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Abstract. Deligne introduced the concept of special values of automorphic L-func-
tions. The arithmetic properties of these L-functions play a fundamental role in modern
number theory. In this paper we prove a trace formula which relates special values of
the Hecke, Rankin, and the central value of the Garrett triple L-function attached to
primitive newforms. This type of trace formula is new and involves special values in the
convergent and non-convergent domain of the underlying L-functions.
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1. Introduction and Statement of results

The main result of this paper is the discovery of an arithmetic trace formula. This
formula relates special values of various kinds of automorphic L-functions. Our previous
knowledge of the basic facts on the arithmetic nature of special values is built on the
fundamental works of some of the pioniers in this field: Siegel [Si69], Klingen [Kl62],
Shimura [Sh76], Zagier [Za77], Deligne [De79] and Garrett [Ga87].

Let g ∈ Sk(SL2(Z)) be a primitive (normalized Hecke eigenform) cusp form of integer
weight k. Let (fj)j ∈ S2k−2 and (gi)i ∈ Sk be primitive eigenbasis. The trace formula
compares the weighted average

∑
j of special values of the non-trivial piece of the triple

L-function L(fj⊗Sym2(g), ck) evaluated at the central value ck and the average
∑

i of the
triple L-function L(g⊗g⊗gi, 2k−2) and an error term expressed by special values related
to the Rankin L-function attached to g. This special value L(fj ⊗ Sym2(g), ck) and the
related triple L-function recently played a prominent role in the proof of the Gross-Prasad
conjecture of Saito-Kurokawa lifts given by Ichino [Ich05]. More generally Ikeda stated
in [Ik06] a conjecture on the explicit value of a certain period which involves the central
value of L-functions (Conjecture 5.1) of the type studied in this paper. There the non-
vanishing of the central value is important. Recently some progress has been obtained by
Katsurada and Kawamura [KK06]. The focus of this paper is the proof of the arithmetic
trace formula and not applications. Nevertheless we believe that there will be applications
towards the problems proposed by Iwaniec and Sarnak in the survey article [IS02].

Before we go into more details we put our results into a more general framework and
give relations to other results.
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Since the eighteenth century since the days of Euler (1707 - 1783) the analytic and
arithmetic properties of infinite series of type

(1.1) L(s) :=
∞∑
n=1

A(n)n−s (s ∈ C)

at integral values m = . . . − 2,−1, 0, 1, 2, . . . have always revealed significant invariants
and properties of the underlying motivic object related to the sequence A(1), A(2), . . . of
complex numbers. Significant series arise when the function A(n) is multiplicative and
L(s) converges absolutely and locally uniformly if Re(s) is large enough. These series are
nowadays called L-functions.

Examples are given by the Dedekind zeta functions ζK(s), the Hasse-Weil zeta functions
ZE(s) and the Hecke L(f, s) and Rankin L-functions D(f, s) attached to algebraic number
fields K, elliptic curves E and primitive elliptic cusp forms f . They have a meromorphic
continuation to the whole complex plane and satisfy a functional equation. Let us just
recall some interesting properties. The Riemann zeta function ζ(s) := ζQ(s) has a single
simple pole at s = 1. The non-vanishing at ζ(1 + it) for t ∈ R directly leads to the prime
number theorem. The Kronecker limit formula of ζK gives information on the regulator,
class number and other invariants of the number field K. From Euler we know that

(1.2) ζ(2m) =
(−1)m−122m−1B2m

(2m)!
π2m for m ∈ N.

Here Bm denotes the m-th Bernoulli number. Let ∆(z) be the Ramanujan function, the
unique primitive cusp form of level 1 of weight 12, with Fourier coefficients τ(n). It is
known that up to normalization the values of the Rankin type L-function D(∆, s) at
integral values within the ”critical strip” are rational numbers, e.g.,

(1.3) D(∆, 14) =
ζ(6)
ζ(3)

∞∑
n=1

τ(n)2

n14
=

414

14!
π17 ‖ ∆ ‖2 .

Let 〈 , 〉 be the Petersson scalar product and ‖ ‖ the Peterson norm ((see (2.1) for details).
Then ‖ ∆ ‖2= 1.03536205679× 10−6 with 12-digits accuracy (see[Za77]).

The concept of critical values of a motivated L-function and conjectures on the arith-
metic nature has been introduced by Deligne. Let L̂(s) := γ(s)L(s) be the completion
of L(s) at infinity, i.e., γ(s) is essentially a product of Γ-functions with functional equa-
tion L̂(s) = L̂(w − s), w ∈ N. Then m ∈ Z is a critical value if and only if γ(m) and
γ(w −m) are finite. Deligne preticts that then L(m) = algebraic × Ωperiod. Moreover a
certain functoriality of the action of the automorphism of the absolute Galois group over
the involved number fields can be given.

Let g ∈ Sk be primitive with Fourier coefficients (an(g))n and Satake parameter (see
2.2) α̃p, β̃p for all finite prime numbers p. For simplification we put

(1.4) Ap(g) :=
(
α̃p(g) 0

0 β̃p(g)

)
.
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Then Hecke attached to g the L-function

(1.5) L(g, s) :=
∏
p

{
det
(
12 −Ap(g) p−s

)}−1 for Re(s) >
k

2
.

