Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Predicting histological stainings of brain tissue from MRI data using artificial neural networks

MPG-Autoren
/persons/resource/persons127414

Metere,  Riccardo
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons98946

Marschner,  Henrik
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19914

Pampel,  André
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19864

Möller,  Harald E.
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Metere, R., Marschner, H., Reimann, K., Pampel, A., & Möller, H. E. (2018). Predicting histological stainings of brain tissue from MRI data using artificial neural networks. Poster presented at Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-C42D-D
Zusammenfassung
The generation of contrast in MRI relies on a variety of physical processes (e.g. relaxation, magnetization transfer, etc.) that produces a relatively rich amount of information for biological samples. However, given the complex microstructure of tissues, some histological information of relevance in biology and medicine are obtained more easily using optical acquisition techniques on specifically stained specimens. Here, we propose a machine-learning-based method of replicating the contrast information from optical microscopy by exploiting the richness of MRI acquisitions (which will limit the final resolution). The approach exploits the properties of multi-layer feed-forward neural networks as universal function approximators.