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Abstract. We introduce the notion of groups of polytope class and
show that torsion-free amenable groups satisfying the Atiyah Conjec-
ture possess this property. A direct consequence is the homotopy in-
variance of the L2-torsion polytope among G-CW-complexes for these
groups. As another application we prove that the L2-torsion polytope
of an amenable group vanishes provided that it contains a non-abelian
elementary amenable normal subgroup.
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1 Introduction

In [12,13] Friedl-Lück construct a new geometric invariant P (X ;G) called L2-
torsion polytope for a G-CW-complex X (satisfying a number of assumptions,
see Section 2.5), which shares many features with the L2-torsion ρ(2)(X ;N (G)).
It takes values in an integral polytope group PT (H1(G)f ), which is defined as the
Grothendieck group of integral polytopes in H1(G)f ⊗Z R up to translation.
Here H1(G)f denotes the free part of the first integral homology H1(G) of

G. One of the main results of Friedl-Lück’s theory states that if X = M̃
is the universal cover of a 3-manifold M (satisfying a number of conditions),

then P (M̃ ;π1(M)) is the dual of the unit ball of the Thurston norm, see [13,
Theorem 3.35].
The L2-torsion polytope has the potential to be a powerful geometric invariant
on groups. Namely, if G is an L2-acyclic group of type F which satisfies the
Atiyah Conjecture and has vanishing Whitehead group, one can define the
L2-torsion polytope of G as

P (G) = P (EG;G).
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A forerunner version of the L2-torsion polytope of groups was defined and
examined by Friedl-Tillmann [15] in the special case where G is a torsion-free
group given by a presentation with two generators, one relation, and first Betti
number b1(G) = 2. They show that in this case P (G) completely determines
the BNS-invariant of Bieri-Neumann-Strebel [3]. A similar result was obtained
by Kielak and the author [17, Corollary 6.4] for some free-by-cyclic groups.

This paper is motivated by the following conjecture of Friedl-Lück-Tillmann
[14, Conjecture 6.4] about the L2-torsion polytope of amenable groups. We
mention that in the original formulation of the conjecture not virtually Z can
be replaced with not isomorphic to Z since any torsion-free virtually Z group
is in fact isomorphic to Z.

Conjecture 1.1 (Vanishing of the L2-torsion polytope of amenable groups).
Let G 6= Z be an amenable group satisfying the Atiyah Conjecture. Suppose
that G is of type F and that Wh(G) = 0. Then we have for the L2-torsion
polytope

P (G) = 0.

By means of the polytope homomorphism that is essential in the definition of
the L2-torsion polytope, we introduce the notion of groups of P ≥ 0-class and
the even stronger property of polytope class. These notions are polytope ana-
logues of the notion of det ≥ 1-class about the Fuglede-Kadison determinant.
Our first theorem shows that these definitions are meaningful, see also 4.1.

Theorem 1.2 (Polytope class and amenability). Let G be a torsion-free
amenable group satisfying the Atiyah Conjecture such that H1(G)f is finitely
generated. Then G is of polytope class.

It is worthwhile noting that for group of P ≥ 0-class the L2-torsion polytope
is a G-homotopy invariant (rather than just a simple G-homotopy invariant)
of free finite L2-acyclic G-CW-complexes and that therefore the condition that
its Whitehead group vanishes is not necessary for P (G) to be well-defined. We
refer to Lemma 3.4 for more details on this remark.

We then adapt a strategy of Wegner for proving a vanishing result for the
L2-torsion of amenable groups [35] and obtain the following partial solution to
Conjecture 1.1, see Theorem 5.3.

Theorem 1.3 (Vanishing L2-torsion polytope). Let G be a group of type F
which is of P ≥ 0-class. Suppose that G contains a non-abelian elementary
amenable normal subgroup. Then G is L2-acyclic and we have

P (G) = 0.

In particular, the L2-torsion polytope of a non-cyclic elementary amenable
group of type F vanishes.
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Beyond elementary amenable groups, we provide at least some evidence for
Conjecture 1.1. In the following proposition, ∗ denotes the involution on the
polytope group induced by reflection about the origin (see Section 2.3), and N

denotes the seminorm homomorphism introduced in Definition 6.1.

Proposition 1.4. Let G 6= Z be an amenable group of type F satisfying the
Atiyah Conjecture. Then P (G) lies in the kernel of the seminorm homomor-
phism N : PT (H1(G)f ) → Map(H1(G;R),R) and there is a polytope P such
that in PT (H1(G)f ) we have

P (G) = P − ∗P.
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2 Background on the L2-torsion polytope

2.1 The Atiyah Conjecture and D(G)

The construction and our analysis of the L2-torsion polytope requires some
knowledge about the Atiyah Conjecture. If R is a ring and A ∈ Mm,n(R) is
a matrix, then we let throughout rA : Rm → Rn denote the R-homomorphism
(of left R-modules) given by right multiplication with A.

Conjecture 2.1 (Atiyah Conjecture). A torsion-free group G satisfies the
Atiyah Conjecture (with rational coefficients) if for any matrix A ∈Mm,n(QG)
we have

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ Z.

Here N (G) is the group von Neumann algebra of G and dimN (G) denotes the
dimension function on N (G)-modules, see [26, Definition 1.1 and Definition
6.20]. For a survey on the status of the Atiyah Conjecture we refer to [12,
Theorem 3.2]. In order to explain its relevance in our context we need the
following objects.

Definition 2.2 (U(G) and D(G)). Let U(G) denote the algebra of operators
affiliated to N (G), see [26, Chapter 8]. Algebraically, this is the Ore localization
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of N (G) with respect to the set of weak isomorphisms, see [26, Theorem 8.22
(1)].
Let D(G) be the smallest subring of U(G) which contains QG and is division
closed, meaning that every element of D(G) which is a unit in U(G) is already
a unit in D(G).

Thus we obtain a rectangle of inclusions

QG

��

// N (G)

��

D(G) // U(G),

and using these rings we recall the following result.

Proposition 2.3. A torsion-free group G satisfies the Atiyah Conjecture if
and only if D(G) is a skew-field.

Proof. See [26, Lemma 10.39].

The next theorem, which combines results of Linnell and Tamari, is the central
reason why the L2-torsion polytope is tractable for amenable groups.

Theorem 2.4 (D(G) of amenable groups). Any torsion-free elementary
amenable group satisfies the Atiyah Conjecture.
Moreover, if G is a torsion-free amenable group satisfying the Atiyah Conjec-
ture, then QG satisfies the Ore condition with respect to T = QG r {0} and
there is an isomorphism D(G) ∼= T−1QG. In particular, D(G) is flat over QG.