With this notation the Rankin L-function D(g, s) and the triple L-function
L(f1 ⊗ f2 ⊗ f3, s) are defined by

(1.6) D(g, s) := ζ(s− k + 1)−1∏
p

{
det
(
14 −Ap(g)⊗Ap(g) p−s

)}−1 for Re(s) > k .

(1.7) L(f1 ⊗ f2 ⊗ f3, s)

:=
∏
p

{
det
(
18 −Ap(f1)⊗Ap(f2)⊗Ap(f3) p−s

)}−1 for Re(s)� 0.

Here f1, f2, f3 are primitive elliptic cusp forms. Let L̂(g, s), D̂(g, s) etc. be the completed
L-function, see ((2.12) - (2.19)). They all have a meromorphic continuation to the whole
complex plane and satisfy certain functional equations. From this the critical values can
explicitly determined. In contrast to the Rankin L-function, the center of the Hecke L-
function and the triple L-function is always a critical point. The Hecke L-function vanishes
in the center if the weight k is congruent to 2 modulo 4 and the triple L-function for the
full modular group SL2(Z). This follows from the sign in the functional equation.

Recently a piece of the triple L-function L(f ⊗ Sym2(g), s) attached to g ∈ Sk and
f ∈ S2k−2 primitive (see (2.10) for a explicit definition) showed up in the proof of the Gross-
Prasad conjecture of Saito-Kurokawa lifts. Among other things Ichino [Ich05] showed that
L
(
f ⊗ Sym2(g), 2k − 2

)
is finite.

More precisely we have the decomposition

(1.8) L(f ⊗ g ⊗ g, s) = L
(
f ⊗ Sym2(g), s

)
· L(f, s− k + 1).

Work of Deligne predicts that the unique critical value is given by 2k − 2 which matches
with the center of the functional equation. Now the vanishing of the triple L-function
becomes obvious since the Hecke L-function of f vanishes at the center. So it remains an
open question to study the arithmetic nature of L(f ⊗ Sym2(g), s). Ichino [Ich05] proved
that the value is zero if and only if a certain period vanishes. Moreover he proved how the
special value transforms under the action of any automorphism of C. Recently we have
proven [Hei05]: Let g be given then there exists at least one f such that the value

(1.9) L(f ⊗ Sym2(g), 2k − 2) 6= 0.

Here we would like to remark that the opposite is not true. This is not hard to see. One
of the main results of this paper is the following:
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Theorem: Arithmetic Trace Formula. Let k be an even positive integer. Let g ∈ Sk
be a primitive Hecke eigenform. Then we have

(1.10)
dimS2k−2∑

i=1

L̂(fi, 2k − 3) L̂
(
fi ⊗ Sym2(g), 2k − 2

)
‖ fi ‖2‖ g ‖4

= (−1)k/2 · 2k−2
dimSk∑
j=1

L̂(g ⊗ g ⊗ gj , 2k − 2)
‖ g ‖4‖ gj ‖2

+κ1

(
D̂(g, 2k − 2)

π
k
2
−1 ‖ g ‖2

)2

+ κ2
D̂(g, 2k − 2)

π
k
2
−1 ‖ g ‖2

.

Here (fi)i and (gj)j are primitive Hecke eigenbases of S2k−2 and Sk and the constants κ1

and κ2 can be explicitly given. We have

κ1 = (−1)(−1)k/224 Γ(k)2

(2k − 2)B2k−2Γ(k/2)2
,(1.11)

κ2 = (−1)(−1)k/222k+1 Γ(k + 1)
(2k − 2)BkΓ(k/2)

.(1.12)

Remark.
We would like to note that in this paper we actually prove a more general trace formula.
It involves the products of roots of L-values of type L̂

(
fi ⊗ Sym2(gi∗), 2k − 2

)
on the left

side and the more general triple L-function of type L̂(gi1 ⊗ gi2 ⊗ gj , 2k − 2) on the right
side (see (4.19)). Here i∗ = i1 or i2.

Remark.
All the totally real algebraic numbers (see the Subsections 2.1 and 2.3 for more details)

(1.13)
L̂(fi, 2k − 3)

Ω−(fi)
,
L̂(g ⊗ g ⊗ gj , 2k − 2)
‖ g ‖2‖ g ‖2‖ gj ‖2

and
D̂(g, 2k − 2)

π
k
2
−1 ‖ g ‖2

are given by evaluating an infinite product, which locally doesn’t vanish in the domain
of absolute and uniform convergence. Let f, ...,Φ be any Hecke eigenforms, then Kf,...,Φ

denotes the field over Q generated by the corresponding eigenvalues. We put Kk if we
take all the eigenvalues of an Hecke eigenbasis of Sk. Then the values given in (1.13) are
units in Kfi

,Kg,gj and Kg. This is not surprising. But new is the fact that these values
can be explicitly used to study the central value of the L-function L

(
fi ⊗ Sym2(gi∗), s

)
at

the center of symmetry, at least on average.

