,

S̃lr. Links L′′t , L̃
′′
t and L̃′′lr are isotopic. Applying the skein relation for ci(L

′
t) similarly

to the above, in this case we get

A2
n,m(G)St = A2

n,m(G̃)
S̃t

+A2
n,m(G̃)

S̃lr
.

�

Our next step is to study the behavior of A2
n,m(G) and D2

n,m(G) under an application

of the move Ω1. Both A2
n,m(G) and D2

n,m(G) change under Ω1, see Example 4.4.

Example 4.4. Let G, G1 and G2 be Gauss diagrams of an unknot shown in Figures
20a, 20b and 20c respectively. Then D2

1,1(G) = 0, but D2
1,1(G1) = 1; and A2

1,1(G) = 0,

but A2
1,1(G2) = −1.

However, this problem is easy to solve. Denote by

ADn,m(G) := A2
n,m(G) +D2

n,m(G)
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+ −

a b c

Figure 20. Gauss diagrams G, G1 and G2.

and let
In,m(G) := ADn,m(G) − w(G)cn−1(L),

where w(G) is the writhe of G, i.e. the sum of signs of all arrows in G.

Theorem 4.5. Let G be a Gauss diagram of a long m-component link L. Then
In,m(G) is an invariant of an underlying link L, i.e. is independent of a choice of G.

Proof. By Theorem 4.3, it remains to prove the invariance of In,m under Ω1 (applied

away from the base point). Let G̃ and G be two Gauss diagrams which are related

by an application of Ω1, such that G̃ contains a new isolated arrow α. Then α con-
tributes either a new ascending or a new descending separating state {a}, depending
on whether we meet its head or tail first on the passage from the base point. Contri-

bution of this state to ADn,m(G̃) is either sign(α)An−1,m(G), or sign(α)Dn−1,m(G);
but

sign(α)An−1,m(G) = sign(α)cn−1(L) = sign(α)Dn−1,m(G)

by Corollary 3.5, thus

In,m(G̃)− In,m(G) = (sign(α) −w(G̃) + w(G))cn−1(L).

It remains to note that w(G̃)− w(G) = sign(α). �

Our next step is to study dependence of A2
n,m(G) and D2

n,m(G) on the position of the
base point. The example below shows that each of them depends on the base point.

Example 4.6. Let G and Ĝ be two Gauss diagrams of the right-handed trefoil shown

below. Then A2
3,1(G) = 0 and D2

3,1(G) = 1, but A2
3,1(Ĝ) = 1 and D2

3,1(Ĝ) = 0.

+ +

+G=

+ +

+=Ĝ

However, it turns out that the sum A2
n,m(G)+D2

n,m(G) = ADn,m(G) does not depend

on the base point. Indeed, let G and Ĝ be two Gauss diagrams which differ only by

a position of their base points. Let Ŝ be an ascending separating state of Ĝ. If an

arc which contains the base point ∗ of G is labeled by 1, then S = Ŝ is an ascending

separating state of G and by Lemma 4.1 we have A2
n,m(G)S = A2

n,m(Ĝ)
Ŝ
. If an

arc which contains the base point ∗ of G is labeled by 2, we consider a descending

separating state S of G which has the same arrows as Ŝ, but opposite labels. By

Lemma 4.1, D2
n,m(G)S = A2

n,m(Ĝ)
Ŝ
. We repeat this process, replacing ascending

separating states with descending and A with D. Summing up by separating states,
in view of Corollary 4.2 we obtain the following
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Theorem 4.7. Let G be a based Gauss diagram of an m-component link L. Then
ADn,m(G) is independent of the position of the base point.

Note that ADn,m(G) is invariant under ΩF
1 move. Now Theorems 4.3 and 4.7 imply

two important corollaries.

Corollary 4.8. Let G be any Gauss diagram of an m-component framed link L. Then
ADn(L) = ADn,m(G) is an invariant of an underlying framed link, i.e does not depend
on G.

Corollary 4.9. Let G be any Gauss diagram of an m-component link L. Then
In(L) := In,m(G) is an invariant of an underlying link L, i.e. is independent of
a choice of G.

5. Properties of In

In this section we establish the skein relation for In,m. Then we identify In,m with
coefficients of a certain polynomial, which is derived from the HOMFLYPT polyno-
mial.

5.1. Skein relation. In this part we establish the skein relation for ADn,m(G). First
we recall a notion of the Conway triple of links.

