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Introduction

Many problems describing the time evolution of a system can be written in
the form of an abstract Cauchy problem

(ACP) %U(t) = Bu(t), t€[0,00),

u(0) = up € X,

for some closed linear operator (B, D(B)) on a suitable Banach space X.

Semigroup theory provides a powerful tool for the treatment of such problems.
Indeed, it allows to prove well-posedness of ([ACP]) via the classical Hille-Yosida
theorem. In recent years a systematic theory has been added in order to describe
the qualitative and in particular the long term behaviour of the solutions of
(ACP). Most of these results are based on a careful analysis of the spectrum of
the operator B. In combination with results from the Perron-Frobenius theory
of positive semigroups this leads to stability and convergence theorems for the
semigroup generated by B.

In this thesis we show how one can effectively apply the above approach to
transport and queueing problems. We thus obtain new results on the asymptotic
behaviour.

The problems we study are given by partial differential equations including
nontrivial boundary conditions. In a first step we rewrite these problems in the
form ([ACP). Then, in all our problems B turns out to be the generator of a
positive and strongly continuous semigroup on some Banach space.

Our main concern is on the asymptotics, i.e. the behaviour of the solutions
as t tends to infinity. To this end we study the spectrum of B via a so called
characteristic equation. This characteristic equation yields a precise description
of the spectrum of B using the spectra of simpler operators on a smaller Banach
space. We show that in all our examples the eigenvalue 0 is the only spectral value
on the imaginary axis. Moreover, the semigroups generated by the corresponding
operators share the properties of being bounded, mean ergodic, positive and
irreducible.

These are the major ingredients leading to our main result: There exists a
one-dimensional equilibrium to which the solutions of our problems converge in
time.
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We now explain the contents of this thesis in more detail.

In Chapter [ we outline a general framework developed by G. Greiner [Gre87)
into which all our examples fit.

Then, in Chapter ] we present a transport problem in networks. Originally,
such transport equations go back to L. Boltzmann in the 19" century. Semigroup
methods were applied in the fifties of the last century to this kind of problems,
see |Birh9]. Now, there exists a vast literature on the application of semigroup
theory to transport problems, e.g. [DM79], [KLHS&2], [MK97].

Usually such flows take place in domains in R"”. Since many transport pro-
cesses occur in a piping system, it seems relevant to study the transport on net-
works. Here, the network is modelled by a directed and weighted graph. So also
elements from graph theory come into the play, and it is an interesting question
how the structure of the graph affects the long term behaviour of the system.

We study a generalisation of the situation from [KS05]. We assume that
particles can move between the nodes of the network if they are connected by an
edge. Single particles move with constant velocity along the edges. But, unlike
the case in [KS05|, different particles can have different velocities. When the
particles pass a vertex then they are distributed among the outgoing edges. The
proportion of the mass flowing into an outgoing edge is given by the weight of the
respective edge. Finally, and this is the main feature of our model, the particles
are scattered in the vertices, i.e. they change their velocity. We require that in
the vertices a Kirchhoft law for the velocity profiles holds.

After formulating this problem as an abstract Cauchy problem, well-posedness
is verified as well as certain spectral properties of the generator. If we assume that
the scattering is realised by a compact integral operator such that the number of
the particles is maintained after scattering, then the spectrum of the correspond-
ing generator is a pure point spectrum and 0 is the only spectral value on the
imaginary axis.

The following Chapters B and B are devoted to problems arising in queueing
theory. We shortly sketch the general background. The mathematical investiga-
tion of queues started with the Danish mathematician A. Erlang at the beginning
of the 20" century. He studied queues in the context of telephone traffic while he
was working in a telephone company. Later in [Cox5i|, queueing systems were
described using partial differential equations. A semigroup approach to queueing
theory was proposed by G. Gupur and others, see [GLZ01al.

Here, we consider queueing problems with a time parameter x counting the
service time in addition to the system time ¢. Service time is reset to 0 as soon as
a new service starts. The equations then resemble those arising in the description
of age-dependent populations in biology.

In Chapter Bl the M/M*?5 /1 queueing model is investigated. In this model
there is a single server which can serve B customers simultaneously. The service
starts as soon as there are k customers in the queue. The arrival of the customers
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in the queue is at random. The interarrival times of the customers as well as the
service times are exponentially distributed.

In Chapter Bl we consider a simple queueing network consisting of two servers
or machines that are separated by a finite storage buffer. The treatment of this
problem is inspired by a joint work with A. Haji, see [HR05]. The customers or
objects have to pass both machines. The objects enter the system at the first
machine and can leave the system only at the second machine. After service at
the first machine the objects either have to be reprocessed or they are transferred
to the buffer with constant probabilities. The second machine takes the objects
from the buffer and again after service they are either reprocessed or leave the
system with certain probabilities. The buffer is finite. So if the buffer is full, the
first machine is blocked until an object leaves the buffer.

Again, the problems are written as abstract Cauchy problems. Then the
well-posedness of these problems is shown and the spectra of the generators are
determined. In particular, 0 is an eigenvalue of the respective generator and is
the only spectral value on the imaginary axis.

Finally, in Chapter Bl we determine the long term behaviour of the previously
studied models. As far as the transport problem is concerned, irreducibility of
the corresponding semigroup is obtained under specific conditions imposed on
the graph and on the scattering operator. We give examples showing that the
semigroup is not necessarily irreducible if we drop one of these assumptions. The
irreducibility of the semigroups from queueing theory is proved without additional
assumptions. We state the main conclusions on the asymptotic behaviour of the
solutions of each of these problems, i.e. the convergence to a one-dimensional equi-
librium. The proof is based on the Arendt-Batty-Lyubich-Vi Theorem [ABHNOTL
Thm. 5.5.5].

The appendix contains the definitions and results on positive operators and
semigroups needed in this thesis.



ARBEITSGEMEINSCHAFT FUNKTIONALANALYSIS BRITTA DORN

T v
A E
N P RAI ,AB B | P S SPROF.DR. R
J R N R D A D ] R L,Y ¢ A
A 0 E D E Y A o L H .
F R F H K LULF

E ; A o K M E E
| b AN ORHANDI 7z b N 0 I
s R =G R g B Bl o &, &
N - LE P Z P R L TERBECK H
E E
R R
DR.ESZTER SIKOLYA DR MARJETA KRAMAR PROFRDR GENI GUPUR
Acknowledgements

My sincere thanks go to Prof. Rainer Nagel for his mathematical advice and
his continuous encouragement, optimism, and support during the preparation of
my thesis. I express my gratitude to Prof. Abdelaziz Rhandi for his invaluable
remarks and comments on the text. Prof. Abdukerim Haji aroused my interest in
queueing theory and I gained much from stimulating discussions with him as well
as with Prof. Geni Gupur. I am indepted to both for their kind hospitality during
my stay in Urumgqi, which was an unforgettable experience. I thank the German
Academic Exchange Service (DAAD) for the financial support of this research
visit to China. I appreciate the helpful remarks, comments, and discussions by
the “network group” Britta Dorn, Prof. Klaus-Jochen Engel, Dr. Marjeta Kramar,
and Dr. Eszter Sikolya. Moreover, I got many important suggestions and hints
from Tanja Eisner, Vera Keicher, and Prof. Ulf Schlotterbeck. Finally, it is a great
pleasure for me to thank all the members (worldwide) of the Arbeitsgemeinschaft
Funktionalanalysis Tiibingen for the wonderful working atmosphere I enjoyed
during my time as a Ph.D. student.



CHAPTER 1

Tools from operator theory

Here, we present some of the tools we use to study the semigroups arising in
our context. Of particular value is the Characteristic Equation [C'1 below.

We assume the reader to be familiar with basic semigroup theory and refer to
[ENOO), [ENO6], [Gol85] and [Paz83]. Let X be a Banach space called the state
space and let (B, D(B)) be a closed linear operator on X. The abstract Cauchy
problem associated to (B, D(B)) and the initial value uy € X is

d
Eu(t) = Bu(t), te [Ov OO)’
u(0) = wp.

We call a function (-, u) : [0,00) — X a classical solution of [ACD) if
(i) u(-,up) is continuously differentiable,
(ii) wu(t,up) € D(B) for all t > 0, and
(iii) (ACH) holds,
see [ENOQ, Def. 11.6.1 (ii)]. According to [ENOQ, Def. I1.6.8], the problem ([ACP])
is called well-posed if

(ACP)

(i) for every initial value uy € D(B) there exists a unique classical solution
u(-, uo) of (ACH),
(ii) D(B) is dense in X, and
(iii) for every sequence (u,)nen € D(B) satisfying
lim u, =0
one has
lim w(t,u,) =0

n—oo
uniformly in compact intervals [0, to].

The well-posedness of ([ACP]) is characterised as follows, see [ENQ{, Cor.
11.6.9].

PROPOSITION 1.1. For a closed operator (B, D(B)) on X the associated ab-
stract Cauchy problem ([ACPI) is well-posed if and only if B generates a strongly
continuous semigroup on X.

If (ACP) is well-posed, then, by [ENO0O, Prop. I1.6.2], the unique classical
solution u is given by the orbit of uy under the semigroup (7'(¢)):>o generated by

9
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B, i.e.
u(t) = T(t)uo, t > 0.

We now consider a class of operators (A, D(A)) which are constructed in
a particular way. We start from a closed linear operator (A,,, D(4,,)) on X,
called the maximal operator. Moreover, we take another Banach space 0X —
the boundary space — and use boundary operators L, ® € L(D(A,,),0X). In the
following we always assume that L is surjective. The operator (A, D(A)) is given
as follows.

DEFINITION 1.2. The operator (A, D(A)) is defined as
Au = Apu,
D(A) = {ue D(A,) : Lu= du}.
Under appropriate assumptions, there exists a characterisation of its spectrum
0(A) and an explicit representation of its resolvent. The abstract framework for
this was developed by G. Greiner in [Gre87|. We sketch these results. The

starting point is the operator (Ag, D(Ap)) which is the restriction of A,, to the
kernel of L, i.e.

D(Ay) = {uwe D(A,) : Lu=0},
Agu = A,u.
Then by [Gre87, Lemma 1.2] the domain of A,, can be decomposed as follows.
LEMMA 1.3. Let v € p(Ap). Then
D(A,,) = D(Ay) @ ker(y — A,,).
Since L is supposed to be surjective and D(Ay) = ker L, we conclude from

the above decomposition that the restriction L|yer(y—a,,) of L to ker(y — A,,) is
bijective. Its inverse is even bounded which follows by the closed graph theorem.

DEFINITION 1.4. For v € p(Ay) the operator D, := (L|ker(y—a,,)) " is called
Dirichlet operator corresponding to A,, and L.

Using the operators D, and ®, we can characterise the spectrum and the
point spectrum of A. To prove a characteristic equation for the spectrum of A
we work on the product space X x 0X and extend the given operators, see also
[KSO5, Sect. 3].

DEFINITION 1.5.
(i) X := X x 0X.
(i) Ao := (i‘z 8) . D(Ay) == D(A,) x {0}
(iii) Xp ;== X x {0} = D(A,,) x {0} = D(Ayp).
)

(iv) B = (g 8) D(B) := D(A,,) x 9X.
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(v) A=Ay +B= (CDA_WL 8) . D(A) := D(A,,) x {0}.

REMARK 1.6.

(i) Observe that p(Ay) D p(Ap). Moreover, the resolvent of Ay for v €
p(Ap) is given by

R(7, Ao) = (R(’Y(’)AO) %7) .

(ii) The part Ay, of A in A is given by

D(Al) = D) x 0} Al = (5 ¢)-

Hence, A|x, can be identified with the operator (A, D(A)).

Now we show that the spectrum of A is characterised by the spectrum of
operators on the boundary space 0.X.

CHARACTERISTIC EQUATION 1.7. Let v € p(Ap). Then

(i) v € o0,(A) & 1€0,(PD,).
Suppose in addition that there exists 7o € C such that 1 ¢ o(®D,,). Then
(ii) vyeo(A) & 1eo(dD,).
PROOF. First we show for A from Definition the equivalence
(1) vyeolA) & 1e€0(®D,),
as in [KSO5, Prop. 3.3]. Therefore, we decompose
(2) Y—A=7—-A—B=(Z-BR(7,40))(y — Ao)-

From this we see that v — A is invertible if and only if Z — BR(~, Ay) is invertible.
Since

B Idx 0
(3) T = BR(7,Ao) = (—@R(’y,Ao) Tdyx — q’Dv) ’

one can easily see that the invertibility of Z — BR(~,.Ay) is equivalent to 1 ¢
o(®D,) and () is shown. From our assumption that 1 ¢ o(®D.,) it follows now
that 7o € p(A) and therefore, p(.A) is not empty. Hence we obtain from [ENO(,
Prop. IV.2.17] that
o(A) = o(4),
since A is the part of A in Ap. This shows (ii).
To prove (i) observe first that the point spectra of A and A coincide, i.e.,

ap(A) = ap(A).
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Suppose now that 1 € 0,(®D,). Then there exists 0 # f € 0X such that
(Idpx — ®D.,)f = 0. Clearly, 0 # (Dgf) € D(A). So we can compute

(y=A) (Daf) - (—cbzé((jfi Ao) Idox " @DV) (W _L%:}DM)

(Caritran 1 an,) (7)
—®R(y,A)) Idyx — oD, ) \ s

((Idax —O oD, f) - (8> '
Hence, v € 0,(A).

Conversely, assume that v € 0,(.A). Then there exists 0 # f € D(A,,) such
that (y —A) (/) = 0. From

0 - o)

- (—@fé?;(, Ag) Idyx 2 @D) ((7 _Lj{fm)f)

( (’7 - Am)f >
~®R(y, A)(y — An)f + (Idox — D,)Lf

we obtain that f € ker(y — A,,) and hence
0= —OR(3, A0)(y — Aw)f + (Idox — ®D,)Lf = (Idyx — ®D,)Lf.
It follows from Lemma [ that Lf # 0 and thus 1 € 0,(®D,).
O

The operator ®D., is defined on the boundary space 0X which will be, in
most cases, much smaller than the state space X. So we expect that it is easier
to determine the spectrum of ®D, than to compute the spectrum of A directly.
This allows, by the above characteristic equation, to characterise the spectrum
of A in a second step.

For later use, we express the resolvent of A in terms of the operators D.,, ®
and the resolvent of Aj.

PROPOSITION 1.8. Suppose that there exists 7y € C such that 1 ¢ o(®D,,)
and let v € p(Ap) N p(A). Then

R(y,A) = R(7, Ao) + Dy (Idyx — ®D,) ' ®R(v, Ay)
holds.

PROOF. Recall from the Characteristic Equation [L7 and its proof that under
our assumptions 1 ¢ o(®D,) and that v — A is invertible with inverse

(v —A)" = (y—A) (T —BR(v, Ay)) "
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Using the explicit representation (B]) for Z — BR(~,.Ay) we obtain

» Idy 0
(Z —BR(v,A0))" = (( Idsx — ®Dy)'®R(v, Ag) (Idox — <I>Dw>‘1) ’

and hence »
R(y, A) = (Rgv) D, (Idyx o_ ®D,) ) |
where R(y) = (Idx + D,(Idsx — ®D,) '®)R(v, Ag). Since A is the part of A in
Xy and since
(B9 8) = R(v, A)lx, = R(7, Alx,),
it follows that
R(v,A4) = R(7).
O

REMARK 1.9. The problems we investigate in this thesis are formulated by
partial differential equations involving nontrivial boundary conditions. These
problems will be rewritten as abstract Cauchy problems of the form ([ACH) and
we will apply semigroup theory to prove existence and qualitative properties of
the solutions.