2. Automorphic L-functions

Let us recall some notation and basic facts on modular forms and L-functions. Moreover
we add some properties of Jacobi forms. For the general setting we refer the reader to
Iwaniec [Iw97], Eichler and Zagier [EZ85] and Klingen [Kl90]. Very useful is also the
overview article of van der Geer [Ge06].
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2.1. Basics on L-functions. Let Hg denote the Siegel upper half-space of genus g and
let Γg := Spg(Z) be the Siegel modular group of degree g. For k an even non-negative
integer let M (g)

k be the space of Siegel modular forms of weight k and genus g with respect
to Γg. Let S(g)

k be the subspace of cusp forms. We recall the definition of the Petersson
scalar product on Sgk :

(2.1) 〈F , G〉 :=
∫

Γg\Hg

F (Z) G(Z) det (Im(Z))k+g−1 dZ.

Hence ‖ F ‖2= 〈F , F 〉. To simplify notation we drop the index g in the case g = 1.
Examples of Siegel modular forms are given by Eisenstein series. Let Z ∈ Hg be an
element of the Siegel upper half-space and let k > g + 1 be even. Then

Egk(Z) :=
∑

(
A B
C D

)
∈Γ∞\Γg

det(CZ +D)−k,

where Γ∞ :=
{(

A B
0 D

)
∈ Γg

}
. This series is absolutely and locally uniformly convergent

on Hg and is an element of M (g)
k . We denote its Fourier coefficients by AE

g
k (T ), where

T ∈ Ag runs through all half-integral symmetric semi-positiv matrices of size g. Here
AE

g
k (0) = 1. Its useful to know that the coefficients AE

g
k (T ) are rational and have bounded

denominators. Let g ∈ Sk with Fourier coefficients (an(g))∞n=1. Usually g is called to be
primitive if g is a Hecke eigenform and if a1(g) = 1. Let us assume that g is primitive.
Then we attach to every prime number p the local parameters α̃p(g), β̃p(g) ∈ C defined
by the equations

(2.2) α̃p(g) + β̃p(g) = ap(g) and α̃p(g) · β̃p(g) = pk−1.

Then the Satake parameters are given by

(2.3) αp(g) := p−
k−1
2 α̃p(g) and βp(g) := p−

k−1
2 β̃p(g).

With this notation the Ramanujan Petersson conjecture is usualy found in the literature.
It claims that |αp(g)| = |βp(g)| = 1 and had been proven by Deligne [De71]. For further
simplification we put

(2.4) Ap(g) :=
(
α̃p(g) 0

0 β̃p(g)

)
.

We begin now with the definition of the L-function L(g, s) attached to g of Hecke type.
We have the absolute convergent infinite product over all prime numbers

(2.5) L(g, s) :=
∏
p

{
det
(
12 −Ap(g) p−s

)}−1 for Re(s) >
k + 1

2
.
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The standard L-function D(g, s) or sometimes called the symmetric square L-function of
g is given by

(2.6) D(g, s) := ζ(s− k + 1)−1∏
p

{
det
(
14 −Ap(g)⊗Ap(g) p−s

)}−1 for Re(s) > k .

Here ζ(s) denotes the Riemann zeta function. These infinite products can also been
directly given as Dirichlet series. We have

L(g, s) =
∞∑
n=1

an(g)n−s,(2.7)

D(g, s) =
ζ(2s− 2k + 2)
ζ(s− k + 1)

∞∑
n=1

an(g)2n−s.(2.8)

This also explains the name symmetric square.

Let now f ∈ S2k−2 and g ∈ Sk be primitive. The we put

(2.9) Sp(g) :=

 α̃p(g)2 0 0
0 pk−1 0
0 0 β̃p(g)2

 .

The next L-function L(f ⊗ Sym2(g), s) is defined by

(2.10) L(f ⊗ Sym2(g), s) :=
∏
p

{
det
(
16 −Ap(f)⊗ Sp(g) p−s

)}−1 for Re(s)� 0.

Finally we define the triple L-function. Let fj ∈ Sν(fj) be primitive for j = 1, 2, 3. Then
we have

(2.11) L(f1 ⊗ f2 ⊗ f3, s)

:=
∏
p

{
det
(
18 −Ap(f1)⊗Ap(f2)⊗Ap(f3) p−s

)}−1 for Re(s)� 0.

All these L-function have a meromorphic continuation to the whole complex s-plane. They
also have a functional equation. This can be stated in the ”right” way if we add the local
factors corresponding to the archimedian prime number with motivic background. Let
ΓR(s) := π−

s
2 Γ(s/2) and ΓC(s) := 2 (2π)−s Γ(s) be the normalized Γ-function. Then we

have for g ∈ Sk primitive the completed L-functions

L̂(g, s) := ΓC(s)L(g, s),(2.12)

D̂(g, s) := ΓR(s− k + 2)ΓC(s)D(g, s).(2.13)

Then it is well known that L̂(g, s) and D(g, s) are entire function on the whole s-plane.
They have the functional equation

(2.14) L̂(g, s) = (−1)
k
2 L̂(g, k − s)
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and