Let L+, L− and L0 be a triple of links with diagrams which are identical except for a
small fragment, where L+ and L− have a positive and a negative crossing respectively,
and L0 has a smoothed crossing, see Figure 21. Such a triple of links is called a Conway
triple.

0+ −
a b

Figure 21. Conway triple

Theorem 5.1. Let L+, L−, L0 be a Conway triple of links with the corresponding
Conway triple G+, G−, G0 of Gauss diagrams, see Figures 21 and 8. Denote the
number of circles of G± and G0 by m and m0, respectively. Then

(6) ADn,m(G+)−ADn,m(G−) =



ADn−1,m0
(G0) , if m0 = m− 1

ADn−1,m0
(G0) +

∑

L′⊂L0

n−1∑

i=0

ci(L
′)cn−i−1(L0 r L′) if m0 = m+ 1,

where the summation is over all sublinks L′ of L0 which contain exactly one of the
two new sublinks resulting from the smoothing.
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Proof. Denote the arrows of G+ and G− appearing in Figure 8 by α+ and α−, respec-
tively. Let us look at labels of ascending separating states of G± and G0 on four arcs
of the shown fragment. If labels of all four arcs are the same, we may identify states
of G± and G0 with the same arrows and labels of arcs, see Figure 22a. Lemma 4.1
and Conway skein relation imply, that for every such state S

A2
n,m(G+)S −A2

n,m(G−)S = A2
n−1,m0

(G0)S .

The descending case is treated similarly.

If labels on two arcs near the head of α± coincide, but differ from labels near the tail
of α±, by Lemma 4.1 we have A2

n,m(G+)S − A2
n,m(G−)S = 0 for any such state S of

G±, and there is no corresponding state of G0, see Figure 22b. The descending case
is treated similarly.
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Figure 22. Correspondence of separating states of G0 and G±.

There are two further cases when labels of two arcs near the head of α± are different.
Such a state S of G0 corresponds either to an ascending separating state S ∪ α+ of
G+, or to an ascending separating state S ∪ α− of G−, see Figure 22c. By Lemma
4.1 we have A2

n,m(G+)S∪α+
= A2

n−1,m0
(G0)S in the first case and A2

n,m(G−)S∪α−
=

−A2
n−1,m0

(G0)S in the second case.

If m0 = m− 1, there are no other ascending separating states of any of the diagrams
and, repeating this computation for descending separating states, summing over states
and using Corollary 4.2, we obtain the first equality in (6).

If m0 = m+1, both ends of α± are on the same circle of G± and there is an additional
contribution to ADn,m(G±) of separating states S = {α±} of G±, which contain only
the arrow α± (and some labeling of arcs)1. Such separating states correspond to
labeling all circles of G0 by 1, 2 so that the based circle is labeled by 1, and two new
components of G0 resulting from the smoothing have different labels. Denote by L′

the sublink labeled by 1. The case of descending separating states {α±} is similar.
By Corollary 4.2, the contribution of these states to ADn,m(G+)−ADn,m(G−) equals

∑

L′⊂L0

n−1∑

i=0

ci(L
′)cn−i−1(L0 r L′)

and the proof follows. �

1These states have no counterpart in G0, since such a separating state of G0 should be empty and
corresponding surface disconnected.
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5.2. Identification of the invariant In. In this subsubsection we identify In with
certain derivatives of the HOMFLYPT polynomial.

Let P (L) be the HOMFLYPT polynomial of a link L. We denote by P ′a(L) the first
derivative of P (L) w.r.t. a. Then P ′a(L)|a=1 is a polynomial in the variable z. We
denote by pn(L) the coefficient of zn in zP ′a(L)|a=1. Note that pn(L) a finite type
invariant of degree n, see [11], and hence by the Goussarov theorem it admits a Gauss
diagram formula involving arrow diagrams with up to n arrows. The precise formula
is shown in the next theorem.

Theorem 5.2. Let L be an m-component link. Then for every n ≥ 0

(7) In(L) = pn(L)− Cn(L),

where Cn(L) is defined by

Cn(L) :=
∑

L′⊂L

n∑

i=0

ci(L
′)cn−i(Lr L′),

and the summation is over all proper sublinks L′ of L.

Proof. It is enough to show that In(L) + Cn(L) and pn(L) satisfy the same skein
relation and take the same value on unlinks with any number of components.

