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Unipotent group actions on del Pezzo cones
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Abstract

In [KPZ11b] we showed that for any del Pezzo surface Y of degree d = 4 and for any
r = 1, the affine cone X = coner(−KY )(Y ) admits an effective Ga-action. In particular,
the group Aut(X) is infinite-dimensional. In this note we prove that for a del Pezzo
surface Y of degree 6 2, the generalized cones X as above do not admit any nontrivial
action of a unipotent affine algebraic group.

1. Introduction

We are working over an algebraically closed field k of characteristic 0. Let Y be a smooth
projective variety with a polarization H, where H is an ample Cartier divisor. A generalized
affine cone over (Y,H) is the normal affine variety

coneH(Y ) = Spec
⊕
ν>0

H0(Y, νH) .

This variety coneH(Y ) is the usual affine cone over Y embedded in a projective space Pn by the
linear system |H| provided that H is very ample and that the image of Y in Pn is projectively
normal.

In this paper we deal with a smooth del Pezzo surface Y of degree d and a pluri-anticanonical
divisor H = −rKY on Y , where r > 1; we then call coneH(Y ) a del Pezzo cone. This is a usual
cone if r > 4− d (see, for example, [Dol12, Theorem 8.3.4]) and a generalized cone otherwise.

It is known [KPZ11b, 3.1.13] that for any smooth rational surface there is an ample polariza-
tion such that the associated affine cone admits an effective Ga-action. Furthermore, for any del
Pezzo surface of degree > 4 and for any r > 1, the corresponding del Pezzo cone cone−rKY

(Y )
admits such an action (loc.cit), and the group generated by all these Ga-actions is infinitely tran-
sitive off the vertex of the cone [Per11]. An effective Ga-action exists also on affine cones over
certain smooth rational Fano threefolds with Picard number 1 [KPZ11b, KPZ11a]. However, for
del Pezzo surfaces of small degrees the consideration turns out to be more complicated. In this
paper we investigate the cases d = 1 and d = 2. Our main result can be stated as follows.

Theorem 1.1. Let Y be a del Pezzo surface of degree d = KY
2 6 2. Then for any r > 1, there
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is no nontrivial action of a unipotent affine algebraic group on the del Pezzo cone

Xr = cone−rKY
(Y ) = SpecA, where A =

⊕
ν>0

H0(Y,−νrKY ) .

As in [KPZ11a, KPZ11b], we use in the proof a geometric criterion for the existence of an
effective Ga-action on the affine cone coneH(Y ) (see [KPZ12] and Theorem 2.1 below). Recently,
using this criterion, I. Cheltsov, J. Park and J. Won succeeded in proving [CPW13, Theorem 1.7]
that the affine cone over a smooth cubic surface in P3 does not admit any effective C+-action.
This answers a question of H. Flenner and the third author [FZ03, Question 2.22] and confirms
a conjecture that arises naturally from results of Section 4 in our previous paper [KPZ11b].
Summarizing, a del Pezzo cone of degree d comports an effective C+-action if and only if d > 4.

From Theorem 1.1 and [CPW13, Theorem 1.7] we deduce the following corollary.

Corollary 1.2. In the same notation as before, assume that d 6 3 and r > 4 − d, so that
Xr = cone−rKY

(Y ) is a usual del Pezzo cone. Then any algebraic subgroup G ⊂ Aut(Xr) is
isomorphic to a subgroup of Gm ×Aut(Y ), where Aut(Y ) is finite.

Proof. As follows from Theorem 1.1, G is a reductive affine algebraic group (in fact, a finite
extension of an algebraic torus). Now Lemma 2.3.1 and Proposition 2.2.6 in [KPZ11b] yield the
relations

G ↪→ Lin(Xr) ' Gm × Lin(Y ) ⊂ Gm ×Aut(Y ) ,

where the group Aut(Y ) is finite, see [Dol12].

We suggest the following conjecture:

1.3. Conjecture. If d 6 3, then for any r > 4− d, the full automorphism group Aut(Xr) of the
del Pezzo cone Xr of degree d is a finite extension of the multiplicative group Gm.