(2.15) D̂(g, s) = D̂(g, 2k − 1− s).
The holomorphic continuation of D(g, s) has first been proven by Shimura. The functional
equation had been known already by Rankin. From the times of Hecke the properties of
L̂(g, s) had been known much earlier. Since it is just the Mellin transform of g. In the
setting of the triple L-function we assume that ν(f1) > ν(f2) > ν(f3). Since we are mainly
interested in the balanced case we assume that ν(f2) + ν(f3) > ν(f1). Then

L̂ (f1 ⊗ f2 ⊗ f3, s) := ΓC (s) ΓC (s− ν(f1) + 1) ΓC (s− ν(f2) + 1)
ΓC (s− ν(f3) + 1)L (f1 ⊗ f2 ⊗ f3, s)(2.16)

This function has a meromorphic continuation to the whole s-plane and satisfies the anti-
symmetric functional equation

(2.17) L̂ (f1 ⊗ f2 ⊗ f3, s) = −L̂ (f1 ⊗ f2 ⊗ f3, ν(f1) + ν(f2) + ν(f3)− 2− s) .

This L-function vanishes in the center s0 = ν(f1)+ν(f2)+ν(f3)
2 − 1. Moreover let f ∈ S2k−2

and g ∈ Sk be primitive. Then we have by a straight forward calculation that

(2.18) L(f ⊗ g ⊗ g, s) = L
(
f ⊗ Sym2(g), s

)
· L(f, s− k + 1).

We obtain the following completed L-function

(2.19) L̂
(
f ⊗ Sym2(g), s

)
:= ΓC (s) ΓC (s− k + 1) ΓC (s− 2k + 3)L(f ⊗ Sym2(g), s).

It has a meromorphic continuation to the whole complex s-plane and has the functional
equation s 7→ 4k − 4− s.

2.2. Saito-Kurokawa correspondance. LetM+
k− 1

2

(Γ0(4)) be Kohnen’s plus space. This

is the space of modular forms of half-integral weight k − 1
2 related to the group Γ0(4) :={(

a b
c d

)
∈ SL2(Z)| c ≡ 0 (mod 4)

}
where certain Fourier coefficients are zero. Let S+

k− 1
2

(Γ0(4))

be the subspace of cuspforms. Let Jk,1 be the space of Jacobi forms of weight k and index
1 and J cusp

k,1 the subspace of cusp forms. Jacobi forms are holomorphic functions on H×C
which satiesfy certain conditions (for details see the standard reference [EZ85]).

Let hj ∈ S+
k− 1

2

(Γ0(4)). Then there exists a Jacobi cuspform Φj ∈ Jcusp
k,1 via the iso-

morphism given in Theorem 5.4 in ([EZ85]. This isomorphism is given on the level of
Fourier coefficients and is compatible with the action of the Hecke algebra of Jacobi
forms and modular forms of half-integral weight. Let (λ(n))n be the eigenvalues. Then
f(z) =

∑
n λ(n)e2πinz ∈ S2k−2 is a primitive Hecke eigenform. This is the Shimura iso-

morphism.
Moreover these spaces are isomorphic to the (cuspidal) Maass Spezialschar, a certain

subspace of S(2)
k . Let further 〈 , 〉, 〈 , 〉J and 〈 , 〉+ denote the Petersson scalar products

on M
(g)
k , the space of Jacobi forms and the plus space. Moreover let ‖ ‖∗ be the related
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Petersson norm.

Let g ∈ Sk be primitive. Then we denote by Kg the field generated by the eigenval-
ues of g. It is well known that Kg is a totally real number field. Let finitely many Hecke
eigenforms f1, · · · fl be given. They can be Siegel modular forms, Jacobi forms or modu-
lar forms of half-integral weight. Then we denote by Kf1,...,fl

the field generated by the
eigenvalues. Let f ∈ S2k−2 primitive be given. Then we can choose h ∈ S+

k− 1
2

(Γ0(4)) via

the Shimura correspondance such that the Fourier coefficients are all contained in Kf .
Similary we can choose the related Jacobi form Φ. Such h and Φ we call normalized.

2.3. Algebraicity of critical values of automorphic L-functions.
The general philosophy of Deligne [De79] predicts for any ”motivated” Dirichlet series L(s)
the structure of the arithmetic nature of certain ”critical” values. The underlying assump-
tion is that the Dirichlet series arise from some algebraic variety, Galois representation or
modular form and have a functional equation of the form

(2.20) L̂(s) = γ(s)L(s) = εL̂(w − s), ε is root of unity, w is a constant

and γ(s) is a Γ-factor. Then all integers m for which γ(m) and γ(w−m) is finite is denoted
(special) critical value. It is expected that L(m) = algebraic×Ω, where Ω is a period ”on
which something nice can be said” (Don Zagier).

a) Hecke L-function L(g, s)
Let g ∈ Sk be primitive. Then the critical values of the L-function L(g, s) are given by
the integers m = 1, 2, . . . , k − 1. We want also to remark that the center m0 = k/2 is
also a critical value and L(g,m0) = 0 if k ≡ 2 (mod 4). We know from the result of
Eichler-Shimura-Manin that there exist two periods Ω−(g),Ω+(g) ∈ R such that for the
critical values m = k

2 , . . . , k − 1 we have

(2.21)
L̂(g,m)

Ω(−1)m(g)
∈ Kg.