Proof. The first part is due to Linnell [25, Theorem 2.3], see also [23, Theorem
1.2].
The fact that QG satisfies the Ore condition with respect to T goes back
to Tamari [33], see also [26, Example 8.16 and Lemma 10.15] for a proof.
Recalling the notion of division closure, it is then easy to see that the inclusion

QG→ D(G) localizes to an isomorphism T−1QG
∼=
−−→ D(G).

If R is a ring and 0 → K → G
p

−−→ Q→ 0 is a group extension, then any choice
of (set-theoretic) section s : Q→ G for p induces an isomorphism

RG ∼= (RK) ∗Q. (1)

Here the right-hand side denotes a crossed product ring of Q with coefficients in
RK. We refer to [26, Section 10.3.2] for a survey on crossed product rings and
[26, Example 10.53] for the details of the above statement. Here and henceforth
we suppress the structure maps of crossed product rings from the notation. It
will play an important role for us thatD(G) shares similar structural properties.
More precisely, we have
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Lemma 2.5 (D(G) and extensions). Let G be a torsion-free group satisfying the

Atiyah Conjecture. Let 0 → K → G
p

−−→ H → 0 be a group extension such that
H is finitely generated free-abelian. Then K satisfies the Atiyah Conjecture
and any choice of (set-theoretic) section s : H → G for p determines a crossed
product ring D(K) ∗ H together with an inclusion D(K) ∗ H ⊆ D(G) which
restricts to the isomorphism (QK) ∗ H ∼= QG of (1). Moreover, D(K) ∗ H
satisfies the Ore condition with respect to T = (D(K) ∗ H) r {0}, and the
inclusion induces a D(K)-isomorphism

T−1(D(K) ∗H) ∼= D(G). (2)

If H is infinite cyclic, then D(K) ∗H is isomorphic to the ring D(K)t[u
±] of

twisted Laurent polynomials, where the twisting t depends on s.

Proof. See [12, Theorem 3.6 (3)] and [26, Example 10.54], where also twisted
Laurent polynomial rings are treated in detail.

2.2 Weak K1-groups and universal L2-torsion

Let G be a torsion-free group satisfying the Atiyah Conjecture. Define the weak
K1-group Kw

1 (ZG) as the abelian group whose generators [f ] are ZG-maps
f : ZGn → ZGn that become invertible over D(G), subject to the following
relations: If f, g : ZGn → ZGn are two such ZG-maps, then require

[g ◦ f ] = [f ] + [g]. (3)

If f : ZGm → ZGm, g : ZGn → ZGn, h : ZGn → ZGm are ZG-maps such that
f and g become invertible over D(G), then we require the relation

[(
f h
0 g

)]
= [f ] + [g]. (4)

This definition coincides with [13, Definition 1.1] since f : ZGn → ZGn becomes
invertible over D(G) if and only if f induces a weak isomorphism L2(G)n →
L2(G)n. This follows from [13, Lemma 1.21] and [26, Lemma 10.39].
We define the reduced weak K1-group and the weak Whitehead group as the
quotients

K̃w
1 (ZG) = Kw

1 (ZG)/{[±id : ZG→ ZG]};

Whw(G) = Kw
1 (ZG)/{[r±g : ZG→ ZG] | g ∈ G}.

There are obvious maps

K̃1(ZG) → K̃w
1 (ZG) → K̃1(D(G));

Wh(G) → Whw(G) → K1(D(G))/{[±g] | g ∈ G}.

Recall that for any associative unital ring R an R-chain complex C∗ is finite if
each chain module is finitely generated and only finitely many chain modules
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are non-trivial. It is based free if each chain module is a free R-module and
equipped with an equivalence class of R-basis, where two R bases B,B′ are
equivalent if there exists a bijection σ : B → B′ such that σ(b) = ±b for all
b ∈ B. It is contractible if there is a chain homotopy idC∗

≃ 0. If C∗ is a based
free finite contractibleR-chain complex, then we denote its Reidemeister torsion
by τ(C∗) ∈ K̃1(R). Likewise we denote the Whitehead torsion of a G-homotopy
equivalence f : X → Y of finite free G-CW-complexes by τ(f) ∈ Wh(G).
A ZG-chain complex is L2-acyclic if all L2-Betti numbers

b(2)n (C∗;N (G)) = dimN (G)Hn(N (G) ⊗ZG C∗)

vanish. For any based free finite L2-acyclic ZG-chain complex C∗ Friedl-Lück
construct a universal L2-torsion

ρ(2)u (C∗;N (G)) ∈ K̃w
1 (ZG).

Its construction is an adaption of the Reidemeister and Whitehead torsion to
the L2-setting. We briefly recall the definition of Reidemeister torsion here in
order to give a flavour of these invariants. Let K1(ZG) be the abelian group
whose generators [f ] are ZG-automorphisms f : P → P of finitely generated
projective ZG-modules and whose relations are the same as for Kw

1 (ZG), see
(3) and (4). A ZG-chain complex C∗ is contractible if C∗ admits a chain
contraction, i.e., a sequence of ZG-maps γn : Cn → Cn+1 such that cn+1 ◦ γn+
γn−1 ◦ cn = idCn

, where cn : Cn → Cn−1 denotes the differential. If C∗ is
contractible, then its Reidemeister torsion

ρ(C∗) ∈ K̃1(ZG)

is defined as the class of the ZG-isomorphism

c+ γ :
⊕

n∈Z

C2n+1 →
⊕

n∈Z

C2n.

As further reference for algebraic K-theory and torsion invariants we recom-
mend [32] or [29], where it is proved that c + γ is indeed a ZG-isomorphism

and that its class in K̃1(ZG) does not depend on the choice of γ.
The passage from Reidemeister torsion to universal L2-torsion is achieved by
replacing chain contraction with the weaker and more technical notion weak
chain contraction, see [13, Definition 1.4]. Possessing a weak chain contraction
turns out to be equivalent to being L2-acyclic, see [13, Lemma 1.5]. This is
why the universal L2-torsion is defined for L2-acyclic chain complexes.
By [13, Remark 1.16] the universal L2-torsion deserves its name in the sense
that it encapsulates all other L2-torsion invariants, including the (classical) L2-
torsion ρ(2)(C∗;N (G)) ∈ R, twisted L2-torsion functions [9, 7, 8] and twisted
L2-Euler characteristics [12].
If X is a finite free L2-acyclic G-CW-complex, then applying this to the cellular
ZG-chain complex C∗(X) produces the universal L2-torsion of X

ρ(2)u (X ;N (G)) ∈ Whw(G).
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Its main properties are collected in [13, Theorem 2.5]. We point out two of its
properties that we need in this paper.
First, given a G-homotopy equivalence f : X → Y between finite free L2-acyclic
G-CW-complexes, then

ρ(2)u (Y ;N (G)) − ρ(2)u (X ;N (G)) = ζ(τ(f)). (5)

where ζ : Wh(G) → Whw(G) is the obvious homomorphism.
We include the second statement here for future reference as a small lemma.