All our operators will arise in the abstract form of Definition Here, the
maximal operator is a differential operator on its natural maximal domain while
the boundary space is a space of functions “on the boundary”. The domain D(A)
of A incorporates the boundary conditions of the underlying problems.

We will determine the spectra of these operators in detail using the Charac-
teristic Equation [C7






CHAPTER 2

Networks

2.1. Introduction

We consider a transport process with absorption and scattering as described
by the classical linear Boltzmann equation, see [DM79), |[GvdMP&7|, [KLLH82]. As
many authors before, e.g. [Vid68|, [Vid70], [Gre84a], [Voil4], [Voi&5], [MKI7], we
use the theory of strongly continuous operator semigroups, see [EN0O0)|, [Gol8H],
[Paz83], in particular the theory of positive semigroups on Banach lattices, see
[Nag86], to show well-posedness and to discuss the asymptotic behaviour of the
solutions in Chapter However, while the problem is usually considered on a
domain in R", we study the transport process in a network. This seems to be
physically relevant, and it is mathematically interesting to discuss how the net-
work structure influences the process. Moreover, we assume that absorption and
scattering takes place only in the ramification nodes of the network and that a
Kirchhoff law holds in each node. As predecessors we mention papers studying
transport equations in slab geometry as e.g. [Bon03b|, [Bon03al, [Cha02] and
[Lat00]. Closer to our setting is [Bar96] who concentrates on the well-posedness
of a similar problem and discusses some applications to physics. Transport on
networks is also studied in [KS05|, [MS], and [Sik05]. This chapter is mainly in-
spired by [KS05|. However, these authors assume that all particles move with the
same speed in the network. In doing so they developed the semigroup techniques
we will use. Some of our results will appear in [Rad].

2.2. Setting

Our network is represented by a simple, directed and weighted graph G =
(V,E), where V = {vy,...,v,} is the set of vertices (or nodes) and F = {eq, ...,
em} is the set of edges (or arcs). If two vertices are connected by an edge, then the
particles can move between the vertices in the direction given by the edge. The
velocity of each particle is constant during its motion along an edge. However, for
different particles this velocity can vary between a minimal speed v,,;, > 0 and
a maximal speed v,,4; > Umin. By the assumption on the minimal speed, each
particle will reach a vertex after a finite time. In the vertices the particles are
scattered, i.e. they change their velocity, or will be absorbed. Thereafter, they
are distributed to the outgoing edges of the vertex according to the (positive)
weight of the outgoing edge. We consider only the case that each vertex has at
least one incoming and one outgoing edge.

15
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This physical situation will now be modelled in mathematical terms. The
edges e;,j = 1,...,m, are parameterised over the intervals [0, ;] where e;(0) is
the tail of the edge e; and e;(l;) is the head of the edge e;: €;(0) —&%—¢;(1;).

If edge e; is an outgoing edge of vertex v;, then w;; gives the weight of the
edge e;. In each vertex v; the weights of the outgoing edges shall sum up to 1,

1.e.

(4) dowy =1,
j=1

for each i € {1,...,n}.
Our transport process is then described by the equations

(0

auj(x,v,t) = —v%uj(:c,v,t),
(N) Uj(l‘,U,O) = fj(xav>7 (ICx)
Liu;(0,-,t) = wijJZ vhur (L, -, 1), (BCx)
\ k=1

where z € (0,0;), v € [Umin,Umaz), t > 0,and j = 1,...,m, i = 1,...,n.
Here, u;(z,v,t) gives the density of the particles on edge e; depending on the
position x, the velocity v and the time ¢. The first equation is the well-known
one-dimensional transport equation without scattering and absorption effects,
while (ICy) is the usual initial condition for ¢ = 0.

The equation (BCy) is a condition in the vertices of the graph and models
the scattering, absorption, and redistribution of particles in the vertices. The
coefficients ¢;; and ., in (BCy) arise from matrices coding the structure of the
graph and are defined in Definition below. In this way, the equations in
(BCy) relate the one-dimensional particle transport to the underlying network.
The operator J appearing in (BCy) is called scattering operator. It converts, in
each vertex v;, the incoming velocity profile > " | ¢} ug(ly, -, t) into an outgoing
velocity profile. Then the wf]h part of this velocity profile is leaving vertex v; into
edge e;. For the scattering operator J we assume the following.

GENERAL ASSUMPTION 2.2.1. The operator J is a positive contraction from
Y := L' [Vmin, Vmaz) t0 Y.

Since || f]1 = f;::z f(v) dv gives the total number of particles for positive
functions in Y, this assumption means that no particles can enter the system.

The properties of J will play an important role for the asymptotics of the
process and we will later make additional assumptions on .J, see Sections 2.3
BE2T and B222 with interesting consequences on the spectral properties and the
asymptotic behaviour of the corresponding semigroup.

To describe the graph we use the following matrices, see also [KS05).
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DEFINITION 2.2.2.
(i) The outgoing incidence matriz 1= = (1;;)nxm is defined by

1, v =¢;(0), ie. v; —H—

LZ-_]- = .
0, otherwise.

?

(ii) The weighted outgoing incidence matriz I, = (t;; . )nxm is defined by

ij,w)
— ; €4
o= Wijy, Vi = €5 (0), 1.e. v; .#ij—”
ijaw T .
! 0, otherwise.

(iii) The incoming incidence matriz It = (L;;-)nxm is defined by
LJF — {1, vi:ej(lj), 1e—€3——-vl s

0, otherwise.

(iv) The weighted transposed adjacency matric A = (aj)nxn is defined by
A =THT,)7, ie.

. o o . ) e )

o ) Wik if v; = €;,(0) and v; = e (lg), i.e. v, -—w/fjik—u v;,

ij = .
0, otherwise.

v) The weighted transposed adjacency matric B = (5;;)mxm of the line
J
graph is defined by B := (H;)7 I, ie.

. . . Vi e
Bi; = {wki, if €(0) = ¢;(I;) = vx, i.e. —5 .

0, otherwise.

These matrices determine the structure of the graph completely, see [Bol9§]
and [GRO1]. However, we need the following operator version of the above defined
(scalar) matrices.

DEFINITION 2.2.3. Let Idy denote the identity operator on Y. We introduce
the following operator matrices.

) I7 = (5 1dy )nxms

(il) 11; = (Li_j,wIdY)nxma
(iii) T* == (51 dy )nsm,
(iv) I} = (L;LjJ)nxm,

(v) A := (i Idy)nxn,
(vi) B:= (BijLdy )mxm,

(vii) By == (85 )mxm-

These operator matrices define operators in the canonical way on products of
the space Y. Now we make a useful observation, see [KS05, Sect. 2.
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REMARK 2.2.4. In each column of I~, I, -, I.;, I*, I* and I} there is exactly

)Y Tw ’ Tw

one non-zero entry. Furthermore, an easy computation using condition (H) yields
I7(I,)" = Iden

and o
I~ (I))" = Idyn.

Moreover, one can easily show that A and B are column stochastic matrices.

Since we want to treat the problem (M) by semigroup methods, we rewrite it
as an abstract Cauchy problem on a suitable state space Xy. As the state space
for our problem we choose

Xy = LY[0,14],Y) x --- x L*([0,1,,],Y)
which is isomorphic to
LY([0, 1] X [Vmin, Vmaz)) X - % L([0, 1] X [Vmin, Vmaz])-
If all arc lengths are equal to [, then
Xy = L([0,,Y™) = (L([0,1], Y)™ 22 (L'([0,1] X [vyin, Vmaa]))™
The space Xy is endowed with the norm
Ml pvnes
s X =R =3 [ [ ) do ds

j=1 Umin

where © = (u;)1<j<m € Xn. In the spirit of [KS05| we choose the abstract
boundary space as
GXN = Yn,

endowed with the norm

I :0Xy =R, £l ::Z/ 1£(0)] do,
=1 VUmin

where [ = (fi)lgz‘gn € 0Xy.
Furthermore, we define
W= WH([0,04],Y) x --- x WHY([0,1,,],Y)
which is a Banach space for the norm
I lw W =R, ue fluflw = [Jully + [Ju]|1.
The trace operators
Lo, I W —=Y™
are defined by
Lou := (4;(0))1<j<m,
and
Fiw o= (u;(l))1<j<m,
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respectively, where v = (u;)1<j<m € W, and give the velocity profiles at the
endpoints of the edges. Both operators are continuous on (W, || - |,;/)-

To formulate (N]) as an abstract Cauchy problem we proceed as in [KS05],
and start from the following maximal operator on X .

DEFINITION 2.2.5. The operator (AY D(AN)) is defined by

D(AN) .= {u e W : Tgu € 1g(I;)"},
(ANw)(x,v) == —va%uj(x,v), z € 10,4, v € [Vmin, Vmaz), J=1,...,m.
PROPOSITION 2.2.6. The operator (AN, D(AN)) on Xy is closed.

PROOF. Let (un)nen € D(AL) be a Cauchy sequence with respect to || - ||, -
Since (W, || - ||,;) is a Banach space, the sequence converges to an element u € .
From the condition appearing in the definition of D(AY) we obtain that for all
n € N there exists an f™ € Y™ sucht that

Coul™ = (I_)7 ™.
By Remark ZZ74] and the continuity of I'y on (W, || - ||;;,) it follows that
f =T (I,)"f™ =T Tou™ — I Tou = f.

Hence, 5 N
Tou = lim Tou™ = lim (I;)7f™ = (I)7f,

le. R

Tou € rg((I,)"),
and thus, u € D(AY). This means that D(AXY) is complete with respect to
| - |lyy» which is equivalent to the graph norm of AY. This shows the closedness
of (AN D(AN)). O

The condition Tyu € rg(I;)" in the definition of D(AY) means that the
proportion of the mass leaving vertex v; over edge e; is determined by the weight
w;;. However, this does not contain the complete boundary condition (BCy) from
(N). To formulate a condition equivalent to (BCy) we introduce the following
continuous operators on (W, || - [|;;/)-

DEFINITION 2.2.7. The outgoing boundary operator Ly is defined by
Ly W — 80Xy, uw— I Tyu,
while for the incoming boundary operator ®y we take
Oy : W — 00Xy, uw— ]I}’Flu.
Note that (I*I';u); gives the velocity profile coming into vertex v;. Then,

(Pnu); gives the velocity profile in vertex v; after the scattering and (Lyu); gives
the velocity profile leaving vertex v;. Thus, the condition
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expresses the Kirchhoff law.
The operator corresponding to our original problem ([N]) is now given as fol-
lows.

DEFINITION 2.2.8. The operator (Ay, D(Ay)) is defined by
D(Ay) :={u € D(AY) : Lyu = ®yu},
Anu = ANu.
To show the equivalence of D(Ay) and (BCy), fix ¢ in (BCy). Then
(450, -, 1)1<j<m € rg(L,)"

Taking the sum over j in (BCy) yields the Kirchhoff law. )
On the other hand, let us require that Lyv = ®yv and Tgv € rg(I,)? for

v € D(AN). Then there exists d = (d;)1<i<n € Y™ such that Tgv = (I)7d.
Since in each row of (I;)7 there is exactly one non-zero entry, it follows from the

condition [gv € rg(I,;)T that for every j € {1,...,m} there exists exactly one
i € {1,...,n} such that
(6) v;(0, ) = wi;d;.
Using this we compute fort=1,....n

(1) TV S BN =S wd @
(7) JZ%]‘UJ‘( jo) = ZLijvj(Oa ) = ZLijwij i = Zwij i = Gy

J=1 j=1 j=1 j=1

Combining () and (B) yields
’Uj(O, ) = CL)Z']'JZ L;;’Uj(lj, )
=1

If we multiply both sides by ¢;; and remember that w;; # 0 if and only if ¢;; # 0,
we see that (BCy) is fulfilled.
Thus, () can be formulated as the abstract Cauchy problem

d
(ACPy) %u(t) = Ayu(t), t>0,

u(0) = uy,
for the operator (Ay,D(Ax)) in the Banach space Xy and the initial value
uo = (f;)1<j<m- Following our general philosophy we now deal only with (ACPy]).

Note that if (Ay, D(An)) is the generator of a strongly continuous semigroup
(T (t))e>0, then we can regain the unique solution of (NJ) with the initial condition

f = (ih<jcn € D(Ay) by
uj(z,v,t) = (Tn(t)f);(z,v).
PROPOSITION 2.2.9. The operator (Anx, D(Ay)) is closed and densely defined.
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PROOF. Note that the graph norm of A is equivalent to ||-|,. Since
D(Ax) = {u € D(AY) : wu € ker(Ly — ®y)} and since the operators Ly
and @y are continuous with respect to || - ||, it follows that D(Axy) is a closed

subspace of D(AXN). Hence, the operator (Ay, D(Ay)) is closed.
Clearly, the set
M:={ueW :Tyu=Tu=0}
is dense in W with respect to the norm || -||,. Since M C D(Ay) C W C Xy
and since W is dense in Xy, also D(Ay) is dense in Xy. O

This is the basis to prove the generator property of Ay in Section 4] below.
Before doing so we investigate its spectral properties.
2.3. Spectral properties

We start with the decomposition of D(AY) as in Lemma To apply this
lemma, it is essential that Lx|p(ay) is surjective.

PROPOSITION 2.3.1. The operator Ly is surjective from D(AY) to 0Xy.

PROOF. Let f € 0Xy. Then g = (gj)lgjgm = (IN[:U)Tf € Y. Consider now
the element © = (uj)lgjgm € Xy where

u;j [0,l;] =Y, g

is a constant function for 1 < j < m. Clearly, we have u € D(AY). Applying Ly
to u yields

Lyu=1Tyu= ﬁ_(uj(O))lgjgm =1 ¢g= IN[_(TI;)Tf =f.
O
Next, we consider the operator A" with homogeneous boundary conditions.
DEFINITION 2.3.2. The operator (A3, D(AY)) is defined by
D(AY) :={u e D(AY) : Lyu = 0},
Au = AN,
LEMMA 2.3.3. The domain D(AY) coincides with
K:={ueW :Tyu=0}.