Here we identify (−1)k with + or − in the obvious way. The explicit nature of the other
critical values follows directly from the functional equation (see also [Ge06],§26).

b) Rankin L-function D(g, s)
Let g ∈ Sk be primitive. Then the critical values of the Rankin type L-function D(g, s)
are given by m = 1, 3, . . . , k− 1 and k, k+ 2, . . . , 2k− 2. Here the center m0 = 2k−2

2 is not
an integer and hence not a critical value. We have

(2.22)
D(g,m)

π2m−k+1 ‖ g ‖2
=
(

21−mΓ
(
m− k + 2

2

)
Γ(m)

)−1

π
k−m

2
D̂(g,m)
‖ g ‖2

∈ Kg

for the even critical values. Supplementary we deduce from the funtional equation, that
for the odd critical values we have D(g,m)/(πm ‖ g ‖2) ∈ Kg.
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c) Triple L-function
For the triple L-function L (f1 ⊗ f2 ⊗ f3, s) with fj ∈ Sνj we fix the ordering ν(f1) >
ν(f2) > ν(f3) and assume that we are in the situation of the balanced case ν(f2)+ν(f3) >
ν(f1). Then the critical values m are given by

(2.23) ν(f1) 6 m 6 ν(f2) + ν(f3)− 2.

Here the center m0 = ν(f1)+ν(f2)+ν(f3)
2 − 2 is also a critical value. It can deduced from the

functional equation and the some finiteness theorem that the triple L-function vanishes in
the center (see Orloff ([Or87]). Moreover we have

(2.24)
L (f1 ⊗ f2 ⊗ f3,m)

π4m+A ‖ f1 ‖2‖ f2 ‖2‖ f3 ‖2
∈ Kf1,f2,f2 ,

with A = 3− ν(f1)− ν(f2)− ν(f3).

EXAMPLE: Let f1 = f ∈ S2k−2 and f2 = f3 = g ∈ Sk be primitive. Then we have
exactly one critical value m = 2k − 2. This is also equal to the center. Hence we
have L (f ⊗ g ⊗ g, 2k − 2) = 0. Moreover let m = 2k − 2 be a critical value and let
ν(f1) = ν(f2) = ν(f3) = k. Then we have

(2.25)
L̂ (f1 ⊗ f2 ⊗ f3, 2k − 2)
‖ f1 ‖2‖ f2 ‖2‖ f3 ‖2

∈ Kf1,f2,f2 .

d) L-function L(f ⊗ Sym2(g), s)
Let f ∈ S2k−2 and g ∈ Sk be primitive. Then the critical values of the L-function
L(f ⊗ Sym2(g), s) is given by one number m = 2k − 2. Moreover we have

(2.26)
L̂
(
f ⊗ Sym2(g), 2k − 2

)
Ω+(f) ‖ g ‖4

∈ Kf,g.

(See also Ichino [Ich05] for details).

3. Numerical verification of the Trace Formula

We consider the Arithmetic Trace Formula stated in the introduction for the weight
k = 12 and choose the unique primitive Hecke eigenforms Let ∆ ∈ S12 and f ∈ S22 be the
unique primitive Hecke eigenforms of weight 12 and 22. Then we have

∆(z) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + . . . =
∞∑
n=1

τ(n)qn

f(z) = q − 288q2 − 128844q3 − 2014208q4 + 21640950q5 + . . . =
∞∑
n=1

b(n)qn

The Petersson norm of a Hecke eigenform g ∈ Sk can be identified with a special value
of the standard zeta function D(g, s) of g ([Za77], (5)), this is due to Rankin. The



10 BERNHARD HEIM

correspondance is given by

(3.1) ‖ g ‖2=
(k − 1)!

22k−1πk+1
D(g, k).

The special value D(g, k) can be determined by meromorphic continuation. There is a
useful programm of Dokchister [Do04] to calculate such values. This leads to

‖ ∆ ‖2 = 0.00000103536205680432092234 . . .
‖ f ‖2 = 0.00002009981832327430645231 . . .

Our first goal is to determine the numerical value of the left side of the trace formula. The
value of L̂

(
f ⊗ Sym2(∆), 22

)
can again be determined with the programm of Dokchister

(see also Ichino [Ich05]). We have

L(f, 23) = 0.99988499414258382599524516 . . .

L̂(f, 23) = 84.2000215244544365950065601 . . .

L̂
(
f ⊗ Sym2(∆), 22

)
= 0.75704862297802829562086575 . . .

Hence

(3.2)
dimS2k−2∑

i=1

L̂(fi, 2k − 3) L̂
(
fi ⊗ Sym2(g), 2k − 2

)
‖ fi ‖2‖ g ‖4

for k = 12 is equal to the numerical value

(3.3) 2958416757652464643.22953541 . . .

This number has been obtained directly. From the proof of the trace formula we know
that this number should actually be a rational number. A careful analysis leads to the
candidate

(3.4)
256 · 36 · 54 · 7

131 · 593
which coincides with 2958416757652464643.22953541 . . . in the range of precision.