Lemma 2.6. Let C∗ be a finite based free L2-acyclic ZG-chain complex. Then
D(G) ⊗ZG C∗ is a contractible D(G)-chain complex, and the canonical homo-

morphism i : K̃w
1 (ZG) → K̃1(D(G)) satisfies

i
(
ρ(2)u (C∗;N (G))

)
= τ(D(G) ⊗ZG C∗). (6)

Proof. The chain complex D(G) ⊗ZG C∗ is contractible by [13, Lemma 1.21].
Let R be any associative unital ring and E∗ a finite based free contractible
R-chain complex. If u∗ : E∗ → E∗ is a chain isomorphism and γ∗ : u∗ ≃ 0∗ is a
chain homotopy such that γn ◦ un = un+1 ◦ γn, then we have an equality

τ(E∗) = [(uc+ γ)odd]− [uodd] ∈ K̃1(R). (7)

This follows in exactly the same way as the argument leading to [13, Equation
(1.8)]. Now the desired equation (6) follows from this by comparing (7) with
the definition of universal L2-torsion [13, Definition 1.7].

2.3 Integral polytope groups

Let H be a finitely generated free-abelian group. An integral polytope in
VH = H ⊗Z R is the convex hull of finitely many points in H , considered as a
lattice in VH . The Minkowski sum of two integral polytopes P and Q in VH is
defined by pointwise addition, i.e.,

P +Q = {p+ q ∈ VH | p ∈ P, q ∈ Q}.

Denote by P(H) the commutative monoid of all integral polytopes in VH with
the Minkowski sum as addition. It is cancellative, see e.g. [31, Lemma 3.1.8].
Define the integral polytope group P(H) to be the Grothendieck group associ-
ated to this commutative monoid. Thus elements are given by formal differ-
ences P−Q of integral polytopes P,Q ∈ P(H), and two such differences P−Q,
P ′ −Q′ are equal if and only if P +Q′ = P ′ +Q holds as subsets in VH .
There is an injection of abelian groups

H → P(H), h 7→ {h} (8)

and we let PT (H) be the cokernel of this map. The subscript T stands for
translation since two polytopes become identified in PT (H) if and only if there
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is a translation on VH mapping one bijectively to the other. We let PT (H) be
the image of the composition P(H) → P(H) → PT (H).

The group P(H) carries a canonical involution induced by reflection about the
origin, i.e.,

∗ : P(H) → P(H), P 7→ ∗P = {−p | p ∈ P}. (9)

This involution descends to an involution ∗ : PT (H) → PT (H).

A homomorphism f : H → H ′ of finitely generated free-abelian groups induces
homomorphisms

P(f) : P(H) → P(H ′);

PT (f) : PT (H) → PT (H
′)

by sending the class of a polytope P to the class of the polytope f(P ). If f
is injective, then both P(f) and PT (f) are easily seen to be injective as well.
Thus if G ⊆ H is a subgroup, then we will always view P(G) (respectively
PT (G)) as a subgroup of P(H) (respectively PT (H)).

Example 2.7. Integral polytopes in VZ = R are just intervals [m,n] ⊆ R

starting and ending at integral points. Thus we have P(Z) ∼= Z2, where an
explicit isomorphism is given by sending the class [m,n] to (m,n−m). Under
this isomorphism, the involution corresponds to ∗(k, l) = (−l− k, l). Similarly,
PT (Z) ∼= Z, where an explicit isomorphism is given by sending the element
[m,n] to n−m. The involution ∗ on PT (Z) is the identity.

The structure of the integral polytope group was studied in detail by Cha-Friedl
and the author [4] and by the author [16].

2.4 The polytope homomorphism

Let G be a torsion-free group satisfying the Atiyah Conjecture such that
H1(G)f , the free part of the first integral homology H1(G) of G is finitely
generated. Under these conditions, Friedl-Lück [13, Section 6.2] define a poly-
tope homomorphism

P : Kw
1 (ZG) → P(H1(G)f ).

Earlier versions of it had at least implicitly been considered for torsion-free ele-
mentary amenable groups [11,10]. The polytope homomorphism is constructed
as a composition

Kw
1 (ZG)

i
−−→ K1(D(G))

detD(G)
−−−−−→ D(G)×ab

P
−−→ P(H1(G)f ), (10)

where the first map is the canonical map, the second is the Dieudonné de-
terminant [6] which is in fact an isomorphism (see [29, Corollary 2.2.6] or
[32, Corollary 4.3]), and the third relies on the structural properties of D(G)
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given in Lemma 2.5. More precisely we let K be the kernel of the projection
pr : G→ H1(G)f = H and define

P ′ : D(K) ∗H r {0} → P(H)

as follows: Given a non-trivial element x =
∑

h∈H xh ·h ∈ D(K)∗H we let P ′(x)
be the convex hull of the set {h ∈ H | xh 6= 0}. Then P ′ is a homomorphism
of monoids and induces a group homomorphism

P ′ :
(
T−1(D(K) ∗H)

)×
ab

→ P(H), t−1s 7→ P ′(s)− P ′(t).

Now we let P be the composition

P : D(G)×ab
∼=
−−→

(
T−1(D(K) ∗H)

)×
ab

P ′

−−→ P(H), (11)

where the first map is the isomorphism appearing in Lemma 2.5. We will
denote the induced maps

P : K̃w
1 (ZG) → PT (H1(G)f )

P : Whw(G) → PT (H1(G)f )

by the same symbol.

Notation 2.8. For non-trivial x ∈ ZG we denote the image of the class of x
in D(G)×ab under the map P simply by P (x) ∈ PT (H1(G)f ). This is the same
as P

(
[rx : ZG→ ZG]

)
.

2.5 The L2-torsion polytope

The definition of our main object of study is now fairly simple.