PROOF. The inclusion K C D(AY) is clear.
To show the other inclusion, suppose that « € D(A}’). Then, by the condition
Tou € rg(I;)T, there exists f € 9Xy such that

Tou = (I,)" 1.
Therefore, and since Lyu = 0, we obtain

0=Lyu=TTou=1(I)"f =/,
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hence } R
Tou = (I,)" f = (I,)"0 = 0.
O

Hence, it is clear that A} can be written as an m X m operator matrix whose
entries in the off-diagonal are 0 and with the same operator in each entry in the
diagonal. Its domain is given by the product of the domains of the operators in
the diagonal. Each of the diagonal entries is the generator of a strongly continuous
semigroup, see [Rha02, Sect. 3.1], and the semigroup (73" (¢))s0 generated by AY
is just the direct sum of these semigroups. More precisely, it is given by

(Tév(t)u)j(x, v) == xj(x, v, t)uj(z — vt,v),

where )
. 1, if0<z—vt <,
X3(2,0,1) 1= 0, otherwise,
j =1,...,m. Similarly, the resolvent of A}’ is obtained as
(R(V,Aév)u)j(x,'u) = / %e’”%uj(r,v) dr,
0
j = 1,...,m. From this representation one can easily see that T,'(¢) and

R(v, AY) are positive for ¢t > 0 and v € R, respectively. It is also clear that
the semigroup (7¢V(¢));>o0 is nilpotent. This implies that the spectrum of A} is
empty. Hence, by Lemma [ we can decompose the domain of AY for any v € C
as

(8) D(Ay) = D(Ay) & ker(y — Ap).

By Proposition 2371 the operator Ly is surjective. Therefore, the restriction of
Ly to ker(y — AY) is bijective. By the open mapping theorem, its inverse Dév
is bounded for every v € C. Before we give the explicit form of Div we first
introduce the following notation.

DEFINITION 2.3.4. The operator e, € L(Y™, Xy),v € C, is defined by
6 Y™ = Xy, (e,f);(z,0) = e v f;(v),
Where f = (fj)lgjgm S Yma T e [Oa lj]a v E [Uminavmaz]-
We now define an operator which turns out to be the inverse of Ly |xer(y—an)-
DEFINITION 2.3.5. For v € C the operator
Div 10Xy — ker(y — AY)
is defined by )
frDYfi=e ()" f.

It is clear that D] maps into ker(y — A}}). So it suffices to check that DY is
the inverse of Ly |ker(y—an)-
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PROPOSITION 2.3.6. For v € C we have

(9) LyDY = Idyx,
and
(10) DivLN = Idker('y—A,IX)a

1. e., Div = (LN‘ker('y*A%))_l

PROOF. Let f € 00Xy and recall that ﬁ*(ﬁ;)T = Idyx,, see Remark 2224
Thus,
LyDY f =T Toe, I, f =T (1) f = f,
and (@) is satisfied. To show () take an element u = (u;)1<j<m € ker(y — AN).
The functions w = (w;)1<j<m € W of the form

w;(z,v) = fi(v)e ",

where z € [0,1,],v € [Vmin, Vmaz), fj € Y, and Tow € rg(I,)" compose the kernel

of v — AN. Therefore, there exists d € Xy such that Tou = (I;)"d. Thus, u

can be written as u = €, (I;))" d. Hence,
DiVLNu = ¢, (I)"T Tou = e, (I)) T (I))Td = ¢,(I;)"d = u.
U

The condition 1 € o(®yDJ’) appearing in the Characteristic Equation [ is
indeed a condition in 0X, hence in a space much smaller than the state space
Xy. To proceed we compute ¢ NDiV as

Qe—¥11 0
oyDY =T (I)".
0 Qe—:.zlm
Here, and in the following (), denotes the multiplication by a function g €
LOO [Umina Umaz]a le
Qy:Y =Y, fr—=Q.f =gf.

This form of ® NDQI (and the Characteristic Equation [[7]) immediately allow

the following conclusions.

PROPOSITION 2.3.7.
(i) Let v € C. If Ry > 0 then || ®xDY|| < 1. Thus, the spectral bound of
An satisfies s(Ay) < 0.
(i) If || Jf]l1 = || f]]1 holds for all f >0, then s(Ay) = 0.
(iii) The resolvent R(~y, Ay) is a positive operator for all v > 0.
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PROOF. (i), (ii) First, using that .J is a contraction, we estimate the norm of
Oy DY as

Qefill 0
|5 DY || = [IT ()"
O Qe—ilm
Qefih 0
< |7 ()"
0 Q iy,
= 1l max (1@ -2, [l < max Q2]

Suppose now that 3y > 0. Then
”(I)NDNH <e v%‘fv ming<;j<mlj < 1

and therefore 1 ¢ o(®y DY) which is equivalent to v ¢ o(Ay) by the Character-
istic Equation [L71 Moreover, if v = 0 then

Qe,gll 0
o(®nDy') = o(L} (L))
0 Qefglm
= o (I3 (I;)") = o (e Juxn)-
This can be further decomposed into
o(@xDY) = o(A)o (),

see [Nag85, Sect. 4]. By the assumption in (ii) on J, we have that r(J) = 1
and from the positivity of J we know that r(J) € o(J), see [Sch74, Prop. V.4.1].
Since A is a column stochastic matrix, 1 € o(A) and again by the Characteristic
Equation [7 it follows that 0 € o(Ay). So we conclude that s(Ay) = 0.

(iii) If v > 0 then R(y, Ay), DY, ®y, and ®yDJ are positive operators.
Since ||®y DY < 1, the inverse of Id — ®y DY is given by the Neumann series,

i.e.
o0

(Id—®xDY)™ =) (@nDY)".
n=0
Thus, we see that it is also a positive operator. So from the representation

R(y, An) = R(v, AY) + D7 (1 — @y DY) ' OnR(y, Ay)
from Proposition we see that the resolvent R(7y, Ay) is composed of positive

operators and is therefore also positive. 0

Note that assertion (iii) in the above proposition also follows from Theo-
rem below. In order to use the Characteristic Equation [ we investigate
o(®y DY) in more detail.
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LEMMA 2.3.8. For v € C the following holds.

(i)
Qe—ill J 0
o(@xDF)\ {0} = o( B)\ {0}
0 Qe—lsz
Q —:.“1‘] 0
=o(B )\ {0}
0 Qe—llmJ

(i) If all arc lengths are equal to I, then
o(®xDY) = o(A)o(JQ ).
PROOF. (i) The first assertion follows from the well-known fact that
o(EF)\ {0} =o(FE)\ {0} for £ € L(X;,X,) and F € L(Xs, X4),

where X; and X, are arbitrary Banach spaces.
(ii) If all arc lengths are equal to [, then we have

Q@ -2 0
oyDYN =17 (I,)"
0 Q=
JQ 4, 0
= I*(I,)"
0 JQe_zl
JQ 4, 0
— A
0 JQe_zl
JQe—¥z 0
_A
0 JQ 2

= (az’jJQefll)ana
where A = (;)nxn- The spectrum of operator matrices of this special form is
given by
o(@xDY) = o(A)o(JQ, ).
see [Nag85l, Sect. 4]. O
We now make additional assumptions on J and discuss the spectrum of Ay

using the Characteristic Equation [ and the above lemma. First, we consider
the case that the operator J is compact.
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PROPOSITION 2.3.9. If J is a compact operator, then
o,(An) = o(An).

PROOF. Since J is a compact operator, also ¢ NDéV is compact and therefore
o(Pn DY) = 0,(®ND))U{0}. The assertion now follows from the Characteristic
Equation [C7 d

A physically realistic assumption is that the scattering operator J is a compact
integral operator with a strictly positive kernel. More precisely, we assume that
J € L(Y) is given by

Jf = /m k(e w)f(w) dw, f €Y.

Umin
The measurable kernel
k: : [Uminy Umaa:] X [Umina Umaz] - R

fulfills k(v, w) > 0 for almost all v, w € [Vmin, Vmaz]- In addition, we assume that

(11) / k(v,w) dv =1 for all w € [Umin, Vmaz)
so that our General Assumption 22Tl is satisfied. Note that these assumptions
imply the irreducibility of J, see [Sch74, Example V.6.4] and Definition
below.

Under these assumptions we can show that 0 is the only spectral value of Ay
on the imaginary axis.

THEOREM 2.3.10. Suppose that all the arc lengths are equal to | and suppose
that the scattering operator J is as above. Then

O'(AN) NiR = {O}

PROOF. From assumption (1) follows that

(12) | Jfllx = ||f[lx for all f> 0.
Hence, the adjoint operator J' € L(Y') where Y = L*®[v,in, Umas] Satisfies
J1=1,

where 1 denotes the constant one function. By the irreducibility of J and [Sch74,
Thm. V.5.2] we then obtain that there exists ¢ € Y, such that Jg = g and
g(v) > 0 for almost all v € [Vmin, Vmaz)- Consider the Banach space Y :=
LY([Vmin, Vmaz), g(v)dv). The positive operator J := Q,-1JQ, € L(Y) is simi-
lar to J and satisfies

(13) J1=1.

Since J is irreducible, the same holds for J, and also

17y = 11flly
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remains true for f € Y,. This again implies for the adjoint operator J' € £(Y”)
of J that

(14) J1=1.

Suppose now that there is a spectral value v € iR\ {0} of Ay. Define the
operator J, := Qy-1JQ__2,Q, € L(Y). Note that J, is similar to JQ__2, € L(Y).
Therefore, their spectra coincide. We know from the Characteristic Equation [L7]

with the aid of Lemma (ii) that there must exist an o € o(.J,) such that
la| = 1. Since J is compact, o € 0,(.J,). So there exists f € Y, f # 0, such that

jyf:ozf.
Since
/1= laf| =110 < LI = U1,
we have
L= 111 =TI = 1)
From

5 5 5 @
(L[ =A== L ) = L) = (L 1f]) =0,
it follows that J|f| = |f|. By [Sch74, Thm. V.5.2| the fixed space of J is one-
dimensional and by ([3) we conclude that it is spanned by 1. Tklerefore, we can
assume that |f| = 1. Thus, f is a unimodular eigenfunction of J,.
If we take h € L®[Vmin, Umaz] € Y, then
0 < |Lhl < [ LRl =TIk < T([Bllel) = [[Pllecd1 = [[Aloo1.
Therefore, jv(LOO [VUmins Umaz]) C L®[Vmins Umaz)-
By Gelfand’s theorem
LOO [Uminy Umaa:] = C(K)
holds for a suitable compact space K. So far, we have shown that all the assump-
tions of [Sch74 Prop. V.7.4] are fulfilled. Hence,

J7|L°° [Vmins Vmaz] aQrJQs |L°° [Umins Vmaz)
This implies
kv, w)e v = af(0)k(v, w)F@)

for almost all v, w € [Vpmin, Umaz)- Since k is strictly positive, this means that

F(0) = aew' F(w)

has to be fulfilled for almost all v, w € [Vin, Vmaz]. Evidently, this is not possible,
hence there is no spectral value v # 0 on the imaginary axis. U
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2.4. Well-posedness

In this section we show the generator property of Ay and hence the well-
posedness of (Nl). We first renorm the space Xy and then check that Ay fulfills
all the conditions in the Phillips generation theorem, see Theorem Therefore,
Ay is the generator of a positive contraction semigroup on Xy for this norm.

Since J is contractive on Y., also B is contractive on Y" as is shown in the
following lemma.

LEMMA 2.4.1. If f € Y", then

1By fllr = [Ifllx <0.
PROOF. Let f € Y". Then the following computation shows the assertion.

1B 71l — £ - 3 / "B f — 1)) du
j_ Umin

- [ mn, - e d

j=1 VUmin

k=1 j=1 j=1
Umax [ m m
B col tochasti
column stochastic / J ka> . ZfJ] (’U) dv
Ymin k=1 j=1
m
= S U fll = £l
7=1
Gen. Ass. 22771
< 0.

n

There is an alternative way of defining the domain of Ay by using the operator
matrix B;.

PROPOSITION 2.4.2. The domain of Ay is given by
D(AN) = {U eW :T'yu= BJF[U}.

PROOF. If u € D(Ay) then [ Tou = [%Tu and there exists f € Xy such
that Tou = (I;)T f. Using this we compute

Tu=TTou=1"(I)'f = f.
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This implies B B
Lou = (I))" f = (I) T} Tyu = B, Tu.
On the other hand, if for u € W the condition I'gqu = B;I[';u is fulfilled, then
Tou € rg(I;)" holds since B; = (I;)”T} Moreover,

Lyu=TTou=TB,Tu=1T (I,)"T{Tu=10Tu=®yu.
O

This representation of D(Ay) is needed in Lemma 244 below to show the
dispersivity of Ay if Xy is endowed with the following norm.

DEFINITION 2.4.3. The norm || - ||, , on Xy is

Dol X = R, = (u)isem — [ullap = Z// *Jug(,0)] do da

Since

=l < e, < el
the norm || - [|, , is equivalent to the original norm | - ||, on Xy.
We now check the dispersivity of Ay, cf. Definition [AZ4L

LEMMA 2.4.4. The operator (Ay, D(An)) is dispersive on the Banach lattice
(X, [+ lly.0)-
PrOOF. The dual space of Xy is
Xy = L>2([0,14],Y") x -+ x L=([0,1,,],Y")
= L]0, 11] X [Vmin, Vmaz)) X =+ X L2([0, L] X [Vmins Vmaz])

where Y/ = L*®[Upmin, Umaz)|. For ¥ = (Vg)1<k<m € Xy and u = (ug)1<k<m € Xn

we have z
k Umazx
(u, U) Z/ / Lug(x,0)Wi(z,v) do du.
Let u € D(Ay) and let ¥ = (Vy)1<x<m € X be defined by

{v — 1, up(x, ) =u) (z,),

Umax

Wr(w,o) = vi— 0, else,

where z € [0, [;]. Clearly, V| < 1.
Next, we compute

Uk Umax
(u, W) Z/ / Lug(z, v)¥y(z,v) dv do
Uk Umax
—Z/ / Luf (z,v) dv dx

il 0 P
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We then obtain
<ANU \If

lk Umazx
= Z/ / L(—v)Zuf(z,v) dv dx
VUmaz l
= / /k Xy ) dx dv
ox

/ ulj(lk,v)) dv

/ (B (Tw)f — uf (U, ) (v) dv

Ms

B
Il

1

Prop.

NE

B
Il

1

NE

/ m (B (Do) () — (g, v) do

T

1

L )

" lk)
- CRlEdn e
Umin  \ j=1 k=1

ui (I, v) dv

Umin

k=1
VUmazx m Umax
B column stochastic
= / E Juj (I5,-) | (v) dv — E / (I, v) dv
V. le v

min min

= DT G Mk = Dl s )l
j=1 k=1

Gen. Ass. 2221
< 0.
This shows that all the conditions of Definition [A4] are fulfilled, hence Ay is
dispersive. O

As our final conclusion we obtain the generator property of Ay.

THEOREM 2.4.5. The operator (An, D(Ay)) on Xy is the generator of a
positive and bounded strongly continuous semigroup (Tn(t))i>0 with bound pmas
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PROOF. By Proposition 229 and Lemma P-4 it follows that Ay is a densely
defined, dispersive operator and by Proposition 231 the operator v — Ay is
surjective for v > 0. Therefore, the Phillips theorem, see Theorem [AZH implies

that Ay is the generator of a positive contraction semigroup on (X, | - ||, ,)-
Returning to our original norm | - ||; on Xy we obtain that the semigroup is
bounded by fmes. O

REMARK 2.4.6. The asymptotic behaviour of this semigroup, hence of the
solutions of ([ACPy]), will be discussed in Section below.






CHAPTER 3

Queues

3.1. Introduction

Since its creation by the Danish mathematician A. Erlang, mathematical
queueing theory is now a well-established mathematical field and we refer to
[KIe75] and [Coh82] for monographs.