On the right side we first determine the value of

(3.5)
D̂(g, 2k − 2)

π
k
2
−1 ‖ g ‖2

for g = ∆. We obtain directly

D(∆, 22) = 0.99964571112477139783572962 . . .

and hence

D̂(∆, 22)
π5 ‖ ∆ ‖2

= 110841.734096772163845718240 . . . ·
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The constants κ0, κ1, κ2 for k = 12:

κ0(k) = (−1)k/22k−2,

κ1(k) = (−1)(−1)k/224 Γ(k)2

(2k − 2)B2k−2Γ(k/2)2
,

κ2(k) = (−1)(−1)k/222k+1 Γ(k + 1)
(2k − 2)BkΓ(k/2)

.

are explicity given by

κ0 = 10240 = 210

κ1 = −12995908.891263210741088 . . . =
(−1) · 214 · 37 · 52 · 72 · 23

131 · 593

κ2 = 24052904584483.936324167872648 . . . =
232 · 35 · 52 · 72 · 13

691
.

The special value of the triple L-function L(∆⊗∆⊗∆, s) at s = 22 we determine via the
local factors of the Euler product by calculating the Satake parameters of ∆. Hence we
obtain

(3.6) L(∆⊗∆⊗∆, 22) = 0.99602837097824593011931492 . . . .

Then we obtain for k = 12:
dimSk∑
j=1

L̂(g ⊗ g ⊗ gj , 2k − 2)
‖ g ‖4‖ gj ‖2

is equal to
441423252695906.208342030317 . . . .

So finally we have for the expression

κ0 ·
L̂(∆⊗∆⊗∆, 22)

‖ ∆ ‖6
+ κ1 ·

(
D̂(∆, 22)
π5 ‖ ∆ ‖2

)2

+ κ2 ·
D̂(∆, 22)
π5 ‖ ∆ ‖2

the explicit value

(3.7) 2958416757652464643.22111654 . . . .

This shows that the Arithmetic Trace formula for the weight k = 12 can be numerically
verified.

4. Proof of the Arithmetic Trace Formula

This section is devoted to the Arithmetic Trace Formula stated in the introduction. We
give a proof which is constructive and explicit. Moreover as already remarked we give a
more general formula which may be useful for further applications.
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Proof. We prove the theorem with an extension of a technique related to the doubling
method in the setting of modular and Jacobi forms. There the so called big cell plays a
fundamental role. It is related to the unique non-negligible orbit which leads to an integral
representation of an automorphic L-function. For our purpose it is not enough to know
one orbit we need them all. Actually we need the whole pullback formula related to the
orbits. What does this mean? Let us fix the diagonal embeding H×H ↪→ H2. Here

(4.1) (Z,W ) 7→
(
Z 0
0 W

)
.

This can be generalized in the obvious way to an embedding H×H×H ↪→ H3. Let (gj)j
be a Hecke eigenbasis of Sk with a1(gj) = 1, i.e., gj is assumed to be primitive. This
always exists. Garrett [Ga84] has discovered the following beautiful formula:

(4.2) E
(2)
k |H×H = Ek ⊗ Ek +

dimSk∑
j=1

dj gj ⊗ gj .

It had been well known since the time of Witt that the restriction of a modular form of
genus n on blocks of size n1 + · · ·+ nl = n is an element of M (n1)

k ⊗ · · · ⊗M (nl)
k . That the

image in the case n = 2 is contained in the ”diagonal” of a Hecke eigenbasis was surprising.
Most important is that the numbers dj have a significant arithmetic meaning. They are
related to a critical value of the Rankin L-function. From this we can deduce that these
numbers are elements of Kgj and are not zero. They can be explicitly determined:

(4.3) dj =
(−1)

k
2 23−kπD(gj , 2k − 2)

(k − 1)ζ(k)ζ(2k − 2) ‖ gj ‖2
.

The situation in the case 3 = 1 + 1 + 1 if different. Garrett [Ga87] computed the scalar
product of the restricted Eisenstein series with three elliptic cusp forms. A detailed anal-
ysis and combination of the two papers of Garrett (see also [He99]) leads to the complete
pullback formula. We obtain:

E
(3)
k |H×H×H = Ek ⊗ Ek × Ek +

dimSk∑
j=1

dj Ek × gj ⊗ gj(4.4)

+
dimSk∑
j=1

dj gj ⊗ Ek ⊗ gj +
dimSk∑
j=1

dj gj ⊗ gj ⊗ Ek

+
dimSk∑
i,j,m=1

li,j,m gi ⊗ gj ⊗ gm.

Here we have li,j,m ∈ K×gi,gj ,gm
, the composition field of Kgi ,Kgj ,Kgm . These numbers are

essentially critical values of the triple L-function in the sense of Deligne. They had been
first explicitely determined by Garrett [Ga87] (see also Mizumoto [Mi97], page 192, and
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Heim [He99], page 236, for the explicit value of the constants and further explanation):

li,j,m = (−1)
k
2 · 2−5k+8 Γ(k − 1)3

Γ(k)
(4.5)

× π3−2k L(gi ⊗ gj ⊗ gm, 2k − 2)
ζ(2k − 2) ζ(k) ‖ gi ‖2‖ gj ‖2‖ gm ‖2

.(4.6)

Here we would like to remark that all three cusp forms have the same weight. For a more
general formula allowing also different weights one has has to use differential operators.
Moreover the big cell is related to

dimSk∑
i,j,m=1

li,j,m gi ⊗ gj ⊗ gm.