Definition 2.9 (L2-torsion polytope). Let G be a torsion-free group satisfy-
ing the Atiyah Conjecture such that H1(G)f is finitely generated. Let X be a
finite free L2-acyclic G-CW-complex. Then the L2-torsion polytope of X is de-
fined as the image of the negative of its universal L2-torsion under the polytope
homomorphism, i.e.,

P (X ;G) = P
(
− ρ(2)u (X ;N (G))

)
∈ PT (H1(G)f ).

Let G be a group of type F satisfying the Atiyah Conjecture. If G is L2-acyclic
and satisfies Wh(G) = 0, then we may define the L2-torsion polytope of G to
be

P (G) = P (EG;G) ∈ PT (H1(G)f ).

Remark 2.10 (Assumptions appearing in Definition 2.9). The assumption
Wh(G) = 0 appearing above ensures that the L2-torsion polytope of groups is
well-defined, see (5). Conjecturally, however, this assumption is obsolete: Any
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group of type F is torsion-free, and it is conjectured that the Whitehead group
of any torsion-free group vanishes, see [27, Conjecture 3]. There is also no
counterexample to the Atiyah Conjecture known. Thus the L2-torsion polytope
is potentially an invariant for all L2-acyclic groups of type F .
Within the class of amenable groups all torsion-free virtually solvable groups
are known to have trivial Whitehead group since they satisfy the K-theoretic
Farrell-Jones Conjecture, as proved by Wegner [36].

3 Groups of P ≥ 0-class

In this section we introduce a polytope analogue of the notion det ≥ 1-class
concerning the Fuglede-Kadison determinant [26, Definition 3.112]. First we
need a partial order on polytope groups.

Definition 3.1 (Partial order on polytope groups). Let H be a finitely gener-
ated free-abelian group. We define a partial order on P(H) by declaring

P −Q ≤ P ′ −Q′ if and only if P +Q′ ⊆ P ′ +Q.

Likewise, we define a partial order on the translation quotient PT (H) by declar-
ing

P −Q ≤ P ′ −Q′ if and only if P +Q′ ⊆ P ′ +Q up to translation.

It is easy to see that this definition does not depend on the choice of represen-
tatives.

Definition 3.2 (P ≥ 0-class and polytope class). A group G is of P ≥ 0-class
if it is torsion-free, satisfies the Atiyah Conjecture, b1(G) < ∞, and we have
for any matrix A ∈Mn,n(ZG) which becomes invertible over D(G) that

P
(
[rA : ZGn → ZGn]

)
≥ 0

in PT (H1(G)f ). We call G of polytope class if P
(
[rA : ZGn → ZGn]

)
is

even represented by a polytope, i.e., it lies in the submonoid PT (H1(G)f ) ⊆
PT (H1(G)f ) of integral polytopes up to translation.

Example 3.3. 1. A finitely generated free-abelian group H is of polytope
class since the Dieudonné determinant detD(H)(A) coincides with the de-
terminant detZH(A) over the commutative ring ZH and is therefore repre-
sented by an element in ZH. Hence P

(
[rA : ZHn → ZHn]

)
is represented

by a polytope.

2. If G is a torsion-free group satisfying the Atiyah Conjecture such that
H1(G)f is of rank at most 1, then G is of polytope class. Namely, let
D(K)t[u

±] ⊆ D(G) be a subring determined by a generator of Hom(G,Z),
as explained in Lemma 2.5. Then it follows by virtue of the Euclidean
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function on D(K)t[u
±] given by the degree that detD(G)(A) is represented

by an element in D(K)t[u
±]. (A similar argument will be used in the proof

of Theorem 4.1 where more details can be found.) Thus P
(
[rA : ZGn →

ZGn]
)
is represented by an interval.

We know from (5) that the L2-torsion polytope is a simple homotopy invariant
of free finite L2-acyclic G-CW-complexes. This can be strengthened if G is of
P ≥ 0-class.

Lemma 3.4. Let G be a group of P ≥ 0-class. Then the composition

Wh(G)
ζ

−−→ Whw(G)
P

−−→ PT (H1(G)f )

is trivial. Moreover, the L2-torsion polytope is a homotopy invariant of free
finite L2-acyclic G-CW-complexes.

Proof. An element in the image of ζ is of the form [rA : ZGn → ZGn] for a
matrix A ∈ Mn,n(ZG) which has an inverse A−1 ∈ Mn,n(ZG). Since G is of
P ≥ 0-class, we have

0 = P([id]) = P
(
[rA]

)
+ P

(
[rA−1 ]

)
≥ 0,

and hence P([rA]) = 0. The ’moreover’ part immediately follows from this
because of (5).

Remark 3.5 (Extension of P (G) to groups of P ≥ 0-class). Lemma 3.4 allows
us to drop Wh(G) = 0 from the list of conditions in the definition of the L2-
torsion polytope P (G) of groups (see Definition 2.9), provided that G is of
P ≥ 0-class. Put differently, we can extend the definition of P (G) to groups G
which are of type F and of P ≥ 0-class. We will take this into account in the
formulations for the rest of this paper.

4 Polytope class and amenability

The goal of this section is to prove the following result.

Theorem 4.1 (Polytope class and amenability). Let G be a torsion-free
amenable group satisfying the Atiyah Conjecture such that H1(G)f is finitely
generated. Then G is of polytope class.

Its proof requires some preparation. Our main technical tool going into the
proof are face maps.

Definition 4.2 (Faces and face maps). Let H be a finitely generated free-
abelian group and P ⊆ VH = H⊗ZR an integral polytope. Take ϕ ∈ Hom(H,Z)
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which we also view as an element in Hom(H,R) = HomR(VH ,R). Then we call

Fϕ(P ) = {p ∈ P | ϕ(p) = max{ϕ(q) | q ∈ P}}

the face of P in ϕ-direction, see also Fig. 1. A subset F ⊆ P is called a face if
Fϕ(P ) = F for some ϕ ∈ Hom(H,Z).
A face of an integral polytope is an integral polytope in its own right, and it
is straightforward to check that Fϕ(P + Q) = Fϕ(P ) + Fϕ(Q). These two
observations imply that we obtain a homomorphism

Fϕ : P(H) → P(H), P 7→ Fϕ(P )

that we call face map in ϕ-direction. There is an induced face map (denoted
by the same symbol)

Fϕ : PT (H) → PT (H)

whose image is contained in the subgroup PT (kerϕ).