Sections 2, 3, and 4 contain necessary preliminaries. Theorem 1.1 is proven in Section 5. The
proof proceeds as follows. Assuming to the contrary that there exists a nontrivial unipotent group
action on Xr = cone(−rKY )(Y ), there also exists an effective Ga-action on Xr. By Theorem 2.1
there is an effective Q-divisor D on Y such that D∼Q−KY and U = Y \D ∼= Z×A1, where Z is
a smooth rational affine curve. Such a principal open subset U is called a (−KY )-polar cylinder
in [KPZ11b]. One of the key points consists in an estimate for the singularities of the pair (Y,D).
More precisely, we consider the linear pencil L on Y generated by the closures of the fibers of the
projection U ∼= Z × A1 → Z. Letting S be the last exceptional divisor appearing in the process
of the minimal resolution of the base locus of L , we compute the discrepancy a(S;D). Using
this and some subtle geometric properties of the pair (Y,D), we finally come to a contradiction.

2. Criterion

Let Y be a projective variety and let H be an ample Cartier divisor on Y . Recall [KPZ11b] that
an H-polar cylinder in Y is an open subset U = Y \ supp(D) isomorphic to Z × A1 for some
affine variety Z, where D is an effective Q-divisor on Y such that D ∼Q H, that is, qD and qH
are linearly equivalent integral divisors for some q ∈ N. Corollary 3.2 in [KPZ12] provides the
following useful criterion for the existence of an effective Ga-action on the affine cone (cf. also
[KPZ11b, 3.1.9]).
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Theorem 2.1. Let Y be a normal projective algebraic variety with an ample polarization H ∈
Div(Y ), and let X = coneH(Y ) be the corresponding generalized affine cone. If X is normal,
then X admits an effective Ga-action if and only if Y contains an H-polar cylinder.

We apply this criterion to a del Pezzo surface Y of degree d 6 2 and a generalized cone

Xr = Spec
⊕
ν>0

H0(Y,−νrKY )

associated with H = −rKY , where r > 1. It follows, in particular, that if the cone Xr admits an
effective Ga-action, then Y contains a cylinder Y \ suppD with D ∼Q −KY . This assumption
finally leads to a contradiction, which proves Theorem 1.1.

Remark 2.2. In [KPZ11a, KPZ11b, KPZ12] we used different notions of an H-polar cylinder. In
fact, in our setting these definitions are equivalent.

Indeed, let Y,H be as in Theorem 2.1, and let U = Y \ suppDi, where Di for i = 1, 2, 3, are
effective Q-divisors on Y . Consider the following conditions:

(1) D1 ∈ |dH| for some d ∈ N;

(2) [D2] ∈ Q+[H] in PicQ(Y );

(3) D3 ∼Q H.

Obviously, if for some i ∈ {1, 2, 3}, there exists a Di satisfying (i), then for the remaining
j ∈ {1, 2, 3}, j 6= i, there also exist Dj satisfying (j).

3. Preliminaries on weak del Pezzo surfaces

A smooth projective surface Y is called a del Pezzo surface if the anticanonical divisor −KY

is ample, and a weak del Pezzo surface if −KY is big and nef. The degree of such a surface is
deg Y = K2

Y ∈ {1, . . . , 9}.

Lemma 3.1 (see, for example, [Dol12, Proposition 8.1.23]). Blowing up a point on a del Pezzo
surface of degree d > 2 yields a weak del Pezzo surface of degree d− 1.

Theorem 3.2 (see, for example, [Dol12, Thm. 8.3.2]). Let Y be a del Pezzo surface of degree d.
Then the following hold.

(i) If d > 3, then | −KY | defines an embedding Y ↪→ Pd.
(ii) If d = 2, then | −KY | defines a double cover Φ : Y → P2 branched along a smooth curve

B ⊂ P2 of degree 4.

(iii) If d = 1, then |−KX | is a pencil with a single base point, say O. The linear system |−2KY |
defines a double cover Φ : Y → Q′ ⊂ P3, where Q′ is a quadric cone with vertex at Φ(O).
Furthermore, Φ is branched along a smooth curve B ⊂ Q′ cut out on Q′ by a cubic surface.