But we will see imediately that one also needs one of the negligible orbits for the trace
formula.

The next step is to extract the first coefficient of the Fourier expansion with respect
to the third variable. It is important that this procedure is the same as starting with
a Fourier-Jacobi expansion of the involved Siegel Eisenstein series, then extracting the
the first coefficient and then restrict the domain H2 × C2 to H × H. Let Bk be the k-th
Bernoulli number. Then we have

−2k
Bk

Ek ⊗ Ek +
dimSk∑
j=1

dj Ek ⊗ gj +
dimSk∑
j=1

dj gj ⊗ Ek(4.7)

+
−2k
Bk

dimSk∑
j=1

dj gj ⊗ gj +
dimSk∑
i,j,m=1

li,j,m gi ⊗ gj .

Here we would like to mention that it turns out to be very convinient to have normal-
ized our Siegel Eisenstein series, such that the 0-th coefficient is always one, since it is
compatible with restricting Eisenstein series to the diagonal.

Let δi,j = 1 if i = j and 0 otherwise. Then the coefficient of the basis element gi⊗ gj ∈
Sk ⊗ Sk is given by

(4.8) δij dj · -2k
Bk

+
∑dimSk

m=1 li,j,m .

Now we do something which we haven’t found yet in the literature. We determine a second
pullback formula of our Eisenstein series, with respect to a not obvious embeding of the
Jacobi spaces HJ ×HJ into H3 and obtain something new. Here HJ := H× C. We start
by looking directly at the Fourier-Jacobi expansion of the Eisenstein series of genus 3. It
is convenient to parametrize elements of H3 in the following way:

(4.9) Z =

 τ1 z z1

z τ2 z2

z1 z2 τ3

 .
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We fix the diagonal embeding HJ ×HJ ↪→ H3 given by

(4.10) (τ1, z1) , (τ2, z2) 7→

 τ1 0 z1

0 τ2 z2

z1 z2 τ3

 .

With this notation the Fourier-Jacobi expansion of E(3)
k (Z) with respect to τ3 is given by

(4.11) E
(3)
k (Z) =

∞∑
n=0

e
(3)
k,n (( τ1 z

z τ2 ) , (z1, z2)) e2πinτ3 .

The Fourier-Jacobi coefficients are Jacobiforms on H2 × C2 of weight k and index n.
By switching to Jacobi Eisenstein series and having a ”compatible” normalization we
normalize the Jacobi Eisenstein series in such a way that the 0-th Fourier coefficient is
equal to 1. In this case we have

(4.12) EJ,2k,n (( τ1 z
z τ2 ) , (z1, z2)) =

Bk
−2k σk−1(n)

e
(3)
k,n (( τ1 z

z τ2 ) , (z1, z2)) .

Here σk−1(n) :=
∑

d|n d
k−1. Let (Φj)j be a normalized Hecke eigenbasis of Jcusp

k,1 , i.e.,
a Hecke eigenbasis such that all the Fourier coefficients are contained in the field KΦj

generated by all the eigenvalues. Let fj ∈ S2k−2 be primitive and correspond to Φj via
the Shimura correspondance. Then (fj)j is a Hecke eigenbasis of S2k−2 with the same
eigenvalues. Obviously we have Kfj

= KΦj . Arakawa [Ar94] found out that also in the
setting of Jacobi forms the doubling method has a certain interpretation. But it turned out
that the underlying Hecke-Jacobi theory is much more complicated as expected [AH98],
[He01]. But anyway some results can be obtained. We deduce from [Ar94]:

(4.13) EJ,2k,1 |HJ×HJ = EJk,1 ⊗ EJk,1 +

dimJcusp
k,1∑

m=1

αm Φm ⊗ Φm.

Here EJk,1 is the Jacobi Eisenstein series of weight k and index 1 on H× C as introduced
in [EZ85]. The numbers αj are related with the critical values of the Hecke L-function
attached to fj . We have:

(4.14) αm =
(−1)k/2π 21−k

(k − 3/2)
L(fm, 2k − 3)
‖ Φm ‖2 ζ(2k − 2)

.

For details see [Ar94] and [He01]. Since up to normalization EJk,1 is the first Fourier-Jacobi

coefficient of E(2)
k and these Eisenstein series are in the Maass Spezialschar we have

(4.15) EJk,1|H = Ek +
Bk
−2k

dimSk∑
j=1

dj gj .

This formula can be deduced from the fact that the Siegel Eisenstein series of genus 2 is
an element from the so called Maass Spezialschar. It is then an easy exercise to obtain
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the formula. Further we have formaly that

(4.16) Φm|H =
dimSk∑
j=1

γmj gj .