P

kerψ

ψ
ϕ

kerϕ

Figure 1: A polytope P and two morphisms ϕ and ψ
indicated by (translates of) their kernels and the direc-
tions in which they maximize. Here Fϕ(P ) is repre-
sented by the red vertex and Fψ(P ) is represented by
the blue edge.

The first lemma is possibly well-known in polytope theory, but we were not
able to find the statement nor an implicit proof in the literature. In any case,
it might be helpful in other situations.

Lemma 4.3 (Detecting polytopes by their faces). Let H be a finitely generated
free-abelian group of rank at least 2. Then x ∈ P(H) is represented by a polytope
if and only if for every ϕ ∈ Hom(H,Z) the class Fϕ(x) ∈ P(H) is represented
by a polytope.

Proof. It suffices to prove this for H = Zn. Equip VH = Rn with the standard
inner product. The forward direction of the lemma is obvious.

Documenta Mathematica 23 (2018) 1969–1993



The L2-Torsion Polytope of Amenable Groups 1981

For the backwards direction write x = P − Q for integral polytopes P and
Q. By assumption Fϕ(x) = Fϕ(P ) − Fϕ(Q) is an integral polytope for any
ϕ ∈ Hom(H,Z), say Sϕ, so Fϕ(P ) = Fϕ(Q) + Sϕ. We can write

P = {x ∈ VH | ψi(x) ≤ ci}

for certain ψi ∈ Hom(H,Z) ⊆ HomR(VH ,R) and ci ∈ Z (i = 1, ..., k). Then

S = hull

(
k⋃

i=1

Sψi

)

is an integral polytope satisfying P ⊆ Q + S. The remainder of the proof
will be occupied with proving Q + S ⊆ P which will imply x = P − Q = S.
This requires a number of steps. In the following, Greek letters will always
denote elements in Hom(H,Z) without explicitly saying this. Moreover, given
a compact subset A ⊆ VH and ϕ, we will use the shorthand notations

Aϕ = Fϕ(A);

ϕ(A) = max{ϕ(a) | a ∈ A}.

First note that we have for any ϕ and ψ

Fϕ(Pψ) = Pϕ ∩ Pψ = Fψ(Pϕ)

provided that the intersection in the middle is non-trivial, and likewise for Q.

Step 1: If ϕ, ψ are such that Pϕ ∩Pψ is non-empty, then Qϕ ∩Qψ and Sϕ ∩Sψ

are non-empty, and we have

Pϕ ∩ Pψ =
(
Qϕ ∩Qψ

)
+
(
Sϕ ∩ Sψ

)
.

We first argue that Qϕ ∩Qψ is non-empty. Pick a vertex p ∈ Pϕ ∩ Pψ, and let
α be such that Pα = p. Then p = Pα = Qα + Sα, hence Qα = q and Sα = s
are just points. After translating Q, we may assume that s = 0 and p = q.
Then for every β such that Pβ contains p we have Qβ ⊆ Pβ and p ∈ Qβ. This
applies in particular to ϕ and ψ, hence p ∈ Qϕ ∩Qψ.
Now we compute

Fϕ(S
ψ) = Fϕ(Pψ)− Fϕ(Qψ) = Fψ(Pϕ)− Fψ(Qϕ) = Fψ(S

ϕ),

hence Fϕ(S
ψ) ⊆ Sϕ ∩ Sψ and Sϕ ∩ Sψ is non-empty. We also have

(
Sϕ ∩ Sψ

)
+ Fϕ(Qψ) =

(
Sϕ ∩ Sψ

)
+
(
Qϕ ∩Qψ

)

⊆
(
Pϕ ∩ Pψ

)

= Fϕ(Pψ).
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From this it follows that Sϕ∩Sψ ⊆ Fϕ(S
ψ). Thus we proved Fϕ(S

ψ) = Sϕ∩Sψ.
Now we conclude

Pϕ ∩ Pψ = Fϕ(Pψ)

= Fϕ(Qψ) + Fϕ(S
ψ)

=
(
Qϕ ∩Qψ

)
+
(
Sϕ ∩ Sψ

)
.

Step 2: Let v0, v1, v2 ∈ Sn−1 ⊆ Rn be such that v1 lies on a geodesic path of
length at most π from v0 to v2 in Sn−1. Write ϕi = 〈vi, ·〉 : Rn → R. If P is
any polytope such that Pϕ1 ∩ Pϕ2 is non-trivial, then we have

ϕ0(Pϕ2) = ϕ0(Pϕ1 ∩ Pϕ2).

Pick an element x ∈ Pϕ1 ∩ Pϕ2 attaining the maximum on the right. Assume
that we have

ϕ0(Pϕ2) > ϕ0(Pϕ1 ∩ Pϕ2).

Then there exists y ∈ Pϕ2 such that ϕ0(y) > ϕ0(x), ϕ1(y) < ϕ1(x), and
ϕ2(y) = ϕ2(x). In other words,

〈y − x, v0〉 > 0;

〈y − x, v1〉 < 0;

〈y − x, v2〉 = 0

which cannot happen if v1 lies on a geodesic path of length at most π from v0
to v2.

Step 3: We have Sϕ = Sϕ.
Let ϕ, ψ be arbitrary and write (up to scalar) ϕ = 〈v, ·〉 and ψ = 〈w, ·〉 for
unit vectors v, w. There is a sequence of unit vectors v = v0, v1, ..., vm = w
running along a geodesic path of length at most π from v to w in Sn−1 such that
Pϕi

∩ Pϕi+1 is non-trivial. For brevity write from now on Pi = Pϕi
, Qi = Qϕi

,
and Si = Sϕi. Then we have by Step 1

Pi ∩ Pi+1 =
(
Qi ∩Qi+1

)
+
(
Si ∩ Si+1

)

and by Step 2

ϕ(Pi+1) = ϕ(Pi ∩ Pi+1);

ϕ(Qi+1) = ϕ(Qi ∩Qi+1).

This implies

ϕ(Si+1) = ϕ(Pi+1)− ϕ(Qi+1)

= ϕ(Pi ∩ Pi+1)− ϕ(Qi ∩Qi+1)

= ϕ(Si ∩ Si+1)

≤ ϕ(Si).
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Since this is true for all i = 0, ...,m− 1, we conclude ϕ(Sψ) ≤ ϕ(Sϕ) and hence
Sϕ = Sϕ.