Among the many questions to ask, one is interested in performance measures
of the queue such as e.g. the queue length or the average waiting time for a
customer in the queue. Another aspect of interest is the existence of a steady
state solution to which the system converges as time tends to infinity.

In our queueing models we have a time parameter for the evolution of the
system and an additional time parameter giving the time since the service of the
last customer began. Queueing problems of this type have first been studied in
[Coxb5]| and [Kenb3|. A semigroup approach to the treatment of these problems
was established by G. Gupur and others, see [GLZ0TH|, [GLZ0T1al, [Gup04].

In the sequel we concentrate on the M /M*B /1 queueing model. This problem
has already been studied in [Gup04], where he showed the well-posedness. Here,
we give a more detailed analysis and show the existence of a unique positive
steady state solution in Chapter

3.2. Setting

We investigate the dynamical M/M"*?P /1 queueing system i.e., we consider
a queueing system consisting of a single server which can serve at most B € N
customers simultaneously, see Figure [Il

The server starts service as soon as there are at least k& customers in the queue,
where 1 < k < B is fixed. There is an infinite supply of customers. The arrival
of the customers is at random and obeys a Poisson process with parameter \.
This means in particular that the interarrival times X, i.e., the time difference
between the arrival of the n* and (n+ 1)** customer are independent and identi-
cally distributed random variables and the probability P({X,, < t}) that the n'
interarrival time is less than or equal to ¢ is

PHX,<t}) =1—e™

This explains the first M in the notation M/M*? /1 which stands for Markovian
or memoryless. The mean arrival rate is given by %

33
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FIGURE 1. Single server queue, B = 3
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The second M in the notation M /M"P /1 means that the service times Y,, are
exponentially distributed with parameter ;. Thus, the time period Y,, in which
the server is busy with the n'® customer are also independent and identically
distributed random variables. The probability P({Y,, < ¢}) that the service time
for the n'" customer is less than or equal to ¢ is

P{Y,<t})=1—¢c",

The mean service rate is %
For these parameters we assume the following.

GENERAL ASSUMPTION 3.2.1. We require that
0< A< p.

The ratio p := ﬁ is called traffic rate. From the above general assumption
it follows that p < 1. So, intuitively, we expect that the queue will not grow
infinitely.

Let 0 <r < k,n e NU{0} and ¢,z > 0. Then p, ¢(t) denotes the probability
that at time ¢ there are r customers in the queue and therefore the server is not
busy. Moreover, we investigate p,, 1(z,t), where

/ Pna(z,t) do
0

is the probability that at time ¢ there are n customers in the queue and the server
is busy. Note that

k—1 o0 0o
Zpr,o(t) + Z/ pn,l(x, t) dr =1
r=0 n=0"0
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for all t > 0. The parameter t represents the time since the evolution of the whole
system has started, whereas the parameter x refers to the elapsed service time,
i.e., the time since the last service has started. It is reset to 0 as soon as the next
service starts.

The above queueing model can then be described by the equations

( d t o
Poolt) _ —Apo,o(t) +u/ poa(z,t) dz,
dt ’ 0 7
dp, ot -
Lé‘;( ) _ —Apro(t) + Apr_10(t) + / Pra(, t) dz,
0
Q) 1<r<k-—1,
Opor@ ) __Opoa(@l) 3o ()
at 817 H)Po,1 (X, 1),
8pn71(x, t) . apn,l(xv t)
o — _ . — ()\ —+ ,u)pn,l(xa t) + )\pnfl,l(xa t)’
\ n>1.

For x = 0 the boundary conditions
B [ee)
po1(0,1) = MZ/ pia(x,t) dov + App_1,0(t),
(BCq) i=k 0
Pn1(0,t) = M/o Pnipa(x,t) de, n>1,

are imposed. They correspond to the situation when the server just starts a new
process.
As initial condition we choose

po=c€C, 0<r<k-—1,
(ICq) { - N
pn,l(xao) - fn(x>7 n fdl O,
where f, € L'[0,c0). But actually one is mainly interested in the initial condition
poo(0) =1,
(ICq.0) pro(0) =0, 1<r<k-—1,

pn,l(xao) = 07 n Z 15

which means that at time ¢ = 0 the server as well as the queue are empty.
The suitable state space to formulate this problem as an abstract Cauchy
problem is
Xq = CFx ' (L'[0,00))

endowed with the norm

k—1 00
IPllx, = Z [piol + Z 121 ()l 10,50)
1=0 1=0
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for p = (poos- -+ Pk-1.0,201(-),P1.1(+),...)T € Xg. In the spirit of the approach
sketched in the introduction we define on X the maximal operator as

D(AZ) = CFxI'" (W"'0,00)),
L M
Q ._
An = (0 D>’
where
-A 0 0 0
A=A
L:=10 X =\
. S
0 0 A =\
has dimension k x k,
w0
0 0
M= Mw .
0 0 wp 0
and
D 0 ---
AN D 0
D=10 A D o0
Here,
vl ~C feul)i= [ g dn
0
and
d
Di=—— —)\—p.
dx a

Clearly, the operator (A9, D(A%)) is closed on Xg.
As boundary space we choose

6XQ = ll
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and define the boundary operators

Po,0
: P0,1(0)
D(A2) — 0X,, Pe=10, (p11(0) ]
Po,1 :
P11
and
dg : D(A?) — 90X
given by the operator matrix
k—1 k B_Ji—H
0 0 XD 0 wp ---pp 0 0 0
0 00 0 00 -+ 0 m 0 0
o= | 00 0 00 0 0 w O
0 00 0 0 0 0 0 0

RS
<

We now obtain the operator (Ag, D(Ag)) corresponding to the underlying prob-
lem by

AQp = A?npa
D(Aq) :={p € D(AZ) : Lgp = Pgp}.

The problem (@), (BCq), [[Cg)) can be reformulated as the abstract Cauchy
problem

d
—p(t) = Agp(t), t€10,00),
(ACPg) 5 P(t) = Agp(t) [0, 00)
p(0) = (co,- .., Crets f1, for .. )" € Xg.

If Ay generates a strongly continuous semigroup (7(t)):>0 and if the initial
values in ([[Cq)) satisfy po := (co, ..., =1, f1, f2, - - )T € D(Ag), then the unique
solution of (), (BCq)) and ([Cy) is given by

pro(t) = (To)po)r+1, 0<r<k-1,

pni(z,t) = (To®)po)nsr(z), n>0.

So in the following we concentrate our attention on
We use the Characteristic Equation [L7 to investigate the boundary spectrum
of Ag. For this purpose, we need more information on the resolvent set of the

operator (A, D(A)) given by
D(AF) = {p€ D(AD) : Lgp =0},
Adp = Alp.
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Moreover, we give an explicit formula for the resolvent needed in Lemma B3]
below to prove the irreducibility of the semigroup generated by Ag.

LEMMA 3.2.2. For the set S :=={y € C : Ry > —u} \ {—\} we have
S C p(AD).
Moreover, if v € S, then

—L -M\"

N 0 (v-D)!
where )
g 0 0
A 1
(v+A)? YA
— 1 A2 A 1
=L = e ’
: : : 0
Ak—1 Ak—2 \k—3 1
O O N R L A )
[ ABO.DYE ReD) 0
(Y=P)" = | ®R(y,D)* AR(7,D)* R(v,D)
and

(R(y, D)p)(x) = e~ A2 / A p(s) ds,  p € L0, 00).
0

PROOF. Let C.[0, 00) denote the space of continuous functions on [0, 00) with
compact support. We estimate for p € C.[0,00) and 7 € S

AWKM%Dmdex

:/O”

< /OO e*(%’}"i’)\‘i’u){l‘ /x e(?R’er/\Jr,u)s‘p(S” ds dr
0 0

dx

e~ (At /z €(7+/\+u)sp(s) ds
0

(e 9]

1 x
—(Ry+A+p)x (Ry+A+p)s
= |—m————V  —¢€ (& p{Ss ds

[ Ry +A+u /0 Ip(s) }

o 1
+ = oz Ry AT 0 (| dor
| v ()

0

1

I
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Since C.[0, 00) is dense in L'[0, o), we conclude from the above estimate that

1

R(v,D)|| £ 77—~
IRG-D) < v

Therefore,

Iy =)' < Y AR, D)™™
n=0

An
(Ry + A+ p)nt!

NE

Il
=)

n

<

g

if Ry > —p. Clearly, the other components of R(v, AY) are also bounded, so that
R(v, AY) is a bounded operator for Ry > —p.
Now a straightforward calculation shows that the operator

((7 — L) (v= L) IM(y - D)‘l)
0 (v=D)

is indeed the inverse of v — Agg . n

The following consequence will be used in Section B.4] for the computation of
the boundary spectrum of Ag.

COROLLARY 3.2.3. The resolvent set of Ag} contains the imaginary axis, i.e.,
iR C p(AF).
In the sequel we use the abbreviations
Di=y+A+pu
and
Ai=~v+ A\

Note that I' and A both depend on v which is not stated explicitly.
Now we determine the eigenfunctions of A%.
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LEMMA 3.2.4. For v € C,Ry > —pu, the following holds.

(15) p € ker(y — A%)
=
(16) b= (p0,0a . apk—l,OapO,l(')apl,l(')a .- ~)T
where
I Cy
17 N
( ) Po,o = AT
1 r+1 ArJrl i
(18) prO_K Apy— 10+MZCZFT+2Z , 1<r<k-1,
n+1 /\nJrl i
19 n 71133 IS n+1—1i
(19) Poa( Zc(n+1—z)x

for some (c;)i>1 € I* and all n > 0.

PROOF. First, we verify that each p given as in (I6)-(IJ) is contained in
D(A2). Note that for 0 # C € C and k € N

fC:c k o
/ = grr

Using this we estimate the norm
—Tz n+1—1
e Ci——— dx
DL

Hpn,1HL1[0,oo) = /

0 i=1
% " AL (g 1 — )]
— ’ (n+1—1q)! (R[)r+2—

= Z ‘CnJrlfi‘i--
(%F)Hl

=0

ntl \nHL—i

IN

Since Ry > —p the series > 7, (%)k converges absolutely. So we can further
estimate using the Cauchy product

> Ipuilne < ZZM (%F) T

n=0 =0
1 [/ A >
- () ) ()
=0 =1
1 1
= &EF1——”(CZ)Z>1H”

< 0oQ.
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Similarly, we can estimate the derivatives p/, ; as

o0
Z 1PrallLioe) < oo
n=0

Hence, the graph norm |[p ,, 4e, of p is finite, and we have p € D(AR). We can
directly compute that each p as in (I8)-(I3) satisfies

(v—AZ)p=0.
Conversely, assume that p € ker(y— A%?). Expressing (y—A%)p = 0 explicitly
yields a system of differential equations. Solving this we immediately see that
only (c;);>1 € I' has to be checked. From

Z|Cz‘| = Z|Pz‘,1(0)| < Z||pz‘,1||oo
i=1 =1 i=1

< S Ipallwisos < I9lpea)
i=1
< o0
we obtain that (Ci)i21 el U
Observe that the operator L is surjective. Hence,
LQlyer(y-a9y  ker(y — A9) — 0Xg

is invertible if v € p(Ag2 ), see Chapter [[I Next we compute its inverse D? , the
Dirichlet operator. For convenience we introduce the following operators.

DEFINITION 3.2.5. For k € N we define the operators ¢; : C — L[0, 00) as

)\k
(ex(c))(x) := cyxke’(w“”)“, ceC, z€0,00).

LEMMA 3.2.6. Let vy € C, Ry > —u. Then

d171 0 .
d2,1 d2,2 0
Q _ k,1 k,k
D'Y - €0 0 PN Ce . ’
€1 €0 0
€9 €1 €0 0

where
NEFL=r FELTT Ar

dyr = CAkR+2 2 i

=0
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Once the Dirichlet operator is known, the spectrum o(Ag) can be determined
via the Characteristic Equation [l For this purpose we need the explicit form
of (I)Q D,?

COROLLARY 3.2.7. Let v € C, Ry > —u. Then

a1,1B . al,QB a1,B+1 0 00
g (AP A BA L0 0
e IR LR e |
'\l ' \r I \r T

where

k+1—r k—r i B+1-r i
A A 1 A
.= o2 Y (=) +5 2 1<r<k,
as, F(A) (F> +F (F) for1<r<k

i=k+1—7r

B+4+1—r %
ay, = % (—) fork+1<r<B+1.

3.3. Well-posedness

We are now able to prove the generator property of Ay and thus the well-
posedness of ((ACPgJ). For that purpose we first show the dispersivity of A using
the same proof as in [Gup04, Lemma 1]|.

LEMMA 3.3.1. The operator (Ag, D(Ag)) is dispersive.

PROOF. Since Ag is a real operator, it suffices to check the properties from
Definition [A.4] only for real valued elements in X,.

For p = (poo, -+ Pk-1,0P01(-), p1.1(+), .. )T € R¥ x [1(L]0,00)) define x(-) =
(X005 -+ Xk—1,0: X0, (), x1.1(-), . - )T € X{ = RF x I°(L>®[0, 00)) by

1, if
Xro = {’ it pro >0, 0<r<k-1,
’ 0, else,
1, ifp, > 0,
Xna(@) = 4L HPnlo) n>0.
’ 0, else,

For the following computations it is useful to observe that

N

pho .
Xro = { Pro’ if pro >0, 0<r<k—1,
0, else,
N

pn,l(x) .

Xn,l(l') = Pr,1(x)? if pn,l(x) > 0, n> 0.
0, else,
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Note that ||x|| < 1 and (p,x) = |[pT||- To estimate (Agp, x) for p € D(Ag) we
need the equality

(20) / @)y (@) o = / L(z) dr = —p},(0), i>0.
0 0

and the inequality

szfl(())
Lop=%qp -
MZ/ pi(x) dz + Apg-1,0 +Z / piyp1(T) dz
< )‘p;ctl,o + p Z/ p;ﬁ (z) dov +p Z/ pitrBJ(fE) dx
i=k V0 i=1 70
(21) = )‘plj;_—l,o + p Z/ P;ﬁ (z) dx
i=k 0

Now we can compute

k—1

(Agp.x) = Z ( Apio + M/ pia(x) d:c> Xio + Z APi—1,0Xi,0
i=1

=0

/ ( Pl (2) — (At o (@ )) Xo.1(z) dz

[ (—dfj;l( )= Ot )+ i1 (0)) o)

k—1
= —/\ZpZO—I—MZXzo/ pia(z dx+Z/\pz‘—1,0Xz‘,o

i=1

— /0 dgil () x0.1(x) dz — (A + p) /0 Oopo*,l(x) dx
+Z{ | B opaate) o= ) [ o) d
3 [ st de

k-1 k-1 k-1

3 / pia(z) do + Z ADi—1,0Xi,0
0

1=0 1=0 i=1

II=
L
N
s
=+
_|_
=
N
>



44

IN

B

IN

3. QUEUES
+ {0 [t do
i=1 0
+/\/ pi-1,1(%)Xi1(x) d$}
0
k-1 k-1 . k—1
“AY Pl Y Xio / pia(z) dz + ) Api-10Xi0
i=0 i=0 0 i=1
+3 (s - 0w oo i)
i=0 0

—1—)\2/ Pi—1,1(z) X1 (7) do
i=1 70

+>\Z/ P (2) do
i=1 70
k—1 o
_/\p:1,0+N2Xi,O/ p;ﬁ@) dx
=0 0

F3hO - nY [ pie) ds
i=0 i=0 Y0
E—1 .
_)‘pZ—Lo + NZXi,O/ p;,rl(x) dx
i=0 0
+>‘p111,0 + MZ/ p;,rl(x) dx — MZ/ p?,—l(x> dx
i=k 0 i=0 70
k—1 00 k=1 oo
uin,o/ pi () dw—uZ/ pi(x) dx
i=0 0 i=0 V0

k—1 o
n>-(ea=1) [ pila) da
i=0 0
0.