From the arithmetic of the Fourier coefficients of the Jacobi form we can deduce that γmj
are totally real algebraic numbers. Let now hm be the modular form of half-integral weight
directly related to the Jacobi form Φm via the isomorphism given in [EZ85], Theorem 5.4
(see also Subsection 2.2). Then we can combine Proposition 4.3 given in [He98] and the
explicit description of Ichino [Ich05] of the square of the pullback of a Saito-Kurokawa lift.
Again by a straightforward calculation we get

(4.17)
(
γmj
)2 = 2−k

‖ hm ‖2

‖ fm ‖2‖ gj ‖4
L̂
(
fm ⊗ Sym2(gj), 2k − 2

)
.

Hence we obtain for the coefficient of gi ⊗ gj in the pullback formula of −2k
Bk

EJ,2k,1 |H×H the
expression

(4.18) Bk
−2k di · dj + −2k

Bk

∑dimS2k−2

m=1 αm γ
m
i γmj .

In the next step we compare the two pullback formulas one in the setting of modular
forms and the other deduced from the work of Arakawa in the setting of Jacobi forms.
This leads to

(4.19) δij dj · -2k
Bk

+
∑dimSk

m=1 li,j,m = Bk
−2k di · dj + −2k

Bk

∑dimS2k−2

m=1 αm γ
m
i γmj .

This formula is the heart of our approach. It contains much more informations as we use
at the moment. To prove the trace formula we restrict ourself to the case i = j. We want
to mention that if i 6= j, then on one side the formula simplifies because the summand
δij dj · -2k

Bk
disappears. But on the other side we only know the value of (γmi )2 which is

totally real algebraic number. So still the delicate question of the sign of the root remains
open. Nevertheless we obtain from (2.13) and (4.3) the explicit formula

(4.20) dj = − 25−2k · Γ(k + 1)
Γ(k/2)

· 1
Bk B2k−2

· D̂(gj , 2k − 2)

π
k
2
−1 ‖ gj ‖2

.

Moreover from (2.16) and (4.5) we obtain

(4.21) lj,j,m = − 23−3k · k · (2k − 2)
Bk B2k−2

L̂(gj ⊗ gj ⊗ gm, 2k − 2)
‖ gj ‖2 ‖ gj ‖2 ‖ gm ‖2

.

And from (2.12) and (4.14) we obtain

(4.22) αj = (−1)
k
2 21−k · 2k − 2

B2k−2

L̂(fj , 2k − 3)
‖ Φj ‖2

.

Let hj ∈ S+
k− 1

2

(Γ0(4)) be normalized and related to Φj ∈ Jcusp
k,1 via the isomorphism

given in Theorem 5.4 in ([EZ85]. Then we obtain for example from ([KS89], §2), the
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transformation law for the square of the norms given by ‖ Φj ‖2= 22k−3 ‖ hj ‖2. This
leads to

(4.23) αj = (−1)
k
2 24−3k · 2k − 2

B2k−2

L̂(fj , 2k − 3)
‖ hj ‖2

.

Then we have

(4.24) αj
(
γmj
)2 = κ

L̂(fm, 2k − 3)L̂
(
fm ⊗ Sym2(gj), 2k − 2

)
‖ fm ‖2 · ‖ gj ‖4

.

Here κ = (−1)
k
2 24−4k 2k−2

B2k−2
. If we summarize everthing and plugging into (4.19) this leads

to
(4.25)

−−2k
Bk

Γ(k + 1)
Γ(k/2)

· 25-2k

BkB2k−2

D̂(gj , 2k − 2)

π
k
2
−1 ‖ gj ‖2

− 23−3k k · (2k − 2)
Bk B2k−2

dimSk∑
t=1

L̂(gj ⊗ gj ⊗ gt, 2k − 2)
‖ gj ‖2 ‖ gj ‖2 ‖ gt ‖2

=
Bk
−2k

210−4kΓ(k + 1)2

Γ(k/2)2
· 1
B2
kB

2
2k−2

(
D̂(gj , 2k − 2)

π
k
2
−1 ‖ gj ‖2

)2

+ (−1)
k
2
−2k
Bk

24−4k 2k − 2
B2k−2

dimS2k−2∑
m=1

L̂(fm, 2k − 3)L̂
(
fm ⊗ Sym2(gj), 2k − 2

)
‖ fm ‖2 · ‖ gj ‖4

.

Finally we obtain by a straightforward calculation the desired result. �
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[Bo85] S. Böcherer: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe.
J. reine angew. Math. 362 (1985), 146-168.

[De71] P. Deligne: Formes modulaires et representations l-adic. Lect. Notes Math. 179 (1971), Berlin-
Heidelberg-New York, 139-172.

[De79] P. Deligne: Valeurs de fonctions L et periode d’integrales. Proc. Symposia Pure Math. 33 (1979),
part 2, 313-346.

[Do04] T. Dokchitser: Computing special values of motivic L-functions. Exp. Math. 13 (2004), 137-149.
[EZ85] M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics. Vol. 55. Boston-

Basel-Stuttgart: Birkhäuser (1985).
[Ga84] P. Garrett: Pullbacks of Eisenstein series; applications. Automorphic forms of several variables

(Katata, 1983), 114–137, Progr. Math., 46 Birkhäuser Boston, Boston, MA, 1984.
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