The Galois involution τ : Y → Y associated with the double cover Φ is a regular morphism.
It is called a Geiser involution in the case d = 2 and a Bertini involution in the case d = 1.

Remark 3.3. Recall the following facts (see, for example, [Dol12]). For an irreducible curve C on
Y we have C2 > −1 if Y is a del Pezzo surface and C2 > −2 if Y is a weak del Pezzo surface.
In both cases C2 = −1 if and only if C is a (−1)-curve, that is, if and only if −KY · C = 1, and
C2 = −2 if and only if C is a (−2)-curve, that is, if and only if −KY · C = 0. A weak del Pezzo
surface is del Pezzo if and only if it has no (−2)-curve.
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If d > 2, then any curve C on Y with −KY · C = 1 is an irreducible smooth rational curve
by statements (i) and (ii). By the adjunction formula such a C must be a (−1)-curve.

Lemma 3.4. Let Y be a del Pezzo surface of degree d 6 2. Then any member R ∈ | − KY | is
reduced and pa(R) = 1. Moreover, R is irreducible except in the case where

– d = 2; R = R1 +R2; R2
i = −1 for i = 1, 2; R1 ·R2 = 2; and R2 = τ(R1).

Furthermore, Sing(R) ⊂ Φ−1(B) and for any P ∈ Φ−1(B), there is a unique member R ∈ |−KY |
that is singular at P .

Proof. We have pa(R) = 1 by adjunction. Let R1  R be a reduced irreducible component.
Then (−KY ) · R1 < (−KY ) · R = d and so d = 2 and R1 is a (−1)-curve by Remark 3.3. Since
R2 = d = 2, we have R 6= 2R1. Therefore R = R1 +R2, where the Ri (i = 1, 2) are (−1)-curves
and R1 · R2 = 1

2(R2 − R2
1 − R2

2) = 2. Finally, in both cases we have R = Φ−1(L), where L is a
line in P2. Thus R is singular at P if and only if Φ(P ) ∈ B and L is tangent to B at Φ(P ).

Remark 3.5. Let R1 and R2 be (−1)-curves on a del Pezzo surface Y of degree 2 such that
R1 ·R2 > 2. Then R2 = τ(R1), R1 ·R2 = 2, and R1 +R2 ∈ |−KY |. Indeed, R1 + τ(R1) ∼ −KY .
Hence τ(R1) ·R2 = −1 and so τ(R1) = R2.

4. (−K)-polar cylinders on del Pezzo surfaces

Here we adjust some lemmas of [KPZ11b, § 4] to our setting.

Notation 4.1. Let Y be a del Pezzo surface of degree d. Suppose that Y admits a (−KY )-polar
cylinder

U = Y \ supp(D) ∼= Z × A1 with D =

n∑
i=1

δi∆i ∼Q −KY , (4.1)

where the ∆i are prime divisors, the δi > 0 are rational numbers, and Z is a smooth rational
affine curve. We let L be the linear pencil on Y defined by the rational map Ψ : Y 99K P1 which
extends the projection pr1 : U ∼= Z × A1 → Z.

Resolving, if necessary, the base locus of the pencil L , we obtain a diagram

W
p

~~

q

  
Y

Ψ // P1

(4.2)

where we let p : W → Y be the shortest succession of blowups such that the proper transform
LW := p−1

∗ L is base point free. Let S be the last exceptional curve of the modification p unless
p is the identity map, that is, Bs L = ∅. Notice that S is a unique (−1)-curve in the exceptional
locus p−1(P ) and a section of q. The restriction ΦLW

|U is an A1-fibration and its fibers are
reduced, irreducible affine curves with one place at infinity, situated on S.

Lemma 4.2. One of the following holds.

(i) Bs L consists of a single point, say P ;

(ii) Bs L = ∅ and 5 6 d 6 8.

Proof. Since the general members of L are disjoint in U and each one meets the cylinder U
along an A1-curve, Bs L consists of at most one point, which we denote by P . Suppose that
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Bs L = ∅. Then the pencil L yields a conic bundle Ψ : Y → P1 with a section, which is a
component of D, say ∆0. In particular, d 6 8. For a general fiber L of Ψ we have

L2 = 0, −KY · L = 2 = D · L = δ0 .