Thus, Ag is dispersive.
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The dispersivity of A together with the surjectivity of v— Aq for v > 0 leads
to the generator property of Ay by Phillips’ theorem, see Theorem

THEOREM 3.3.2. The operator (Ag, D(Ag)) is the generator of a positive
strongly continuous contraction semigroup on Xgq.

PROOF. Let R 5 v > 0. Then all the entries of CIJQDg2 are positive or 0 and
we can estimate the j™* column sum, j > 1, as

- B (A p 1 1
doDY); = =) == = = 1.
Z( Q ’Y)Z,] < F pa (F) Fl_% F_A

i=1

Since the column sums are all equal from the (B +1)** column on, it follows that

||@QD$||:§ng(@QD$)m: max (D), < 1,
=7 =1

1<j<B+1 —
and thus also
r(®oDY) < [|9 DY < 1.

Using the Characteristic Equation [ we conclude that v € p(Ag) if v > 0.
Moreover, Ag is a dispersive operator by Lemma B3l Now the claim follows
from Phillips’ theorem, see Theorem O

3.4. Boundary spectrum

Using the same idea as in [HR06] we can show that 0 is in the point spectrum
of AQ.

LEMMA 3.4.1. For the operator (Ag, D(Ag)) we have
0e O'p(AQ).

PRrROOF. By the Characteristic Equation [[7 it suffices to prove that 1 €
0,(PoDE). Define p := 45 and ¢ := 2. First, we compute Py L—
as

B B— B—
Zk:é)ﬁqk Zk:o;pq’“ Zk:}; zzq’“ copEpe p 000
- e O
e pg” pa” i pg D

pq pq pq o Dg pg* pq P

The equation <I>QD82 ¢ = c for some 0 # ¢ € I! is equivalent to the following
system of equations:
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B B-1 B-2
ar=0_pd")er+ O pd)e+ (O pd*)es + -+ (p+ pa)es + pepa,
k=0 k=0 k=0
n+B
Cp =0p Z qn+B_ka7 n Z 2a
k=1
which is again equivalent to
B B-1 B-2
ar=0_pd")er+ O pd)e2+ (O pd*)es + -+ (p+ pa)es + pepa,
k=0 k=0 k=0
Cn+1 — (Cn
Cpimin = L5 ()
l—q

Consider the function
FiR SR, o f(z):=qB+De _gBriatl oy o
Clearly, f is continuously differentiable and
f'(x) = (B+1)(1 — q) IngeBHVema _pgemlna - 5 e R

Since the traffic intensity satisfies p = ﬁ < 1 by our General Assumption B2T]

it follows that ¢ = ﬁ < 1 and thus (B +1)(1 — ¢) > 1. Hence we can estimate

F(0)=(B+1)(1—¢)lng—1Ing < 0.

Therefore, there exists zy > 0 such that f'(z) < 0 for all z € (0, (), hence f is
decreasing on (0, x). Since f(0) = 0 and lirJlra f(x) = q > 0, there exists a > 0

such that f(a) = 0 or ¢"*f(a) = 0 for all n € N, respectively. Thus, we obtain
that

(Banta _ q(n+1)a . qqna
q = 1 .
—dq
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We conclude that for ¢, := ¢"% n > 2, the equations (x) are fulfilled. The first
equation of the above system yields

B-1 B—2
"o =0 pd)* + O pd")g™ + -+ (0 + pa)g” + pg P
k=0 k=0
B—-1 B—2
=p* Y " +pg™ > ¢+ + (0 +pg)g” +pg P
k=0 k=0
al_qB al_qB_1 al_q2 a
= g’ +pg*————+ -+ pg" ——— + pg "V
l—gq l—q l—¢q
=1 =")+*1 ="+ +"0 =)+ "1 -
— q2a(1 + qa +q2a 4. +q(B—1)a)

. q2a+B(1 + qafl + qQ(afl) 4ot q(Bfl)(afl))
20 [1— 7 B qu — ¢Pleb)
1 — q® 1 — q(a—l)

2a (1= ¢")(1 = ¢ ") = (¢" —¢")(1 - ¢*)

(1—gq4)(1—q) ’

=q

and hence

¢ = 2B (1=¢")(1=q¢"") = (¢" = ¢") (1 = ¢*)
' (11— ¢ )

Obviously, ¢ := (cp)nen € ' and thus c is a fixed point of @QDSQ. By the
Characteristic Equation [ we conclude that 0 € 0,(Ag). O

Since Ay generates a contraction semigroup, see Theorem B.3.2 its spectral
bound s(Ag) is less than or equal to 0. Together with the above lemma it follows
that s(Ag) = 0 and hence the boundary spectrum o,(Ag) of Ag is located on the
imaginary axis. The following lemma describes it completely.

THEOREM 3.4.2. For the above operator (Ag, D(Ag)) we have
O'p(AQ) NiR = O'(AQ) NiR = {O}

PROOF. From the above Lemma BZT we know that 0 € 0,(Ag).
Let now v = ia, a € R, such that |a| > Ay + 2u + 2\ + 1. Then

(22) Tl = faf=(A+p) > A+p
(23) Al > Jal = A > Np+2u+A+1>1,
(24) T > la|— A +p) > Np+p+r+1.
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First, we show that ||[®oD%| < 1. Therefore, we consider the columns of
|®oDY|. If j > k we estimate the j column sum as

N B~ (A _n 1 po®m oy
;K Q 7)7]| = |F‘;(‘F|) |F‘1 h ‘F|—)\ At — A\

I

If k> 1 and if |a| is such that |A| > 1, we obtain for the first column sum

i'(%Dg)“' : ﬁ(ﬁ)z +ﬁi(m) I _,;1(|r|>

1 A _ A
e oo
- () ‘(AY
k I T
= A —
-1 F| s
1 k
1- (i)
] A
= /Mijtu =
0| —1 |F| |F|
pA* 1
<
AENDE
& pxt I
New+p+ XA MNep+p+1
pA* LK
N+ MNep+p
- 1

Similarly, we can show that Y [(®oD¥); ;| < 1for 1 < j < k. Altogether we
have shown that

gD, = stellgz (®oDY)iy] < 1,
J i—1

and hence also 1(®oDY) < ||PoD?|| < 1if |a| > Np+ 2 +2X + 1. By the
Characteristic Equation [T this means that v € p(Ag) if |a| > A\u+2u+2\+1.
In other words, 0(Ag) N iR is bounded.

Since the semigroup is positive, the boundary spectrum of A, i.e. o(Ag)NiR,
is cyclic, see [Nag86, Prop. C-III 2.10], which means that if a+i5 € 0,(Ag), o, 5 €
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R, then also a+ik( € 0,(Ag) for all k € Z. From the boundedness of o(Ag)NiR
we finally obtain that o(Ag) N iR = {0}. O






CHAPTER 4

A queueing network

4.1. Introduction

In the previous chapter we considered a queueing problem with only one
server. However, in many cases the customers or objects in the system have to be
served by several servers or machines. When a service is finished at one machine
the object goes to another server with a certain probability. If this machine is
currently busy then the object is stored in a buffer. The transfer times of the
objects from one machine to the next machine or to the buffer are neglected
in this model. An object can enter or leave this network only from predefined
servers. For more information on queueing networks see [Kle76], [KIe76], [BB0O5).

Here we consider such a queueing network with only two machines. Some ver-
sions of this model were already studied using semigroup methods in [Gup03] and
[HGO4]. Again, we are interested in the convergence to a steady state solution.
For this purpose, we discuss in this chapter spectral properties of the operator
from the corresponding abstract Cauchy problem.

4.2. Setting

We study a queueing network consisting of a finite storage buffer and two
machines that have to process certain objects. We assume that machine one takes
objects from an infinite store and processes them one by one. When an object
is finished here, it either passes from machine one to the buffer with probability
0 < m < 1, or it is reprocessed by machine one with probability ¢; := 1 — n;.
Machine two takes the objects from the buffer and also processes them one by
one. When an object is finished here, it either exits the system with probability
0 < m2 < 1 or it is reprocessed by machine two with probability ¢ := 1 — ns.
The buffer can store at most N objects. If the buffer is full, then machine one
rests until an object leaves the buffer. A schematic picture of this transfer line is
drawn in Figure [l

We assume that the service times X,, for the n'* object passing the first ma-
chine and Y,, for the n'* object passing the second machine are both independent
and identically distributed random variables. For the first machine we require
an exponential distribution with parameter A > 0, i.e. the probability that the
service time for the n'* object is less than or equal to ¢ is

PUX,<t})) =1—e".
51
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FIGURE 1. Queueing network

—+ MACHINE 1 m MACHINE 2 112

q1 q2

BUFFER | < IV objects

For machine two the service times depend on a function p which takes the elapsed
service time of machine two into account. This function u is supposed to fulfill
the following.

GENERAL ASSUMPTION 4.2.1. The function p : R, — R, is measurable and
bounded such that lim, .., u(x) exists and pio := lim, oo p(x) > 0.

So the probability that the service time for the n'” object is less than or equal
totis

P{Y, <t})=1— ¢ horte)dr,

We now consider for ¢ > 0 the probability py(t) that at time ¢ only machine
one is processing an object and there are neither objects in the buffer nor in
machine two. For 1 <n < N + 1 and z,t > 0 we consider p,(z,t), where

/ pu(a,t) dx
0

is the probability that at time ¢ both machines are processing objects and there
are n — 1 objects in the buffer. Finally, for ¢, > 0 we consider py.2(x,t), where

/ pNJrQ(xat) dx
0

is the probability that at time ¢ machine one rests, machine two is processing an
object, the buffer contains N objects, so it is full, and the last object processed
by machine one is waiting to be stored in the buffer. Thus,

N+2

po(t) + Z /Ooopn(x,t) dr = 1.
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With these variables the dynamics of the above system can be described by
the following equations.
( dpo(t)

8 — it +m [ il
0

Opi(z,t) — Opi(z,t)

(A1 + p(@))pa(z, 1),

ot ox
R Opa(a,t)  Opa(x,t
" pa(t b-- pa(x )_()‘771""#@))1%(95,15)+/\n1pn_1(x,t),

for2<n<N+1,
apN-l—Q(:L‘)t) _apN-f—Q(:L‘vt) .

\ 875 - &'E
For z = 0 the following boundary conditions
(BCr)

.

p(w)pnya (T, t) + Ampnia (2, t).

1(0,8) = Apolt) + g / " (e, () + 7 / " pola, ()i,

pa(0,8) = g5 / Pl ) (@) + 7o / Pasi (. u(x)de,
0 0
for2< n<N+1,

prva(0,8) = g5 / prvsa(e, D) dz,
0

\

are prescribed. We consider the usual initial condition

{ po = c € C,

(ICx) pn(2,0) = fu(x) for 1 <n < N+2,

where f, € L'[0,00). Assuming that at the time ¢ = 0 there is only one object
in machine one and no object in machine two or in the buffer, respectively, leads
to the most interesting initial condition

po(0) =1,
(ICr,0) -
pn(z,0) =0 for1<n<N+2.

In [Gup03|, G. Gupur converted this model into an abstract Cauchy problem
on a suitable Banach space and then proved the existence of a unique positive
time-dependent solution by using the theory of strongly continuous semigroups
of linear operators. Then, in [HG04|, the authors considered the case where p
is constant and obtained asymptotic stability of the time-dependent solutions of
this system.

Here, we consider the case where p is an arbitrary function satisfying Gen-
eral Assumption L2] and prove the asymptotic stability of the time-dependent
solution of this system using spectral theory and semigroup methods.
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We first reformulate the underlying problem as an abstract Cauchy problem
with an operator (Ag, D(Ag)) on the state space

Xp = C x (L'[0,00))N*2.

Clearly, Xy is a Banach space endowed with the norm

N+2
[pll := |po| + Z ||pn||L1[O,oo)7
n=1

where p = (po, p1, ..., Pn42)" € Xg.
To arrive at the appropriate operator (Agr, D(Ag)) we start from the maximal
operator (A D(AR)) on X which we define as

0o C 0 0 0 0
0 M C 0 0 0
AR 0 0 M C 0 0],
0 0 0 0 - C 0
0 0 0 0 -+ Ay C
D(AR) = Cx (W"0,00))" .

Here and in the following ¢/ denotes the linear functional
w00 =€ feu()i= [ ()
0
Moreover, the operators C' and C' on W10, 00) are defined as
d ~ d
Cf=——f—(mf+pf)and Cf :=——f —uf,
dx dx
respectively. Note that (A%, D(AZ)) is a closed operator on Xg.

To model the boundary conditions (BCg]) we will use the following boundary
operators Lr and ®r mapping into the boundary space

8XR = CN+2.
As the operator Li we take
SN () (e
Lg: D(AR) — 0Xp, . — Lr| . = : ;

N+2 (O>
N+-2 N+-2
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while &y € E(XR, 8XR) is

A @Y oy 0 0 0 0
0 0 @v my 0 0 0
0 0 0 @y my 0 0
Pp = 0 0 0 0 @ 0 0
0O 0 0 0 0 - @ no
0O 0 0 0 0 - 0 @
The operator (Ag, D(Ag)) on X is then given as
ARP = Aﬁpa

D(Ag) :={p € D(A;) : Lgp = ®gp}.

With these definitions, the above equations (Bl), (BCg]) and (ICg)) become equiv-
alent to the abstract Cauchy problem

(ACPy) 2P = Arp(t), ¢ €[0,00),
p(0) = (¢, fr,.... f)T € Xk

If AR generates a strongly continuous semigroup (7z(%)):>o and if the initial values
in ([Cq) satisty ¢ := (co, f1, fo, - - -, [n+2)" € D(Ag), then the unique solution of

([B), (BCg) and ([Cg)) is given by
po(t) = (Tr(t)q)s,
pra(@,t) = (TrO)@n1(z), 1<n<N+2.

So it suffices to investigate [ACPg]).
We take the following result from [Gup03].

THEOREM 4.2.2. The operator (Ar, D(AR)) generates a positive strongly con-
tinuous contraction semigroup (Tg(t))i>o-
4.3. Boundary spectrum

In this section we investigate the boundary spectrum o,(Ag) of Ag using the
Characteristic Equation [C7 Therefore we first need the operator (AF, D(AEL))
defined by

D(Af) = {pe D(AL) : Lgp =10},
Afp = Aflp.
The resolvent set of this operator is given as follows.