Step 4: We have Q+ S ⊆ P = {x ∈ VH | ψi(x) ≤ ci}.
Pick arbitrary q ∈ Q and s ∈ S. With the aid of Step 3 we can calculate

ψi(q + s) = ψi(q) + ψi(s)

≤ ψi(Qψi
) + ψi(Sψi

)

= ψi(Qψi
) + ψi(S

ψi)

= ψi(Pψi
) = ci

for all i, and hence q + s ∈ P .

We also need the following auxiliary gadget.

Definition 4.4. Let H be a finitely generated free-abelian group and G ⊆
H a subgroup. We consider PT (G) as a submonoid of PT (H). Then we
let PT (H,G) be the submonoid of PT (H) containing all elements that can be
written as a difference P −Q for some P ∈ PT (H) and Q ∈ PT (G).

Example 4.5. 1. For any subgroup G ⊆ H one has

PT (H) = PT (H, 0) ⊆ PT (H,G) ⊆ PT (H,H) = PT (H).

We can interpret PT (H,G) as interpolating between the monoid of inte-
gral polytopes and the integral polytope group.

2. Let H be of rank 2 and let G1, G2 be two subgroups of rank 1. If Gi∩Gj =
0, then PT (H,G1) ∩ PT (H,G2) = PT (H).

Motivated by the last example we propose the following problem.

Question 4.6. Let H be a finitely generated free-abelian group and G1, G2 be
two subgroups. Do we always have

PT (H,G1) ∩ PT (H,G2) = PT (H,G1 ∩G2)?

If this question has an affirmative answer, then the next lemma, for which we
provide a different argument, would immediately follow.

Lemma 4.7. Let H be a finitely generated free-abelian group. Then

⋂

ϕ∈Hom(H,Z)

PT (H, kerϕ) = PT (H).

Proof. We prove the statement by induction on the rank of H . The rank 1 case
is obvious.
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For the higher rank case, pick an element x in the above intersection. For any
homomorphism ϕ : H → Z we can find Pϕ ∈ PT (H) and Qϕ ∈ PT (kerϕ) such
that x = Pϕ −Qϕ. Fix some homomorphism α : H → Z. Then

Fα(x) = Fα(Pϕ)− Fα(Qϕ) ∈ PT (kerα, kerα ∩ kerϕ).

Since ϕ was arbitrary, we conclude

Fα(x) ∈
⋂

ϕ∈Hom(H,Z)

PT (kerα, kerα ∩ kerϕ) =
⋂

ψ∈Hom(kerα,Z)

PT (kerα, kerψ).

From the induction hypothesis we conclude Fα(x) ∈ PT (kerα). As this holds
for every homomorphism α : H → Z, we may apply the previous Lemma 4.3 to
deduce that x ∈ PT (H).

Now we can tackle the main result of this section.

Proof of Theorem 4.1. Recall from Theorem 2.4 that ZG satisfies the Ore con-
dition with respect to T = ZGr {0} and the inclusion induces an isomorphism

T−1ZG
∼=
−−→ D(G).

Let A ∈ Mn,n(ZG) be a matrix which becomes invertible over D(G). If
H1(G)f = 0, then there is nothing to prove. Otherwise let us fix some epi-
morphism ϕ : G → Z and denote its kernel by K. Consider the associated
twisted Laurent polynomial ring D(K)t[u

±] ⊆ D(G) as in Lemma 2.5. The
Euclidean function on D(K)t[u

±] given by the degree allows us to transform A
to a triangular matrix T over D(K)t[u

±] by using the operations

• Permute rows or columns;

• Multiply a row on the right or a column on the left with an element of
the form y · um for some non-trivial y ∈ D(K) and m ∈ Z;

• Add a right D(K)t[u
±]-multiple of one row (resp. column) to another

row (resp. column).

These operations change the class [A] ∈ K1(D(G)) by adding an element of
the form [y · um] for some non-trivial y ∈ D(K) and m ∈ Z. Since D(K) =
(ZK r {0})−1ZK, we may then multiply T with suitable elements in ZK to
obtain a matrix over ZKt[u

±] = ZG. This implies that there are elements
a ∈ ZG and b ∈ ZK r {0} such that we have in K1(D(G))

[A] = [T ]− [y · um] = [a · b−1]− [y · um].

Since P (um) = 0 in PT (H1(G)f ), we have

P
(
[rA : ZGn → ZGn]

)
= P (a)− P (b)− P (y) ∈ PT (H1(G)f , kerϕ)

for the epimorphism ϕ : H1(G)f → Z induced by ϕ. Since ϕ was arbitrary, we
have

P
(
[rA : ZGn → ZGn]

)
∈

⋂

ϕ∈Hom(G,Z)
surjective

PT (H1(G)f , kerϕ).
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By Lemma 4.7, this intersection is equal to PT (H1(G)f ), and the proof is
complete.

5 Polytope class and the L2-torsion polytope

In this section we adapt Wegner’s strategy built in [34,35] to the setting of the
L2-torsion polytope. Together with the knowledge that torsion-free amenable
groups are of polytope class, one of its applications will be the vanishing of the
L2-torsion polytope of every elementary amenable group of type F . In order
to motivate our first lemma we give a rough idea of the argument:

Instead of localizing the group ring ZG at ZGr{0} in order to obtain D(G), we
localize at a much smaller set S ⊆ ZG in order to obtain an intermediate ring
ZG ⊆ S−1ZG ⊆ D(G). This set is small enough so that the polytope of invert-
ible matrices over S−1ZG still satisfies P ≥ 0, but it is large enough so that the
localized cellular chain complex S−1C∗(EG) is already contractible. Combin-
ing these two facts makes the image of the Whitehead torsion of S−1C∗(EG)
under an adjusted polytope homomorphism K1(S

−1ZG) → PT (H1(G)f ) com-
putable. But this image coincides with the negative of the L2-torsion polytope
P (G).

It is worthwhile mentioning that this kind of partial Ore localization technique
was used for the first time by Rosset [30] in proving that the Euler characteristic
of a group of type F vanishes provided that it contains a non-trivial normal
abelian subgroup.

Lemma 5.1. Let G be a group of type F which satisfies the Atiyah Conjecture
and b1(G) <∞. Suppose that G contains a non-trivial abelian normal subgroup
A ⊆ G such that A ∩ ker(pr : G→ H1(G)f ) 6= 0. Then

S = {x ∈ ZAr {0} | P (x) = 0 in PT (H1(G)f )}.

is a multiplicatively closed subset with respect to which ZG satisfies the Ore
condition and such that S−1Z = 0 for the trivial ZG-module Z.