Note that Ψ has exactly 8−d degenerate fibers L1, . . . , L8−d. Each of these fibers is reduced and
consists of two (−1)-curves meeting transversally at a point. Let Ci be the component of Li that
meets ∆0. We claim that each Ci is a component of D. Indeed, otherwise

1 = −KY · Ci = D · Ci > δ0∆0 · Ci = δ0 = 2 ,

which is a contradiction. Therefore we may assume that Ci = ∆i and so

1 = D · Ci > δ0∆0 · Ci + δiC
2
i = 2− δi .

Hence δi > 1 for i = 1, . . . , 8− d. We obtain

d = −KY ·D >
∑

δi > δ0 +

8−d∑
i=1

δi > 2 + 8− d = 10− d .

Thus d > 5 as stated.

Remark 4.3. If Bs L = {P} (Bs L = ∅, respectively), then all the components ∆i of D (all
the components ∆i of D except for ∆0, respectively) are contained in the fibers of Ψ. Indeed,
otherwise not all the fibers of Ψ|U were A1-curves, contrary to the definition of a cylinder.

Lemma 4.4. For the number n of irreducible components of the curve supp(D) we have n > 10−d.

Proof. Consider the exact sequence

n⊕
i=1

Z[∆i] −→ Pic(Y ) −→ Pic(U) −→ 0 .

Since Pic(Z) = 0 and U ∼= Z×A1, we have Pic(U) = 0. Hence n > ρ(Y ) = 10− d, as stated.

Lemma 4.5. Assume that Bs L = {P}. Let L be a member of L and let C be an irreducible
component of L. Then the following hold:

(i) supp(L) is simply connected and supp(L) \ {P} is an SNC divisor;

(ii) C is rational and smooth outside P ;

(iii) if P ∈ C, then C \ {P} ' A1.

Proof. All the assertions follow from the fact that q in (4.2) is a rational curve fibration and the
fact that the exceptional locus of p coincides with p−1(P ).

In the next lemma we study the singularities of the pair (Y,D). We refer to [Kol97] or to
[KM98, Chapter 2] for the standard terminology on singularities of pairs.

Lemma 4.6 (Key Lemma). Assume that Bs L = {P}. Then the pair (Y,D) is not log canonical
at P . More precisely, using the notation introduced in 4.1, the discrepancy a(S;D) of S with
respect to KY +D is equal to −2.

Proof. We write

KW +DW ∼Q p
∗(KY +D) + a(S;D)S +

∑
a(E;D)E, (4.3)
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where the summation on the right-hand side ranges over the components of the exceptional
divisor of p except for S, and DW is the proper transform of D on W . Letting l be a general
fiber of q, by (4.3) we obtain

−2 = (KW +DW ) · l = a(S;D) .

Indeed, KY + D ∼Q 0 and l does not meet the curve supp(DW + p∗(P ) − S). This proves the
assertion.

Corollary 4.7. If Bs L = {P}, then multP (D) > 1.

Proof. Indeed, otherwise the pair (Y,D) would be canonical by [Kol97, Ex. 3.14.1], and in par-
ticular, log canonical at P , which contradicts Lemma 4.6.

Corollary 4.8. If Bs L = {P}, then every (−1)-curve C on Y passing through P is contained
in supp(D).

Proof. Assume to the contrary that C is not a component of D. Then

multP D 6 C ·D = −KY · C = 1 ,

which contradicts Corollary 4.7.

Convention 4.9. From now on we assume that d 6 3. By Lemma 4.2 we have Bs L = {P}.

Lemma 4.10. We have bDc = 0, that is, δi < 1 for all i = 1, . . . , n.

Proof. For the case d = 3, see [KPZ11b, Lemma 4.1.5]. Consider the case d = 1. By Lemma 4.4,
n > 9. For any i = 1, . . . , n, we have

1 = −KY ·D =
n∑
j=1

δj(−KY ) ·∆j > δi(−KY ) ·∆i .

Since the anticanonical divisor −KY is ample, it follows that δi < 1, as required.