LEMMA 4.3.1. The resolvent set of Al satisfies

p(AF) 2 {7 €C : Ry > —poo} \ {Im}.
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For v € p(AL) the resolvent of Al is obtained as

ri T2 0 0 0 0
0 2.2 0 0 0 0
0 7"372 7"373 0 0 0
R(v, Al = 0 T4, 4,3 T'4.4 0 0 ,
0 N+22 TN+23 TN+4+24 - TN42 N42 0
0 7rNi32 TN433 TN434 **° TN+3N+2 TN+3,N+3
where
1
L S Y T
T2 = Vﬁime(%C),
rie = (m) PRIy, C) for2 <k <j<N+2,
rnise = )N T3TER(y, CYRNYER(y, ) for2 <k < N +3.

The resolvent operators of the differential operators C and C are given by

(R(y, C)p)(z) = e~ OrfAm)z=f u(e)de / ’ NS IS BEOWE () g
0

and

(R(7,O)p)(w) = e 1= Jo no)e / e H o 1OEp(5)ds
0
for p € L0, 00).

PROOF. The first assertion follows from a combination of [Gre84b, Prop. 2.1]
and [Nag89, Thm. 2.4]. Applying the formula for the inverse of operator matrices
from [Nag89, Thm. 2.4] yields the representation of the resolvent. O

COROLLARY 4.3.2. The resolvent set of Al contains the imaginary azis, i.e.

iR C p(Af).

The elements in ker(y — AZ) are characterised as follows.
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LEMMA 4.3.3. Let v € C.
(25)  p € ker(y — AR)
&
(26) p=(po,pi();- - pnra())T,

)
_ M = — (v A )z — [ p(€)de
27) py= —RU m J
(27)  po 7+M71/ (e 0 z,

(A
(28)  pulz) = e~ Crixm)e=ly #l) déz w )'xkilanJrlfk

for1<n < N+1,
z " (n)E
(29)  pNy2(z) = ey e [Z AN+1-i <1 - ( Z'l) keAmz) T an+2
k

=0

where ay,...,anso € C.

PROOF. If for p € Xy (26)—(29) is fulfilled, then we can easily compute that
p € ker(y — AlY). Conversely, condition (Z5) gives a system of differential equa-
tions. Solving these differential equations, we see that (20)—(29) are necessarily
satisfied. O

Observe that Lp is surjective and hence the Dirichlet operator Df exists, see
Chapter [l For k € N we define

k
o, : C — L0, 00), (0x(c))(x) = C()\Z'l) ake(rtdm)e—[g (&) d

k€ {0,...,N}, Now we can give the explicit form of D
LEMMA 4.3.4. For each v € p(AY), the operator D? has the form

di 0 0 0 0
do 0 0 0 0
01 do 0 0 0
DE=1| 0 o1 o 0 0 7
on On—1  On—2 --- do 0
dnisy dnts2 dnyss -+ dnis N1 AN43 N+2
where
2 *
d = x)(00(1))(x) dz,
wo= A [ )
' N+l—k
Anysp = e~ Jon©)de _ Z Op for1<k<N+1,
n=0

e~ Jo n(&)d¢

dN43,N+2
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As explained in Chapter [[l we can characterise the spectrum o(Ag) and the
point spectrum o,(Ag) of Ag using the operators Df and ®p.

LEMMA 4.3.5. For v € p(A) the operator ®pDL can be represented by the
(N +2) x (N + 2)-matriz

aii 1.2 0 0 0 0

as a2 2.3 0 0 0

as, aso ass asy v 0 0

CDRDE' _ . .

an,1 an2  anz  ana ' ANN41 0
aN+11 AN4+1,2 AN4+1,3 AN414 °° AN41,N+1 AN4+1,N+2
aN+21 AN422 AN423 AN424 *°° AN42N+1 AN42 N+2

where

ag; =0 f 1<k<Nandj>k+2,

A o0
::( (el —|—qg)/ pu)e” Az =g O g
0

v+ Am

a1

=

[ ala)en OO O g
0

apj = 772/ u(x)e_(w)‘m)m_foz MOy f1<k<Nandj=k+1,
0

ANt1,N+2 ‘= 772/ p(w)e 7" Iw dgdx
0

A o
%W_%?%W%A oM () e (AT O gy
(Am)* 7+ /OO k—j+1 A £)d
+ xR r)e” (Y )z— [ 5dx
CEES ()
if2<k<Nandj <k,
(A V1 o B
s = g gy ), e O d
00 N+1—j ()\771) g | e [ n(e)de
+ M2 ,u(x) 1— Z : mz | o—vr=[g 1 dr
0 ~ ol
if 1 <j<N+1,
[e.o] N+1—j ()\771)" n —)\nlm —’Yﬂ?_lel(g)df
aN425 = G2 w(x) (11— Z e e ; do
0 o !

if1<j<N+1,
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AN42,N+2 ‘= qg/ M(gg)eﬂz*ﬁf (E)dE 1
0

With these operators and based on the Characteristic Equation [[C7] we inves-
tigate the boundary spectrum of Ag in more detail. Since by Theorem the
semigroup is bounded, the spectral bound s(Ag) of Ag is not greater than 0. It
indeed coincides with 0 as we can conclude from the following lemma.

LEMMA 4.3.6. For the above operator we have 0 € 0,(Ag).

PROOF. Since 0 € p(Af) by Lemma EZT we can use the Characteristic
Equation [C7 So we have to prove that 1 € 0,(®rD{). A simple calculation
using that

/ M(m)ef .[‘ox “(g)dédx — 1

0

shows that ®rDf is column stochastic. Hence 1 € o,(® D). O

We show in the following lemma that 0 is the only spectral value on the
imaginary axis.

THEOREM 4.3.7. Under the General Assumption [{.2.]]
o(Ar) NiR = {0}
holds.

PROOF. Assume that ai € o(Ag) for some 0 # a € R and consider &z Dl =
(bkj)N42xnt2 and ®pDE = (ckj)niaxni2. Using the triangle inequality for inte-
grals we see that

|Cril < brj

holds for all k,j € {1,..., N+2}. By our General Assumption L2l there exists
r € Ry such that p(x) > 0 for all z € [r,r + 2],

For the lower right entry of ®z DX we compute, using the abbreviation h(z) :=
Gopi(w)e Jo 1n(©) 4,

leNtonte] = / e~ “h(x)dr
0
e v o
< / e~ () da| + / e~ () d + / e h(a) do
r 0 7"+77T
21
<

r+7 ] r [e’e]
/ e~ h(z) da| + / h(z) dz + /  h(z) da.
r 0 T

Y
+a
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Next, we estimate the first term on the right hand side of the above inequality as

/ e "h(x)dx| =

r+2—7r

‘ e h(x) dx +/ ‘ e h(x) dx

s
=
+a

@ ta o om
e " h(x) dx—l—/ e (=) (z+7Z) do

“ e
e "h(x) dor — / e h(z+I) do

" ain (h(z) —h (z+Z)) da

/
/
&
/

IN

(o+5)] do

S
< / z)+h(z+1)) do
[

r+—
r+—
r+—

_ / Ih(x) dz.

. . . o, . . 2
Note that for thg last inequality we used the strict positivity of 1 on [7“, r+ 7”]
We now obtain

2T
r+7 r 00
lenNtont2] < / h(x) +/ h(x) dx—i—/ . h(z) dx
T 0 7‘+7

= / h(x) dr = bN+2,N+2-
0

From the zero pattern of ®5D{ it is clear that ®zDE is an irreducible matrix.

Hence we can apply [Sch74, Cor. p. 22] to obtain for the spectral radii
r(®rDE) < 1(®rDE).

Since ®rDE is column stochastic, we know that r(®zrD[') = 1. Therefore

r(®PpDE) < 1. Since ai € p(Af) by Corollary EE32 we can apply the Char-
acteristic Equation [ to obtain that ai ¢ o(Ag). O



CHAPTER 5
Asymptotics

5.1. General results

Our main goal in this chapter is to describe the asymptotic behaviour of the
solutions of the previous problems using the theory of positive and irreducible
semigroups from [Nag86| and [Sch74]. To this end, we first collect some results on
this aspect. For notations and results concerning positive operators we refer to
Appendix [Al and the relevant monographs such as [Sch74], [MN91] and [Nag86].

Let F be a Banach lattice and (B, D(B)) be the generator of a positive
semigroup (S()):>o on E. The fixed space of the semigroup (S(t)):>0 is

fix(S(t))iz0 = [ |fix(S(t) = {u € E: S(t)z = z for all ¢ > 0}
t>0
By [ENOO, Cor. IV.3.8 (i)] the equality
(30) fix(S(t))i>0 = ker B

holds.
For our purposes it is enough to consider Banach lattices which are AL-spaces,
see [Sch74l Def. 11.8.1], i.e., for all 2, 25 € E, we have

120 + 22l = [[z1]] + [|z2]l

To treat the asymptotic behaviour of (S(t));>0 the following compactness
property is useful.

LEMMA 5.1.1. Suppose that E is an AL-space and that the positive semigroup
(S(t))e>0 s irreducible and bounded. Let 0 € 0,(B). Then {S(t):t >0} C L(E)
15 relatively compact for the weak operator topology. In particular, it is mean

ergodic, i.e.
,

lim 2 [ S(s)z ds,

r—00 0

exists for all z € E.

PROOF. Since 0 € 0,(B) there exists 0 # z € fix(S(t))s>0, see ([BU). Then, by
the positivity of the semigroup, the inequality

(31) S()"|2l = S@)"[S(t)z] < S()" 2]

follows for all n € N and ¢ > 0, see [Sch74, p. 58]. Note that since (S(t));>o is
bounded by assumption, also the sequence ((S(t)"|z|)nen is norm-bounded. By

61
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[Sch74, Prop. I1.8.3] the sequence converges to an element z; > 0. In this step
we use that F is an AL-space. From

S(t)zo = S(t) lim S(t)"|z| = lim S(t)"™|z| = 2

we obtain that zy € fix(S(t)):>0. Thus, we can assume without loss of generality
that z > 0.

Since the semigroup is irreducible we obtain from [Nag86, Prop. C-III 3.5 (a)]
that z is a quasi-interior point of £’ which means that

E, = U [—nz, nz|

n>1

is dense in F.
Let n € N and take w € [—nz,nz]. Then

—nz=-—nS(t)z < S{t)w < nS(t)z = nz,

for all ¢ > 0. Since the order interval [—nz,nz| is weakly compact in E, see
[Sch74] p. 92], the orbit {S(t)w : t > 0} is relatively weakly compact in E. So
far, we have shown that the orbits of elements w from the dense subset E, of
E are relatively weakly compact. Since the semigroup (S(t)):>o is bounded, it
follows that {S(¢) : t > 0} C L(F) is relatively compact for the weak operator
topology, see [ENOO, Lem. V.2.7].

The mean ergodicity of (S(t))>o follows from [ENO(, Lem. V.4.6]. O

The mean ergodicity of the semigroup allows a decomposition of F into the
direct sum of ker B and rg B. If the semigroup is irreducible, then ker B is
one-dimensional. If in addition o(B) NiR = 0,(B) NiR = {0}, then the semi-
group converges strongly to a one-dimensional projection onto ker B. This is a
consequence of the Arendt-Batty-Lyubich-Vu Theorem and shown in the next
theorem.

THEOREM 5.1.2. Suppose that E is an AL-space and that the positive semi-
group (S(t))i>o is irreducible and bounded. If

o(B)NiR =0,(B) NiR = {0},
then E can be decomposed into the direct sum
E=FE, @ Ey

where By = fix(S(t))i>0 = ker B is one-dimensional and spanned by a strictly
positive eigenvector Z € ker B of B. In addition, the restriction (S(t)|g,)t>0 is
strongly stable.

PROOF. Since (S(t))>0 is mean ergodic by Lemma BTl the space E can be
decomposed into

E =ker B®rg(B) =: Ey @ Es
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where ker B = fix(S(t))i>0 and E; and E, are invariant under (S(f)):>0, see
[ENOO, Lem. V.4.4|. There exists Z € ker B such that Z > 0, confer the proof
of Lemma BTl Moreover, by the same construction as in the proof of [ENO(),
Lemma V.2.20 (i)], we find 2’ € E’ such that 2z’ > 0 and B’z = 0. Hence we
obtain that
dimker B =1

and that Z is strictly positive, see [Nag86, Prop. C-III 3.5].

We now consider the generator (B, D(B3)) of the restricted semigroup
(SQ(t))tZO where

BQ’U = BU, D(Bg) = D(B) N E2

and S3(t) = S(t)|g,. Since by Lemma BT Tl every 2z € E has a relatively weakly
compact orbit, (S3(t)):>o is totally ergodic by [ABHNOI, Prop. 4.3.12], i.e.,
(e7"S(t))i>o is mean ergodic for all @ € R. This implies that ker(By — iat)
separates ker(Bj — iat) for all a € R, see [ENO(0, Thm. V.4.5]. By our assump-
tion ker(By — iat) = {0}, thus ker(Bj — iat) = {0} for all @ € R. Hence, it
follows that o,(Bj) NiR = (). Applying the Arendt-Batty-Lyubich-Vi Theorem,
see JABHNOI, Thm. 5.5.5], we obtain the strong stability of (S2(t)):>o- O

5.2. Networks

5.2.1. Irreducibility. As we have seen in the previous section, irreducibility
of the semigroup is a useful property for the asymptotic behaviour. So we are
now interested under which conditions the semigroup (T (t)):>o from Chapter
is irreducible. It turns out that we need both a condition on the structure of the
graph and on the scattering operator J in the vertices. In Section 22 this will
lead to a precise description of the asymptotic behaviour of the semigroup. To
show irreducibility for our semigroup we need the following concept from graph
theory.

DEFINITION 5.2.1. A directed graph is called strongly connected if for any two
vertices v, w of the graph there exists a path from v to w and from w to v.

We now obtain irreducibility of our semigroup combining the strong connected-
ness of the graph with the strict positivity of J.

PROPOSITION 5.2.2. Let G be strongly connected and suppose that
(32) Jf>01 f>0.
Then the semigroup (Tn(t))i>0 generated by Ay is irreducible.

PROOF. Suppose that v > 0 and let v > 0. Then also R(vy, AY)u > 0 and
Dy R(v, A) )u > 0. By Proposition 23 (i) |®xD|| < 1, and hence the inverse

of Idpx, — P NDiV is given by the Neumann series

(e 9]

(Idoxy — @NDY)™H = (BxDY)"

n=0
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The operator ® NDQ’ has the same zero pattern as the adjacency matrix A. Ob-
serve that A* has a non-zero entry at position ij if there is a path from vertex v;
to vertex v; of length k. Since G is assumed to be strongly connected, for every
pair 4, j there exists k¥ € N such that the entry ij of A* and thus of (Q)NDQ’)’“
is nonzero. This entry can be written as the composition of J with an operator

composed of J and multiplications by strictly positive functions. By assumption
[B2) we conclude that

(Idoxy — ®n DY) 'ONR(vy, AY )u >0
and therefore by the special form of Div also
D, (Idyx, — PnDY) ' ®NR(v, Al Ju > 0.
This implies
R(vy, An)u> 0,
which by Proposition[A-T1lis equivalent to the irreducibility of the semigroup. [

In the following examples we show that without an assumption on the graph
and on the scattering operator J the semigroup is not necessarily irreducible.