Proof. Since for any two elements x, y ∈ ZG we have P (x · y) = P (x) + P (y),
it is clear that S is multiplicatively closed. The proof for the left and right
Ore condition follows as in [34, Proof of Theorem 5.4.5, Step 2 and 3], see also
[26, Lemma 3.119]. We include the argument here for the sake of completeness.
Note that the canonical involution on ZG respects S, so it suffices to prove the
right Ore condition.

Let r ∈ ZG, s ∈ S and fix a set of representatives {gi | i ∈ I} for the cosets
Ag ∈ A\G. Write r =

∑
i∈I aigi for certain ai ∈ ZA, where almost all ai

vanish. Put I ′ = {i ∈ I | ai 6= 0}. The element si = gisg
−1
i lies in ZA since A

is normal and P (si) = P (s) = 0. These two facts imply si ∈ S.

Define s′ =
∏
i∈I′ si ∈ S, xi = s′/si ∈ S, and r′ =

∑
i∈I′ xiaigi ∈ ZG. Then
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we compute

s′ · r =
∑

i∈I′

s′aigi =
∑

i∈I′

xisiaigi =
∑

i∈I′

xiaisigi

=
∑

i∈I′

xiaigisg
−1
i gi =

∑

i∈I′

xiaigis = r′ · s

Finally we prove S−1Z = 0. Pick some non-trivial

a ∈ A ∩ ker(pr : G→ H1(G)f ) 6= 0

(this is the only part where we need this assumption). Then P (1 − a) = 0 in
PT (H1(G)f ), so 1− a lies in S. Since 1− a acts by multiplication with 0 on Z,
we conclude S−1Z = 0.

Lemma 5.2. Let G be a group of P ≥ 0-class. Let S ⊆ ZG be a multiplicatively
closed subset with respect to which ZG satisfies the Ore condition. Suppose that
P (s) = 0 in PT (H1(G)f ) for all s ∈ S.
If X is a free finite L2-acyclic G-CW-complex such that S−1Hn(X) = 0, then

P (X ;G) = 0.

Proof. This is based on ideas appearing in [34, Proof of Theorem 5.4.5, Step 4
and 5], see also [26, Lemma 3.114].
First we consider the following commutative diagram

K̃w
1 (ZG)

i

((❘
❘❘

❘❘
❘❘

❘

P

))

K̃1(D(G))
detD(G)

// D(G)×ab/{±1}
P

// PT (H1(G)f )

K̃1(S
−1ZG)

j 66❧❧❧❧❧❧❧❧

P
′

55

Here i and j denote the obvious maps, detD(G) is the Dieudonné determinant,
P is induced by the map defined in (11), P denotes the composition of the top
row (which is the polytope homomorphism), and P′ denotes the composition
of the bottom row.
Let A be an invertible S−1ZG-matrix. By multiplying A with a suitable s ∈ S
we obtain a ZG-matrix B which is invertible over S−1ZG and thus also over
D(G). Then we have [A] = [B]− [s] in K̃1(S

−1ZG) and P′([B]) = P([B]). We
assume that P (s) = 0 and that G is of P ≥ 0-class, so we have

P′([A]) = P′([B]) − P′([s]) = P′([B])− P (s) = P([B]) ≥ 0. (12)

Since the same reasoning applies to A−1, we have P′([A]) = 0 and thus P′ = 0.
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Denote by C∗ = C∗(X) the cellular ZG-chain complex ofX equipped with some
choice of cellular basis. By Lemma 2.6 the D(G)-chain complex D(G)⊗ZG C∗

is contractible and we have

i(ρ(2)u (C∗;N (G))) = τ(D(G) ⊗ZG C∗).

Since localization is flat and S−1Hn(X) = 0, the S−1ZG-chain complex
S−1C∗ = S−1ZG⊗ZG C∗ is also contractible, and we have

j(τ(S−1C∗)) = τ(D(G) ⊗S−1ZG S
−1C∗)

= τ(D(G) ⊗S−1ZG S
−1ZG⊗ZG C∗)

= τ(D(G) ⊗ZG C∗)

= i(ρ(2)u (C∗;N (G))).

Thus we see
P(ρ(2)u (C∗;N (G))) = P′(τ(S−1C∗)) = 0, (13)

which completes the proof.

The following is the main result of this section.

Theorem 5.3 (Vanishing L2-torsion polytope). Let G be a group of type F
which is of P ≥ 0-class. Suppose that G contains a non-abelian elementary
amenable normal subgroup. Then G is L2-acyclic and we have

P (G) = 0.

Proof. The group G is L2-acyclic by [26, Theorem 1.44]. Let N be the non-
abelian elementary amenable normal subgroup.
Case 1: N is not virtually abelian. It follows from the proof of [34, Theorem
2.3.15] and the references given therein that N is solvable-by-finite. Hence N
has a unique maximal solvable normal subgroup of finite index, say S. Since
we assume that N is not virtually abelian, S is not abelian. Hence the lowest
non-trivial subgroup A in the derived series of S is abelian and contained in
[S, S] ⊆ [G,G]. In particular, A ∩ ker(pr : G → H1(G)f ) 6= 0. Since A is
characteristic in S and S is characteristic in N , A is normal in G.
Case 2: N is virtually abelian. Let A be a normal abelian subgroup of finite
index. By assumption N is not abelian, so ker(pr : N → H1(N)f ) is non-trivial
and hence infinite as G is torsion-free. But any infinite subgroup of N must
intersect A non-trivially. Thus in particular, A ∩ ker(pr : G→ H1(G)f ) 6= 0.
In both cases we may apply Lemma 5.1. This provides us with a subset S ⊆ ZG
satisfying the assumptions of Lemma 5.2 for X = EG. Hence P (G) = 0.

Corollary 5.4 (The L2-torsion polytope of elementary amenable groups van-
ishes). Let G be an amenable group of type F satisfying the Atiyah Conjecture.
If G contains a non-abelian elementary amenable normal subgroup, then

P (G) = 0.
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In particular, the L2-torsion polytope of any elementary amenable group of type
F vanishes.

Proof. By Theorem 4.1 an amenable group G of type F satisfying the Atiyah
Conjecture is of polytope class. Hence the first statement follows directly from
Theorem 5.3.
For the second statement, recall from Theorem 2.4 that an elementary amenable
group G of type F satisfies the Atiyah Conjecture. Hence P (G) = 0 follows
from the previous statement provided that G is non-abelian. If G is abelian,
then G must be finitely generated free-abelian, so P (G) = 0 follows from

ρ
(2)
u (G) = 0 as seen in [13, Example 2.7].