Now let d = 2. Assuming that δ1 > 1, we obtain

2 = −KY ·D =

n∑
i=1

δi(−KY ) ·∆i > δ1(−KY ) ·∆1 > −KY ·∆1 , (4.4)

where n > 8 by Lemma 4.4. It follows that −KY · ∆1 = 1, that is, ∆1 is a (−1)-curve. Then
C := τ(∆1) is also a (−1)-curve, where τ is the Geiser involution, and ∆1 + C ∼ −KY . If
C ⊂ supp(D), for example, C = ∆2, then by (4.4) we obtain that δ2 < 1. Now ∆1 + ∆2 ∼Q D
yields a relation with positive coefficients

(1− δ2)∆2 ∼Q (δ1 − 1)∆1 +
n∑
i=3

δi∆i .

This implies that C2 = ∆2
2 > 0, which is a contradiction.

Hence C 6⊂ supp(D). Thus C ∼QD−∆1, where the right-hand side is effective. This leads to
a contradiction as before.

Lemma 4.11 (cf. [KPZ11b, Lemma 4.1.6]). For a member L of L , any irreducible component of
L passes through the base point P of L .
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Proof. Assume to the contrary that there exists a component C of L such that P 6∈ C. Then
C2 < 0 (see the proof of Lemma 4.2). Since we also have −KY · C > 0, C is a (−1)-curve.
Let C ′ be a component of L meeting C. If P 6∈ C ′, then C and C ′ are both (−1)-curves and so
L = C+C ′. Thus L = |C+C ′| is base point free, which contradicts Lemma 4.2. Hence C ′ passes
through P . Since P is a unique base point of L , C does not meet any member L′ ∈ L different
from L. By Lemma 4.5, L is simply connected, so C ′ is the only component of L meeting C.
Note that supp(D) is connected because D is ample. Hence C ′ must be contained in supp(D).
In fact, supposing to the contrary that C ′ is not contained in supp(D), the curve C must be
contained in supp(D). Indeed, the affine surface U = Y \ supp(D) does not contain any complete
curve. Since supp(D) is connected, there is an irreducible component of supp(D) intersecting C
and passing through P . This contradicts Lemma 4.5. Thus we may suppose that C ′ = ∆1.

If C ⊂ supp(D), say, C = ∆2, then

1 = −KY · C =

(
n∑
i=1

δi∆i

)
·∆2 = δ1 − δ2 .

Hence δ1 = δ2 + 1 > 1, which contradicts Lemma 4.10.

Therefore C 6⊂ supp(D) and so

1 = −KY · C =

(
n∑
i=1

δi∆i

)
· C = δ1 ,

which again gives a contradiction by Lemma 4.10.

5. Proof of Theorem 1.1

Below, we freely use the notation of the previous section. According to our geometric criterion
(see Theorem 2.1), Theorem 1.1 is a consequence of the following proposition.

Proposition 5.1. Let Y be a del Pezzo surface of degree d 6 2. Then Y does not admit any
(−KY )-polar cylinder.

Convention 5.2. We let Y be a del Pezzo surface of degree d 6 2. We assume to the contrary
that Y possesses a (−KY )-polar cylinder U as in (4.1). By Lemma 4.2, we have Bs L = {P}.

Lemma 5.3. For any R ∈ | −KY |, we have supp(R) 6⊂ supp(D).

Proof. Suppose to the contrary that supp(R) ⊂ supp(D). Let λ ∈ Q>0 be maximal such that
D − λR is effective. We can write

D = λR+Dres ,

where Dres is an effective Q-divisor such that supp(R) 6⊂ supp(Dres). For t ∈ Q>0, we consider
the following linear combination:

Dt := D − tR+
t

1− λ
Dres ∼Q −KY .

We have D0 = D and Dλ = 1
1−λDres. For t < λ, the Q-divisor Dt is effective with supp(Dt) =

supp(D). By Lemma 4.6 applied to Dt instead of D, for any t < λ, the pair (Y,Dt) is not log
canonical at P , with discrepancy a(S;Dt) = −2. Since the function t 7→ a(S;Dt) is continuous,
passing to the limit, we obtain a(S;Dλ) = −2. Hence the pair (Y,Dλ) is not log canonical at P
either and so multP (Dλ) > 1.
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Assume that R is irreducible. Since R ⊂ supp(D), R is a component of a member of L . Hence
the curve R is smooth outside P and rational (see Lemma 4.5(ii)). Since pa(R) = 1, R is singular
at P and multP (R) = 2. Since R is different from the components of Dλ and multP (Dλ) > 1,
we obtain

2 > K2
Y = Dλ ·R > multP (Dλ) multP (R) > 2 , (5.1)

which is a contradiction.