ExAaMPLE 5.2.3. If we drop the assumption of the strong connectivity of the
graph, then the semigroup need not be irreducible.

To prove this we decompose the graph into its strongly connected compo-
nents. Assuming the graph not to be strongly connected, there exists a strongly
connected component C' = (V' E"), V' C V| E' C E such that there is no edge
e € E\ E' that is an incoming edge for a vertex v € V’'. Without loss of

generality we can assume that V' = {v,,...,v,} forsome 2 < r < n, and
E' = {es,...,ep} forsome 1 < s < m — 1. The incidence matrices have the
form . o
~ I; O = I, I
I, = (~1_1 ~_) and It = ( 1 ~12) respectively,
I I 0 I

where I7; and I}, are (r — 1) x (s — 1)—, I, and If; are (r — 1) x (m — s+ 1)—,
I, and I}, are (n—r+1) x (s—1)— and I, and I}, are (n—r+1) x (m—s+1)—
operator matrices. Moreover, since there is no path from a vertex v;, 1 < < r—1,
leading into the subgraph C', we have

Dy = (" ) men
where My isan (r—1) x (r—1)—, Mppisan (r—1) x (n —r+1)—, and My, is
an (n—r+1)x (n—r+1)— operator matrix. Take an element u € Xy such that
u = (uj)1<j<m > 0and u; = 0 for j € {r,...,n}. Then, it follows from the special
form of the operators appearing in the resolvent of Ay that (R(v, Ay)u); = 0 for
v>0and j € {r,...,n}. By Proposition [AT]] the semigroup is not irreducible.
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Note that in (B2) we require a stronger condition than the irreducibility of
J. If G is strongly connected and J is only assumed to be irreducible, then the
semigroup generated by Ay is not necessarily irreducible as the following example
shows.

EXAMPLE 5.2.4. Define
k: : [Umina Umaz] X [Uminy Umaa:] - R,

¢ if v € [Upmin, V'] and w € [V, Vyaz]
k(v,w) := or if v € (V', Vyae] and w € [Vppin, V'],

0 else,
where 0 # ¢ € R and v, < V' < Upez- Then the integral operator

J:Y =Y,

VUmazx
c/ f(w) dw if vy, <v <,
v

(Jf)(v) = / k(v,w)f(w) dw = o
Umin c f(w) dw if v < v < Upag,
is irreducible which can be shown by an easy computation.

Consider a graph with the incidence matrices I, = (39) and It = (9})
and suppose that both arcs have length [. Let u = (uj,u2) € Xy such that
up > 0,ui(z,v) = 0if 0 < o < land vy, < v < v and uy = 0. Then also
(R(v, AY)u) = 0 and

(f1. f2) = By R(7, AN yu = (0,.J( / L () dr).

Observe that if f € Y with fl, .. .1 =0, then

(33) (J2k+1f)|[v/7vmaz} = 0
and
(34) (% ) fomsn) = 0 for k € N.

Therefore, fa|[ vm.] = 0 holds. Suppose that v > 0. Then the inverse of
Idyx, — Py DY is given by the Neumann series

(Idgxy — @nDY)™H = (®xDI)
k=0
_ ( Zzio((]@e—ll)% ZZOO(JQS—%)%H)
ZZO:O(JQS—%)%H Zzio(JQe—ll)Qk .
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For f € Y the function (), f vanishes on the same set as f, since these operators
are multiplications by positive functions. Therefore we conclude, using ([B3) and

B4), that
((IdaxN - @ND:]yv)iléNR(,Y’ A(]]v)u)lhvlavmaac} = 0

and, by the definition of D,, also
(D'Y(IdaxN - ®ND’]7V)71®NR(,Y7 Aév>u>1|[v/7vmaz] = O
holds. With these considerations it follows that

(R(/% AN)U)I | [V, Umaz]
=(R(y, Ay )u)1 + Dy(Idox, — n DY) ONR(y, AY )1 |0 wae) = O-

By Proposition [A.TT] the semigroup (7 (t)):>0 is not irreducible.

5.2.2. Asymptotic behaviour. As our final result we describe the asymp-
totic behaviour of the solutions of [ACPy]) from Chapter Bl If the semigroup
is irreducible, then ker Ay is one-dimensional. If in addition the scattering op-
erator is as in Theorem Z3.T0, then the semigroup converges strongly to the
one-dimensional projection onto ker Ay. This is shown in the next theorem.

THEOREM 5.2.5. Let GG be strongly connected. Then, under the assumptions
of Theorem [Z-3110, the space Xy can be decomposed into the direct sum

Xy =XLoX%

where X = fix(Tn(t))i>0 = ker Ay is one-dimensional and spanned by a strictly
positive eigenvector u € ker Ay of Ay, u > 0, and (TN(t)|X12V)t20 is strongly
stable.

PROOF. Note that the norm on Xy fulfills ||uy + us|| = |Juy|| + ||ual|, w1, us €
Xn, and that the semigroup (7 (t)):>o is bounded. Moreover, by Theorem
we know that o(Ay) NiR = 0,(Ayx) NiR = {0}. Hence, the assertion follows
from Theorem O

We reformulate the above theorem as our final result.

COROLLARY 5.2.6. Under the conditions of Theorem [Z there exist 0 <
w e Xy and 0 < w' € X}y such that

lim Ty (t)w = (W', w)yw

t—o00

for allw e Xy.
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5.3. Queues

In this section the asymptotic behaviour of the semigroup (7¢(t))i>o from
Chapter B is investigated using the results on positive semigroups collected in
Section BTl

First we show the irreducibility of the semigroup via the representation of
the resolvent of A, from Proposition [8in terms of the resolvent of AY and the
operators o and D? .

LEMMA 5.3.1. The semigroup (Tg(t))i>0 generated by (Ag, D(Ag)) is irre-
ducible.

PROOF. For the proof we show that the condition (ii) from Proposition [A-T1]
is fulfilled. Therefore, recall the representation of the resolvent of Ag

R(7,Aq) = R(y, A7) + DI (1d — 24 DF) "' ®qR(7, A7)

for vy € p(AS?) from Proposition Let v > —\. From the representation of the
resolvent of AY in Lemma we see that R(v, A9) is a positive operator. We
even have that R(’y,A((;?)p > 01if 0 < p € Xg. Moreover, it cannot occur that
(R(y, AD)p)e = 0 and (R(y, AY)p); = 0 for all i > 2k simultaneously. Hence,
also o R(v, AZ)p > 0. Since |@oD%|| < 1, cf. the proof of Theorem BZ2, the
inverse of Id — @QD$ is given by the Neumann series, i.e.
(Id— ®oDY)™ = (2oDF)'.
=0
The special form of <I>QD§2 , see Corollary B2Z7 yields that for each j € N there
exists ig € N such that
((2gD2)?q); >0 if ¢ > 0.

Thus, ((Id — ®qD?)"'®oR(y, AF)p); >0 for all i € N. Then, also

D9(Id — ®oD?) ' @qR(v, Af)p > 0.

Adding the positive element R(~, A? )p does not change the strict positivity. So
we have indeed
R(V , AQ) > 0.
O

Now we are ready to prove our main result on the asymptotic behaviour.
Combining Lemma B3.T] with the results from Section Bl we obtain the strong
convergence of the semigroup to a one-dimensional equilibrium.

THEOREM 5.3.2. The space X can be decomposed into the direct sum
Xo = X5 ® X3
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where X}, = fix(To(t))=0 = ker Aq is one-dimensional and spanned by a strictly
positive eigenvector p € ker Ag of Ag. The restricted semigroup (Tg (t)|Xé)t20 is
strongly stable.

PROOF. From Theorem B:32 Theorem and Lemma B3T1it is clear that
the assumptions of Theorem are fulfilled and hence the assertion follows. [

This theorem can be reformulated as follows.
COROLLARY 5.3.3. There ezist 0 < p € Xqg and 0 < p' € X¢, such that
lim Tr(t)p = (p', p)p
for allp € Xq.

For our original problem with the initial condition ([Cq ) this means the
following.

COROLLARY 5.3.4. The time-dependent solution of the system (), (BCq)
and converges strongly to the steady-state solution as time tends to infin-
ty.

5.4. A queueing network

Finally we study the asymptotic behaviour of the solutions of [ACPg]). We
know from Proposition that the resolvent of Ar can be represented in terms
of the resolvent of A%, the Dirichlet operator Df and the boundary operator and
we have computed this resolvent explicitly in Lemma EE3 Tl This representation
shows that it is a positive operator for v > 0. We need this property in the
following lemma to prove the irreducibility of the generated semigroup.

LEMMA 5.4.1. The semigroup (Tr(t))i>0 generated by (Ar, D(Ag)) is irre-
ducible.

PRrROOF. It suffices to show that there exists v > 0 such that 0 < p € Xy
implies R(v, Agr)p > 0, see Proposition [A-TIl By Proposition we have to
prove that there exists v > 0 such that 0 < p € Xg implies

R(77 A(?)p + (IdaXR - (I)RDfly%)ilq)RR(’y’ A(I)%)p > 0.
Suppose that v > 0 and 0 < p € Xg. Then also R(vy, Af)p > 0 and ®rR(y, Al)p >

0. Since ||®rDI|| < 1 for any v > 0, the inverse of Idyx, — ®rDI is given by

the Neumann series
[oe)

(Idpx, — PrDE)™' =) "(@pDI)".

n=0
We know from the form of Q)RDf' that for every i € {1,..., N + 2} there exists
k € N such that the real number ((®rDI)*®rR(vy, Af)p); > 0, i.e.,

(Idox, — PrDI) ' ®RrR(v, A)p > 0,
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and by the form of D we have
DX (Idyx, — PrDY) ' ®rR(y, Af)p > 0.
This implies
Therefore the semigroup (Tg(f)):>o is irreducible. O

We can now show the convergence of the semigroup to a one-dimensional
equilibrium point.
THEOREM 5.4.2. The space Xg can be decomposed into the direct sum
Xrp=Xp® X5

where X3 = fix(Tg(t))i>0 = ker Ag is one-dimensional and spanned by a strictly
positive eigenvector p € ker Ag of Ap. In addition, the restriction (Tr(t)|x2 )0
18 strongly stable.

PROOF. A combination of Theorem EEZ2 Lemma EE36, Theorem B3 and
Lemma R.4.T], Theorem gives the proof of the theorem. O

We now reformulate the above theorem in the following way.
COROLLARY 5.4.3. There exist 0 < p € Xg and 0 < p’ € X}, such that
lim Tr(t)p = (p', p)p
for all p € Xp.

Since the semigroup gives the solutions of the original system, we obtain for

(ICgr.o)) the following consequence.

COROLLARY 5.4.4. The time-dependent solution of the system (R), (BCH)
and converges strongly to the steady-state solution as time tends to infin-
1ty.






APPENDIX A

Positive operators

In this thesis we use the theory of positive operators on Banach lattices.
Therefore, we collect the basic definitions and properties needed in our situation.
We refer to [Sch74] and [MNO9T] for an exhaustive treatment of this theory and
to [Nag86] for the corresponding semigroup theory.

We start by defining an order relation on vector spaces. Recall that a relation
> is said to be an order relation if it is reflexive, antisymmetric and transitive.

DEFINITION A.1.

(i) A real vector space F is an ordered vector space if there is an order
relation > defined on FE such that for f,g € F

fzg9g = f+h>g+h forallheFE,
f>9g = af>ag foralla>0.

(ii) A wvector lattice is an ordered vector space such that for any two elements
f,g € E the supremum (i.e. least upper bound)

sup{f, g}

and infimum (i.e. greatest lower bound)

inf{f, g}

exists.

Clearly, the notation g < f means that f > g. Moreover, f > 0 means that
f>0and f#0. If g < f, then the set

g, f1:={heE : g<h<[}
is called order interval. The positive cone E, of an ordered vector space E is
If f € E, then we say that f is positive. If E' is a vector lattice, the positive part
of fe Eis
f7 = sup{f,0},
and the negative part of f is
f = sup{— 1.0},

71



72 A. POSITIVE OPERATORS

while the absolute value or modulus of f is

|f] == sup{f, — [}
Note that f = f* — f~and |f| = ft + .
On a vector lattice £ we now consider a norm that is compatible with the
order.
DEFINITION A.2.

(i) A norm | - || on a vector lattice E is a lattice norm if

f1<1lgl = [fll < llgll-

(ii) A normed vector lattice is a vector lattice endowed with a lattice norm.
(iii) A Banach lattice is a normed vector lattice that is complete.

We now extend the concept of a Banach lattice to complex vector spaces and
call the complexification

Ec:=FE xib

with scalar multiplication

(a+1iB)(f,9) = (af = Bg,Bf +ag) for a,B€R

a complex Banach lattice. The space E is the real part of E¢. For f,g € Ec we
write f > g if f,g € E and if f > ¢ holds. The modulus of (f,g) € E¢ is

[(f,9)] == sup [(cos@)f + (sin@)g|.
0<p<2m

It can be shown that the modulus indeed exists, see [Nag86, Sect. C-I 7]. More-
over, the norm on FE¢ is defined by

The spaces C and L (€, 1) are complex Banach lattices. The underlying real
vector lattices are R endowed with the usual order and L% (€2, i) endowed with
the order

f>g it f(z)>g(z) foralmostall z €.
Moreover, for f € L&(€, 1) the modulus is

[fl(z) = |f(2)], ze.
In this thesis, spaces like
C" x I'(Lg(Q, 1))
occur. They are complex Banach lattices with underlying real spaces
R" x I (L (O, ).
Their order is given by
(fi)ien > (gi)ien if fi>g; forall ieN.
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The modulus of (f;)ien € C* x I'(LE(Q, 1)) is
|(fi)ien| = (Ifil)ien-

We now turn our attention to operators on these spaces. Operators which
respect the order structure are called positive.

DEFINITION A.3. Let E be a real Banach lattice.
(i) A linear operator T on FE is positive (in symbols, T > 0) if
Tf>0 forall f>0.
(ii) A linear operator 7" on F is called strictly positive (in symbols, T' > 0)
if
Tf>0 forall f>0.

(iii) A strongly continuous semigroup (S(t));>o on E is positive if S(t) > 0
for all ¢ > 0.

This definition can be extended to operators on complex vector lattices which
map the underlying real part into the real part. In this case, positivity or strict
positivity means that the restriction of the operator to the real part is positive
or strictly positive, respectively.

Note that for a positive operator T" on a vector lattice E the inequality

ITfl < TIf]

holds for all f € F, see [Sch74, p. 58].
Next, we are interested in generators of positive semigroups. Therefore, we
give the following definition from [Nag86|, p. 249|.

DEFINITION A.4. A linear operator (B, D(B)) on a real Banach lattice E is
called dispersive if for every z € D(B) there exists a x € E’, such that || x| <1,
(z:x) = [Iz7]| and R(Bz, x) < 0.