We emphasize the following remark that was also used in the proof of Theo-
rem 5.3.

Remark 5.5. An elementary amenable group of type F (or more generally,
with finite cohomological dimension) is in fact virtually solvable by a result of
Hillman-Linnell [22, Corollary 1].

Remark 5.6 (Generalization to the universal L2-torsion). The proof of Corol-
lary 5.4 crucially relies on the existence of a partial order on polytope groups
even though the original statement does not involve them. One difficulty in

proving the corresponding statement for the universal L2-torsion ρ
(2)
u (G) lies

in the structural deficit of Whw(G) that it does not carry a meaningful partial
order.

Remark 5.7. Conjecture 1.1 and thus Theorem 5.3 are inspired by the following
list of vanishing results about L2-invariants and related invariants. An infinite
amenable has

• vanishing L2-Betti numbers, see [5, Theorem 0.2], or [26, Theorem 7.2
(1) and (2)] for a strengthening of this statement;

• vanishing L2-torsion (provided that G is of type F ), see [24, Theorem
1.3];

• vanishing rank gradient with respect to a normal chain with trivial inter-
section (provided that G is finitely generated), see [2, Theorem 3];

• vanishing rank gradient with respect to any chain (provided that G is
finitely presented), see [1, Theorem 1];

• fixed price 1 in the theory of cost of groups, see [28, Theorem 6] combined
with [18, Théorème 3].

• vanishing simplicial volume (provided that G is the fundamental group of
a closed connected orientable manifold), see [21, Section 3.1, Corollary
(C)].
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6 Evidence for non-elementary amenable groups

In this short final section, we offer some evidence for the validity of Conjec-
ture 1.1 for amenable groups that are not elementary amenable. The difference
between amenable and elementary amenable is delicate. Finding amenable
groups which are not elementary amenable was for a long time part of the
Neumann-Day problem. Grigorchuk constructed the first examples of such
groups [19] and later provided finitely presented ones [20]. At the time of
writing, however, it is still open if there are also examples of type F .
The following computation is to a great extent based on known results. Our
main tool will be norm maps. Given a finitely generated free-abelian group H ,
we denote by Map(Hom(H,R),R) the group of continuous maps Hom(H,R) →
R equipped with pointwise addition. A polytope P ∈ P(H) induces a seminorm
on Hom(H,R) by

‖ϕ‖P = max{ϕ(p)− ϕ(q) | p, q ∈ P}.

This seminorm behaves well with respect to Minkowski sums in the sense that

‖ϕ‖P+Q = ‖ϕ‖P + ‖ϕ‖Q

for all ϕ ∈ Hom(H,R), which allows us to make the following definition.

Definition 6.1 (Seminorm homomorphism). We call

N : P(H) → Map(Hom(H,R),R), P −Q 7→ ‖ · ‖P − ‖ · ‖Q

seminorm homomorphism. It passes to the quotient PT (H) and the induced
map

N : PT (H) → Map(Hom(H,R),R)

is denoted by the same symbol.

The cornerstone of our argument will be the following theorem.

Theorem 6.2. Let H be a finitely generated free-abelian group. Then we have

ker
(
N : PT (H) → Map(Hom(H,R),R)

)

=ker
(
id + ∗ : PT (H) → PT (H)

)

= im
(
id− ∗ : PT (H) → PT (H)

)
.

Proof. This is the content of [16, Remark 6.2 and Theorem 6.4].

IfG is a group, we will identify Hom(H1(G)f ,R) withH
1(G;R) in the following.

Proposition 6.3 (L2-torsion polytope of amenable groups). Let G 6= Z be an
amenable group of type F satisfying the Atiyah Conjecture. Then P (G) lies
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in the kernel of N : PT (H1(G)f ) → Map(H1(G;R),R) and there is a polytope
P ∈ PT (H1(G)f ) such that

P (G) = P − ∗P.

Proof. Let pr : G→ H1(G)f = H be the obvious projection. Suppose thatH 6=
0 since there is nothing to prove otherwise. Let ϕ : H → Z be an epimorphism,
and put K = ker(ϕ ◦ pr : G → Z). Then we have by [13, Equation (3.26)] and
[12, Lemma 2.6]

N(P (G))(ϕ) = −χ(2)(i∗EG;N (K)) = −χ(2)(EK;N(K)),

where χ(2)(X ;N (K)) denotes the L2-Euler characteristic of a K-space X , see
[26, Section 6.6].
As a subgroup of an amenable group, K is itself amenable. Since G 6= Z,
K must be infinite. Since infinite amenable groups are L2-acyclic, we see
χ(2)(EK;N(K)) = 0. (Note that for this argument it is irrelevant that i∗EG =
EK is not a finite K-CW-complex.) Thus we have

N(P (G))(ϕ) = 0

for all surjective homomorphisms ϕ : H → Z.
As a difference of seminorms N(P (G)) is homogeneous and continuous. By the
homogeneity we have N(P (G))(ϕ) = 0 for all homomorphisms ϕ : H → Q, and
by the continuity we have N(P (G))(ϕ) = 0 for homomorphisms ϕ : H → R.
Hence

P (G) ∈ ker
(
N : PT (H) → Map(H1(G;R),R)

)
.

Now by Theorem 6.2 we have P (G) ∈ im
(
id − ∗ : PT (H) → PT (H)

)
. Hence

there exists a class R− S ∈ PT (H) such that

P (G) = R− S − (∗R− ∗S) = R+ ∗S − ∗(R+ ∗S).

Taking P = R + ∗S finishes the proof.
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[2] M. Abért and N. Nikolov, Rank gradient, cost of groups and the rank
versus Heegaard genus problem, J. European Math. Soc. 14 (2012), no. 5,
1657–1677.

[3] R. Bieri, W. D. Neumann, and R. Strebel, A geometric invariant of dis-
crete groups, Invent. Math. 90 (1987), no. 3, 451–477.

Documenta Mathematica 23 (2018) 1969–1993



The L2-Torsion Polytope of Amenable Groups 1991

[4] J. C. Cha, S. Friedl, and F. Funke, The Grothendieck group of polytopes
and norms, Münster J. Math. 10 (2017), 75–81.

[5] J. Cheeger and M. Gromov, L2-Cohomology and group cohomology, Topol-
ogy 25 (1986), 189–215.
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