Now let R be reducible. By Lemma 3.4, we have d = 2 and R = R1 +R2, where, say, Ri = ∆i

for i = 1, 2 are (−1)-curves passing through P (see Lemma 4.11). We may assume that δ1 6 δ2

and so λ = δ1. Since ∆1 is not a component of Dλ, we obtain

1 = −KY ·R1 = Dλ ·∆1 > multP (Dλ) > 1 ,

which is a contradiction. This finishes the proof.

Proof of Proposition 5.1 in the case d = 1. Since dim |−KY | = 1, there is a C ∈ |−KY | passing
through P . Furthermore, by Lemma 3.4, C is irreducible. By Lemma 5.3, C is not contained in
supp(D). As in (5.1), we get a contradiction. Indeed, by Corollary 4.7, we have

1 = C2 = D · C > multP D ·multP C > 1 .

Convention 5.4. From now on, we assume that d = 2.

Lemma 5.5. A member R ∈ | −KY | cannot be singular at P .

Proof. Assume that P ∈ Sing(R). By Lemma 3.4, we have two possibilities for R. Suppose first
that R is irreducible. By Lemma 5.3, R 6⊂ supp(D), and we get a contradiction as in (5.1). In
the second case, R = R1 + R2, where R1 and R2 are (−1)-curves passing through P . Hence
R1, R2 ⊂ supp(D) by Corollary 4.8. The latter contradicts Lemma 5.3.

Notation 5.6. We let f : Y ′ → Y be the blowup of P and let E′ ⊂ Y ′ be the exceptional divisor.
By Lemma 3.1, Y ′ is a weak del Pezzo surface of degree 1.

5.7. Applying Proposition 5.1 with d = 1, we can conclude that Y ′ is not del Pezzo because it
contains a (−KY )-polar cylinder. Indeed, let D′ be the crepant pull-back of D on Y ′, that is,

KY ′ +D′ = f∗(KY +D) and f∗D
′ = D .

Then we have

D′ =

6∑
i=1

δi∆
′
i + δ0E

′ , where δ0 = multP (D)− 1 > 0 (5.2)

(see Lemma 4.7) and ∆′i is the proper transform of ∆i on Y ′. Thus D′ is an effective Q-divisor
on Y ′ such that D′ ∼Q −KY ′ and Y ′ \ suppD′ ' U ' Z × A1 is a (−KY )-polar cylinder.

Lemma 5.8. We have multP (D) < 2 and bD′c = 0.

Proof. Suppose first that all components of D are (−1)-curves. Then ∆i · ∆j = 1 for i 6= j by
Remark 3.5 and Lemma 5.3. Hence f is a log resolution of the pair (Y,D). Therefore 1−

∑
δi =

a(Y,E′) < −1 by Lemma 4.6, so
∑
δi > 2. On the other hand, 2 = −KY ·D =

∑
δi, which is

a contradiction. This shows that there exists a component ∆i of D which is not a (−1)-curve.
By the dimension count there exists an effective divisor R ∈ | −KY | passing through P and a
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general point Q ∈ ∆i. On the other hand, there is no (−1)-curve in Y passing through Q. So
by Lemma 3.4, we may assume that R is reduced and irreducible. By Lemma 5.3, R is different
from the components of D. Assuming that multP (D) > 2, we obtain

2 = R ·D > multP (D) + δi > 2 ,

which is a contradiction. This proves the first assertion. The second assertion follows because
δ0 > 0 in (5.2).

Corollary 5.9. The pair (Y ′, D′) is Kawamata log terminal in codimension one and is not log
canonical at some point P ′ ∈ E′.

Proof. This follows from Lemma 5.8 taking into account that D′ is the crepant pull-back of D,
see [Kol97, L. 3.10].