The skein relation for zP ′a(L)|a=1 follows directly from the skein relation for P (L), see
(1). Differentiating this skein relation w.r.t. a, substituting a = 1, and multiplying
by z we obtain

zP ′a(L+)|a=1 − zP ′a(L−)|a=1 + zP (L+)|a=1 + zP (L−)|a=1 = z2P ′a(L0)|a=1.

Note that P (L)|a=1 = ∇(L) is the Conway polynomial of L. Thus

zP ′a(L+)|a=1 − zP ′a(L−)|a=1 + z∇(L+) + z∇(L−) = z2P ′a(L0)|a=1.

Taking the n-th coefficient, we get

(8) pn(L+)− pn(L−) + cn−1(L+) + cn−1(L−) = pn−1(L0).

The skein relation for Cn is obtained directly from the Conway skein relation. It
depends on the number m0 of the components in L0:

(9) Cn(L+)− Cn(L−) =





Cn−1(L0), if m0 = m− 1

2
∑

L′⊂L0

n−1∑

i=0

ci(L
′)cn−i−1(L0 r L′) if m0 = m+ 1,

where the summation is over all sublinks L′ of L0 which contain both new components
appearing after the smoothing. Now Theorem 5.1 and equality (9) yield

ADn,m(G+)−ADn,m(G−) + Cn(L+)− Cn(L−) = ADn−1,m0
(G0) + Cn−1(L0).
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Deducting w(G0)cn−2(L0) from both sides of this equation and noticing that w(G0) =
w(G+)− 1 = w(G−) + 1 and cn−1(L+)− cn−1(L−) = cn−2(L0), so

w(G0)cn−2(L0) = w(G+)cn−1(L+)− w(G+)cn−1(L+)− cn−1(L+)− cn−1(L−),

we obtain the desired skein relation for In(L) + Cn(L):

(In(L+) +Cn(L+))− (In(L−) +Cn(L−))+cn−1(L+) + cn−1(L−) =

In−1(L0) + Cn−1(L0).

It remains to compare values of In(L)+Cn(L) and pn(L) on an m-component unlink
Om. From the definition of In(L) we get In(Om) = ADn,m(Om) = 0 for any n and
m. Also, the equality pn(Om) = Cn(Om) holds for any n and m, since p0(O2) =
C0(O2) = 2 and pn(Om) = Cn(Om) = 0 otherwise. This concludes the proof of the
theorem. �

Example 5.3. Let G be a Gauss diagram of a link H2 shown in Figure 23.

+
+
+
+

1
2
3

4

Figure 23. Link H2 and its Gauss diagram.

Let us calculate Cn(H2) and In(H2). Both components of H2 are trivial, so C0(H2) =
2 and Cn(H2) = 0 for n 6= 0. The only ascending states of G are {1, 2}, {1, 4},
and {3, 4}; the only descending state of G is {2, 3}. Thus AD2,2(G) = 4. Note that
c1(H2) = 2 and cn(H2) = 0 for n 6= 1, thus I2(H2) = 4 − 4 · 2 = −4 and In(H2) = 0
for n 6= 2. Indeed, one may check that P (H2) = a−3z−1 − a−5z−1 + a−3z + a−1z, so
zP ′a(H2)|a=1 = 2− 4z2.

6. Last Remarks

6.1. The case of knots. In this subsection we define for every n ≥ 0 another two
invariants IA,n and ID,n of classical knots.

Definition 6.1. Let G be a based Gauss diagram of a knot K. We go on the circle
of G starting from the base point until we return to the base point. Denote by
wA(G) (respectively wD(G)) sum of signs of all arrows of G which we pass first at the
arrowhead (respectively arrowtail).

Theorem 6.2. Let G be any based Gauss diagram of a knot K. Then for every n ≥ 0
both

IA,n(G) := A2
n,1(G) − wA(G) · cn−1(K),

ID,n(G) := D2
n,1(G) − wD(G) · cn−1(K)

are invariants of a knot K.

These invariants will be denoted by IA,n(K) and ID,n(K) respectively.
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Proof. We will prove the invariance of IA,n(G); the proof for ID,n(G) is the same.

A well-known fact in knot theory is that for classical knots, theories of closed and
long knots are equivalent. Thus it suffices to prove the invariance of IA,n(G) under
Reidemeister moves Ω1 – Ω3 applied away from the base point. Note that both wA(G)
and A2

n,1(G) are invariant under Ω2 and Ω3 (see Lemma 4.3). It remains to prove

the invariance of IA,n(G) under Ω1. Let G and G̃ be two based Gauss diagrams that

differ by an application of Ω1, so that G̃ has an additional isolated arrow α either as
in Figure 24a, or as in Figure 24b.