Now, the generator property for generators of positive contraction semigroups
is characterised as follows, see [Nag86, Thm. C-II 1.2]

THEOREM A.5 (Phillips’ theorem). Let B be a densely defined operator on a
real Banach lattice £. The following assertions are equivalent.
(i) B is the generator of a positive contraction semigroup.
(ii) B is dispersive and v — B is surjective for some v > 0.

The following subspaces play an important role in the theory of positive op-
erators.

DEFINITION A.6. An ideal in a real or complex Banach lattice F is a linear
subspace F' such that

feF lgl<|fl = geF.
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REMARK A.7.
(i) The ideals in C™ are the subspaces

Jg i ={r = (2,)1<i<n € C" : x;=0fori e H}
where H is an arbitrary subset of {1,...,n}, see [Sch74, p. 2].
(ii) Every closed ideal in L (€, ) is of the form
Iy ={f€FE : f(x) =0 for almost all z € Q}

where M is a measurable subset of ). Conversely, every set I, is a
closed ideal in LL (9, 1), see |Sch74, Example I11.1.2].

The ideal E; generated by f € E, is the smallest ideal containing f. By
[Sch74, Example 11.2.1] the equality

holds.

DEFINITION A.8. Let f € E,. If E; is dense in F, then we call f a quasi-
intertor point.

REMARK A.9. A function f € L&(€, i) is a quasi-interior point if and only if
f(z) > 0 for almost all x € €. In this case we write f > 0.

Irreducibility of the semigroup is a key property in order to determine the
asymptotic behaviour. We briefly recall the basic definitions.

DEFINITION A.10.

(i) A positive linear operator B on E is called irreducible if there is no
closed non-trivial ideal in E which is invariant under B.

(ii) A positive semigroup (S(t));>o on E is called irreducible if there is no
closed non-trivial ideal in £ which is invariant under (S()):>o.

The irreducibility of our semigroups on E can be characterised in the following
way, cf. [Nag86l, Def. C-IIT 3.1].

PROPOSITION A.11. Let B be the generator of a positive semigroup (S()):>o-
The following assertions are equivalent.

(i) The semigroup (S(t));>0 on E is irreducible.
(ii) If f € E and f > 0, then R(v, B)f > 0 for (some) all v > s(B).
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domain of A

fixed space of the semigroup (S(¢)):>0

kernel of T’

space of bounded linear operators on X
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space of real valued integrable functions on {2 with respect to

real part of z

spectral radius of T’

range of T'

resolvent set of A

resolvent of A in v

spectral bound of A

spectrum of A

boundary spectrum of A

point spectrum of A

residual spectrum of A

75






[ABHNO1]

[Bar96]
[BBO3]
[Bir59)
[Bol9g]
[Bou03al
[Bou03b]
[Cha02]
[Cohg2]
[Cox55]

[DM79]
[EN0O]

[ENO06]
[GLZ01a]
[GLZO01b]
[Golg5]
[GRO1]
[Gre84al

[Gre84b]

Bibliography

W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued
Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96,
Birkh&user Verlag, 2001.

L. Barletti, Linear transport of particles on networks, Math. Models Methods Appl.
Sci. 6 (1996), 279-294.

L. Breuer and D. Baum, An Introduction to Queueing Theory and Matriz-Analytic
Methods, Springer-Verlag, 2005.

G. Birkhoff, Reactor criticality in transport theory, Proc. Nat. Acad. Sci. U.S.A.
45 (1959), 567-569.

B. Bollobas, Modern Graph Theory, Graduate Texts in Mathematics, vol. 184,
Springer-Verlag, 1998.

M. Boulanouar, The asymptotic behavior for the streaming operator in slab geom-
etry, J. Dynam. Control Systems 9 (2003), 53—71.

, Generation theorem for the streaming operator in slab geometry, J. Dy-
nam. Control Systems 9 (2003), 33-51.

M. Chabi, Perturbations non bornée de semi-groupes et applications, Ph.D. thesis,
Université Cadi Ayadd, Marrakech, 2002.

J.W. Cohen, The Single Server Queue, second ed., North-Holland Series in Applied
Mathematics and Mechanics, vol. 8, North-Holland Publishing Co., 1982.

D.R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of
supplementary variables, Proc. Cambridge Philos. Soc. 51 (1955), 433-441.

J. Duderstadt and W. Martin, Transport Theory, John Wiley & Sons, 1979.
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equa-
tions, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, 2000.

, A Short Course on Operator Semigroups, Universitext, Springer-Verlag,

2006.

G. Gupur, X.-Z. Li, and G.-T. Zhu, The application of Cy-semigroup theory to
dynamic queueing systems, Semigroup Forum 62 (2001), 205-216.

, Functional Analysis Method in Queueing Teory, Research Information
Ltd., 2001.

J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathe-
matical Monographs, Oxford University Press, 1985.

C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics,
vol. 207, Springer-Verlag, 2001.

G. Greiner, Spectral properties and asymptotic behavior of the linear transport
equation, Math. Z. 185 (1984), 167-177.

, A typical Perron-Frobenius theorem with applications to an age-dependent
population equation, Infinite-dimensional Systems (Retzhof, 1983), Lecture Notes
in Math., vol. 1076, Springer, 1984, pp. 86—100.

77



78
[Gre87]
[Gup03|
[Gup04]

[GvdMP87]

[HGO4]
[HRO5]
[HRO6]
[Ken53]
[Kle75]
[Kle76]

[KLHS2]

[KSO05]
[Lat00]
[MK97]
[MNO91]
[MS]
[Nag85]
[Nag86]
[Nag89]
[Paz83]
[Rad]
[Rha02]
[Sch74]

[Sik05]

BIBLIOGRAPHY

, Perturbing the boundary conditions of a generator, Houston J. Math. 13
(1987), 213-229.

G. Gupur, Well-posedness of a reliability model, Acta Anal. Funct. Appl. 5 (2003),
193-209.

G. Gupur, Resolvent set of the M/M"PB /1 operator, Acta Anal. Funct. Appl. 6
(2004), 106-121.

W. Greenberg, C. van der Mee, and V. Protopopescu, Boundary Value Problems
in Abstract Kinetic Theory, Operator Theory: Advances and Applications, vol. 23,
Birkhauser Verlag, 1987.

A. Haji and G. Gupur, Asymptotic property of the solution of a reliability model,
Int. J. Math. Sci. 3 (2004), 161-195.

A. Haji and A. Radl, A semigroup approach to the reliability of systems, Tiibinger
Berichte zur Funktionalanalysis 14 (2004/2005), 191-202.

, Asymptotic stability of the solution of the M/M?P /1 queueing model,
preprint, 2006.

D. Kendall, Stochastic processes occurring in the theory of queues and their analysis
by the method of the imbedded Markov chain, Ann. Math. Statistics 24 (1953), 338—
354.

L. Kleinrock, Queueing Systems. Vol. I: Theory, John Wiley & Sons, 1975.

, Queueing Systems. Vol. II: Computer Applications, John Wiley & Sons,

1976.

H.G. Kaper, C.G. Lekkerkerker, and J. Hejtmanek, Spectral Methods in Lin-
ear Transport Theory, Operator Theory: Advances and Applications, vol. 5,
Birkh&user, 1982.

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows
in networks, Math. Z. 249 (2005), 139-162.

K. Latrach, On the spectrum of the transport operator with abstract boundary con-
ditions in slab geometry, J. Math. Anal. Appl. 252 (2000), 1-17.

M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, Se-
ries on Advances in Mathematics for Applied Sciences, vol. 46, World Scientific
Publishing Co., 1997.

P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.

T. Métrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math.,
to appear.

R. Nagel, Well-posedness and positivity for systems of linear evolution equations,
Confer. Sem. Mat. Univ. Bari (1985), no. 203, 29 pp.

R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in
Mathematics, vol. 1184, Springer-Verlag, 1986.

, Towards a “matriz theory” for unbounded operator matrices, Math. Z. 201
(1989), 57-68.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, 1983.

A. Radl, Transport processes in networks with scattering ramification nodes, to
appear in J. Appl. Funct. Anal.

A. Rhandi, Spectral theory for positive semigroups and applications, Quaderno del
Dipartimento di Matematica dell’Universita di Lecce 1 (2002).

H.H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der math-
ematischen Wissenschaften, Band 215, Springer-Verlag, 1974.

Eszter Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ.
5 (2005), 441-463.




[Vid6s]
[Vid70]
[Voi&4]

[Voi85]

BIBLIOGRAPHY 79

1. Vidav, Ezistence and uniqueness of nonnegative eigenfunctions of the Boltzmann
operator, J. Math. Anal. Appl. 22 (1968), 144-155.

, Spectra of perturbed semigroups with applications to transport theory, J.
Math. Anal. Appl. 30 (1970), 264-279.

J. Voigt, Positivity in time dependent linear transport theory, Acta Appl. Math. 2
(1984), 311-331.

, Spectral properties of the neutron transport equation, J. Math. Anal. Appl.
106 (1985), 140-153.







Zusammenfassung in deutscher Sprache

In dieser Arbeit wird ein Transportproblem auf Netzwerken und zwei Prob-
leme aus der Theorie der Warteschlangen mit halbgruppentheoretischen Metho-
den behandelt.

Im ersten Kapitel wird der abstrakte Rahmen, siehe [Gre87), erldutert, in den
alle drei Problemstellungen passen.

Das zweite Kapitel befasst sich mit einem Transport-Problem auf Netzwerken,
welches eine Verallgemeinerung der Fragestellung in [KS05| ist. Das Netzwerk
wird durch einen gewichteten und gerichteten Graphen dargestellt. Wir nehmen
an, dass Teilchen zwischen den Knoten flieken konnen, falls sie durch eine Kante
verbunden sind. Einzelne Teilchen bewegen sich mit konstanter Geschwindigkeit,
jedoch konnen unterschiedliche Teilchen unterschiedliche Geschwindigkeiten ha-
ben. Wenn die Teilchen einen Knoten passieren, werden sie auf die ausgehenden
Kanten entsprechend der Kantengewichte verteilt. In den Knoten werden die
Teilchen gestreut, das heifit, sie dndern ihre Geschwindigkeit, und es gilt ein
Kirchhoffsches Gesetz.

Nachdem wir dieses Problem als abstraktes Cauchy-Problem auf einem ge-
eigneten Banachraum umgeschrieben haben, wird die Wohlgestelltheit bewiesen.
Auferdem wird das Spektrum des zugehorigen Generators niher untersucht. Falls
der Streuoperator in den Knoten ein kompakter Integraloperator ist, so dass bei
der Streuung die Teilchenzahl erhalten bleibt, so ist das Spektrum des zugehori-
gen Generators ein reines Punktspektrum, und das Randspektrum besteht nur
aus 0.

In den néchsten beiden Kapiteln diskutieren wir Probleme aus der Warte-
schlangentheorie.

Kapitel Bl beschiftigt sich mit dem M /M*? /1 Warteschlangenmodell. Hierbei
gibt es einen Server, der B Kunden gleichzeitig bedienen kann. Der Server fangt
jedoch erst an zu arbeiten, sobald sich £ Kunden in der Warteschlange befinden.
Die Kunden treffen zuféllig ein. Die Zeitabsténde zwischen der Ankunft zweier
Kunden sind ebenso wie die Servicezeiten exponentiell verteilt.

Kapitel Bl behandelt ein einfaches Warteschlangen-Netzwerk bestehend aus
zwei Servern, die durch einen Puffer endlicher Kapazitit getrennt sind. Die Kun-
den miissen von beiden Servern bedient werden. Sie konnen das Netzwerk nur am
ersten Server betreten und nur vom zweiten Server aus verlassen. Falls der erste
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Server einen Prozess an einem Kunden beendet, muss der Kunde mit einer gewis-
sen Wahrscheinlichkeit erneut zum ersten Server oder in den Puffer. Dort bleibt
er, bis der zweite Server frei ist und die vor ihm im Puffer wartenden Kunden
bedient worden sind. Nachdem der Kunde vom zweiten Server bedient worden
ist, muss er entweder erneut vom zweiten Server bedient werden, oder er ver-
lasst das Netzwerk. Fiir beide Fille sind wiederum gewisse Wahrscheinlichkeiten
angegeben. Falls der Puffer voll ist, arbeitet der erste Server nicht mehr, bis ein
Kunde den Puffer verlasst.

Diese beiden Fragestellungen aus der Warteschlangentheorie werden in Form
eines abstrakten Cauchy-Problems formuliert. Anschliefend befassen wir uns mit
der Wohlgestelltheit der Probleme und untersuchen das Spektrum des jeweiligen
Generators. In beiden Féllen is 0 der einzige Eigen- und Spektralwert auf der
imagindren Achse.

Abschliefend wird im fiinften Kapitel das asymptotische Verhalten der Lo-
sungen besprochen. Wir zeigen, dass die zu dem Transportproblem gehoérende
Halbgruppe unter gewissen Bedingungen an den Graphen sowie an den Streu-
operator irreduzibel ist. Wir zeigen, dass die Halbgruppe nicht notwendigerweise
irreduzibel ist, falls eine dieser Bedingungen nicht erfiillt ist. Aufserdem beweisen
wir die Irreduzibilitdt der Halbgruppen von den Warteschlangenproblemen. In
allen oben beschriebenen Fillen wird die Konvergenz gegen ein eindimensionales
Gleichgewicht gezeigt.

Im Anhang stellen wir die in dieser Arbeit benétigten Resultate iiber positive
Operatoren und positive Halbgruppen auf Banachverbinden zusammen.



14.10.1977
1984-1988
1988-1997
18.06.1997
1997-2003

2003

12.12.2003
2004-2006
2006

Lebenslauf

geboren in Stuttgart

Besuch der Bruckenackerschule (Grundschule) in Filderstadt

Besuch des Eduard-Spranger-Gymnasiums in Filderstadt

Abitur

Studium der Mathematik (Diplom) an der Eberhard Karls Uni-

versitat Tiibingen

zweimonatiger Forschungsaufenthalt in Italien
Stipendium)

Diplom in Mathematik mit Nebenfach Informatik
Promotionsstipendium nach dem LGFG

einmonatiger  Forschungsaufenthalt in  China
Stipendium)

Meine akademischen Lehrer waren
in Mathematik:

V. Batyrev, U. Felgner, W. Grolz, K.-P. Hadeler, H. Heyer, W. Kaup, W. Knapp,
B. Leeb, P. Leinen, F. Loose, C. Lubich, R. Nagel, A. Rhandi, M. Wolff, H.

Yserentant,

in Informatik:

M. Kaufmann, H. Klaeren, W. Kiichlin, K.-J. Lange.

83

(DAAD-

(DAAD-



	Introduction
	Chapter 1. Tools from operator theory
	Chapter 2. Networks
	2.1. Introduction
	2.2. Setting
	2.3. Spectral properties
	2.4. Well-posedness

	Chapter 3. Queues
	3.1. Introduction
	3.2. Setting
	3.3. Well-posedness
	3.4. Boundary spectrum

	Chapter 4. A queueing network
	4.1. Introduction
	4.2. Setting
	4.3. Boundary spectrum

	Chapter 5. Asymptotics
	5.1. General results
	5.2. Networks
	5.3. Queues
	5.4. A queueing network

	Appendix A. Positive operators
	Table of symbols
	Bibliography
	Zusammenfassung in deutscher Sprache
	Lebenslauf