Since dim | −KY ′ | = 1, there exists an element C ′ ∈ |−KY ′ | passing through the point P ′ as
in Corollary 5.9.

Lemma 5.10. The point P ∈ Y is a smooth point of the image C = f∗C
′.

Proof. This follows by Lemma 5.5 because C ∈ | −KY | passes through P .

Corollary 5.11. E′ is not a component of C ′.

Proof. We can write f∗C = C ′ + kE′ for some k ∈ Z. Then k = −kE′2 = C ′ · E′ = 1. By
Lemma 5.10, the coefficient of E′ in f∗C is equal to 1 as well. The assertion now follows.

Lemma 5.12. C is reducible.

Proof. Indeed, otherwise C ′ is irreducible by Corollary 5.11. Since multP ′ D′ > 1 by Corollary 5.9
and D′ ·C ′ = K2

Y ′ = 1, C ′ is a component of D′. Hence C is a component of D. This contradicts
Lemma 5.3.

Lemma 5.13. We have C ′ = C ′1+C ′2, where C1 is a (−1)-curve, C ′2 is a (−2)-curve, and C ′1·C ′2 = 2.
Furthermore, P ′ ∈ C ′2 \ C ′1 and C2 = f(C ′2) is a (−1)-curve.

Proof. Since C is reducible and C ∈ | − KY |, by Lemma 3.4, C = C1 + C2, where C1, C2 are
(−1)-curves with C1 · C2 = 2. By Lemma 5.10, P /∈ C1 ∩ C2, where C2 is a component of D by
Corollary 4.8, while by Lemma 5.3, C1 is not. So we may assume that P ∈ C2 \ C1. The lemma
now follows from Corollary 5.9.

5.14. Letting C2 = ∆1 from now on, we can write D = δ1C2 + Dres, where δ1 > 0, Dres is an
effective Q-divisor, and C2 is not a component of Dres. Similarly,

D′ = δ1C
′
2 +D′res + δ0E

′ ,

where D′res is the proper transform of Dres and δ0 = multP (D)− 1 (cf. (5.2)).

Lemma 5.15. We have 2δ1 6 1.

Proof. This follows from

0 6 Dres · C1 = (D − δ1C2) · C1 = 1− 2δ1 .

Lemma 5.16. In the same notation as before, δ0 +D′res · C ′2 > 1.
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Proof. Let us show first that {P ′} = C ′2∩E′ = C ′2∩supp(D′res). Indeed, P ′ ∈ E′ by construction,
P ′ ∈ C ′2 by Lemma 5.13, and P ′ ∈ supp(D′res) because otherwise P ′ would be a node of D′

(indeed, E′ meets C ′2 transversally at P ′) and so the pair (Y ′, D′) would be log canonical at P ′,
contrary to Corollary 5.9. On the other hand, the curves C ′2 and D′res have only one point in
common, by Lemma 4.5(i).

Since δ1 < 1, the pair (Y ′, C ′2 +D′res + δ0E
′) is not log canonical at P ′. By applying [KM98,

Corollary 5.57], we now obtain

1 < (D′res + δ0E
′) · C ′2 = δ0 +D′res · C ′2 ,

as stated.

Proof of Proposition 5.1 in the case d = 2. We use the same notation as above. Since C ′2 is a
(−2)-curve, by virtue of Lemmas 5.15 and 5.16, we have

1− δ0 < D′res · C ′2 = (D′ − δ1C
′
2 − δ0E

′) · C ′2 = 2δ1 − δ0 6 1− δ0 ,

which is a contradiction. Now the proof of Proposition 5.1 is completed.

Remark 5.17. Our proof of Proposition 5.1 goes along the lines of that of Lemmas 3.1 and 3.5 in
[Chel08]. 1 However, this proposition does not follow immediately from the results in [Chel08].
Indeed, in the notation of [Chel08], by Lemma 4.6, we have lct(Y,D) < 1. This is not sufficient
to get a contradiction with [Chel08, Theorem 1.7]. The point is that our boundary D is not
arbitrary, on the contrary, it is rather special (see Lemma 4.5).
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