ε ε

ba

Figure 24. Two versions of the Reidemeister move Ω1.

In the first case, A2
n,1(G̃) = A2

n,1(G) and wA(G̃) = wA(G), thus we have IA,n(G) =

IA,n(G̃). In the second case, by Corollary 3.5 we get

A2
n,1(G̃) = A2

n,1(G) + εcn−1(K).

We also have wA(G̃) = wA(G) + ε, and thus again IA,n(G) = IA,n(G̃). �

Note that for every G we have w(G) = wA(G) + wD(G); also, for knots one has
In(K) = pn(K).

Corollary 6.3. For every knot K we have In(K) = IA,n(K) + ID,n(K) = pn(K).

6.2. Irreducible arrow diagrams. In this subsection we define a modification of
link invariants considered in Section 3. This modification allows us to reduce signifi-
cantly the number of diagrams in formulas for link invariants by using a special type
of arrow diagrams – so called irreducible diagrams.

Definition 6.4. An arrow diagram A is called irreducible if after the removal of any
arrow in A the remaining graph is connected. Otherwise, A is called reducible.

Example 6.5. Irreducible diagrams in A3,2 are shown in Figure 25a, and reducible
diagrams are shown in Figure 25b.

a b

Figure 25.

Denote by AIrn,m ⊂ An,m sets of all irreducible ascending diagrams with m circles,
n arrows, and one boundary component. Descending diagrams of the same types we



28 MICHAEL BRANDENBURSKY

will denote using D instead of A. Let G be a Gauss diagram of an m-component link
L. Define AIrn,m(G) and DIrn,m(G) by

AIrn,m(G) :=
∑

A∈AIrn,m

〈A,G〉 DIrn,m(G) :=
∑

A∈DIrn,m

〈A,G〉.

Theorem 6.6. Let G be a Gauss diagram of an m-component link L. Then both
AIrn,m(G) and DIrn,m(G) are invariants of an underlying link L. Moreover,

AIrn,m(G) = DIrn,m(G).

Proof. For the simplicity we prove this theorem in case of two-component links, i.e.
m = 2. The proof for general m is very similar and is left to the reader.

Let G be any Gauss diagram of a two-component classical link L = L1 ∪ L2, and let
A ∈ An,2 be an arrow diagram with exactly one arrow between two different circles.

The set of such arrow diagrams is denoted by
←−
An,2. We denote the set of descending

diagrams of the same type by
−→
Dn,2. We set

←−
An,2(G) :=

∑

A∈
←−
An,2

〈A,G〉
−→
Dn,2(G) :=

∑

A∈
←−
Dn,2

〈A,G〉.

Now we prove that

(10)
←−
An,2(G) = lk(L1, L2)

n−1∑

k=0

ck(L1)cn−k−1(L2) =
−→
Dn,2(G).

We start with the case of ascending diagrams. Let G1 and G2 be diagrams obtained
from G by erasing arrows between circles of G. We denote by A(G) a set of arrows
which are oriented from the non-based circle of G to the based one. Without loss of
generality suppose that a base point ∗ of G lies on G1. We pick α ∈ A(G) and erase
all other arrows in A(G). The remaining diagram is denoted by Gα. We place on G2

a base point ∗α at the tail of α. Then

∑

A∈
←−
An,2

←−
An,2(Gα) = sign(α)

n−1∑

k=0

Ak,2(G1)An−k−1,2(G2) = sign(α)
n−1∑

k=0

ck(L1)cn−k−1(L2),

where the last equality is by Corollary 3.5. It follows that

←−
An,2(G) =

∑

α∈A(G)

∑

A∈
←−
An,2

←−
An,2(Gα) = lk(L1, L2)

n−1∑

k=0

ck(L1)cn−k−1(L2).

In case of descending diagrams, we denote by D(G) a set of arrows which are oriented
from the based circle of G to the non-based one. For α ∈ D(G) we place a base point
∗α at the head of α. Now we proceed as in the former case and the proof of (10)

follows. Note that by definition AIrn,2 = An,2 \
←−
An,2 and DIrn,2 = Dn,2 \

−→
Dn,2. Now

the proof follows immediately from Corollary 3.5. �
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