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Goal of Lecture

Machine Learning can alleviate the burden of solving many 
biological problems,

- saving the time and cost required for experiments
- providing predictions that guide new experiments. 
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Goal of Lecture

Machine Learning can alleviate the burden of solving many 
biological problems,

- saving the time and cost required for experiments
- providing predictions that guide new experiments. 

The goal of this tutorial is to raise awareness and 
comprehension of machine learning 

so that biologists can properly match the task at hand to the corresponding 
analytical approach
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Abstract

We explore representative models, from traditional statistical 
models to recent machine learning models, 

presenting several up-to-date research projects 
in bioinfomatics to exemplify 

how biological questions can benefit from a machine learning 
approach. 
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Content

1. Basics 
2. Tasks
3. Learning
4. Models with Examples
5. Evaluation and Statistical Tests 
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Content

1. Basics 
2. Tasks
3. Learning
4. Models with Examples
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Basics 
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Data Representation

orData Table (Data Base)
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20 records, 
20 samples, 
20 observations,
20 objects,
20 data points,
20 individuals,
20 experimental units,
etc.
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Data Representation

or
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Aj
attribute, 
feature,
descriptor, 
input variable,
predictor variable, 
independent variable, 
exogeneous variable,
etc, 
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Data Representation

or

A1 A2 A3 … A10 y y
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input, 
predictor, 
etc.

* Input set: X = {x1, x2, …, x20}
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Data Representation

or

A1 A2 A3 … A10 y y
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…
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yi
output variable,
response,
target variable, 
endogeneous variable,
label, 
etc.

* Output(Target) Set: Y = {y1, y2, …, y20}
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Content

1. Basics 
2. Tasks
3. Learning
4. Models with Examples
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Tasks
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Tasks

Prediction
Classification
Regression

Description
Clustering
Feature Description

Dimensionality Reduction
Feature Selection
Feature Extraction

Data Reduction (Sample Selection)

Data Integration
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Classification

Classification is concerned with the problem of 
separating distinct sets of data points and 

allocating new (test or unknown) data points to 
previously defined group (class)
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Classification
Input Target

A1 A2 A3 … A10 y y
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Target variable (y) is categorical
Nominal : (ex) yes or no, 1 or -1

: (ex) blue, red, yellow…
Ordinal : (ex) age groups 

(10-20, 20-30, 30-40, …)
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* Predicted Value

model, 
functionf     

predicted value (output), 
output, 
score,
etc     

f(x) 
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Classification

Class 1

Class 2

f

 yf(x) ≈

  
0 if   2) (class 1
0 if 1) (class1

⎩
⎨
⎧

<−
≥+

=
  f(x)  

 f(x)     
f(x)(Ex) Class 1: y = 1

Class 2: y = -1
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Regression

Regression is concerned with the problem of 
predicting the value of continuous target variable.
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Regression
Input Target

A1 A2 A3 … A10 y y

1000 class1

class2

class1 

…

class2

3500

1

20

45

…

400

…

700 3

…

…

…

…

…

red

blue

yellow

…

blue

5

6

7

…

88

10

6

7

…

3

x1

x2

x3

…
x20

Target variable (y) is continuous
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Regression

yf(x) ˆ=
f

x-axis

y-axis

0

y
ε

yf(x) ≈
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* Scales of Variable

• Nominal: sex, blood type, color,…

• Ordinal: rank, educational degree,…

• Interval: temperature, …

• Ratio: income, age, weight…

≥/=/≤,

≥/=/≤, +/–

≥/=/≤, +/–, ×/÷

Categorical

Continuous

D
eg

re
e 

of
 In

fo
rm

at
io

n

** Classification can be regarded as a subset of Regression
in viewpoint of modeling (not task).
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Clustering

Clustering is concerned with the identification of 
groups of similar data points based on

similarity measures. 
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Clustering

Clustering is concerned with the identification of 
groups of similar data points based on 

similarity measures. 

Clustering is distinct from classification in that

• Classification pertains to a known number of groups
and its operational objective is to assign new data points 
to one of these groups

• Clustering makes no assumption concerning the number 
of groups
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Clustering
Input No Target !!
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No target variable (y)
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Clustering
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Clustering
2 clusters

3 clusters 4 clusters

f2

f3 f4
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Dimensionality Reduction

Dimensionality reduction is concerned with the 
process which removes irrelevant or redundant 
features (attributes) from the original feature set, 

in order to avoid “curse of dimensionality”—
complication of learning process, erroneous results, 

computational burden. 

* note: irrelevant or redundant for learning or modeling
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Dimensionality Reduction

• Feature Selection
A process of finding a subset of relevant features (attributes) 
from the original set of features.

(Ex) Selected Features: A1,  A1000
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Dimensionality Reduction

• Feature Extraction
A process of defining new descriptors (features) condensed via 
transformations of the raw features. The descriptors are 
represented as the features in the new feature space

P1 =  β1A1 + β1A2 + β1A1A350(Ex) Extracted Features:
P2 =  Φ (A1, A2, …, A1000)
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P1 P2 y
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Data Reduction (Sample Selection) 

Data Reduction is concerned with the process 
which removes irrelevant or redundant “data 

points” from the original data set, 

in order to avoid complication of learning process or 
computational burden.

* note: irrelevant or redundant for learning or modeling
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Data Reduction (Sample Selection) 

(Ex) Selected Data Points: x2, x3, x100, x9999

A1 A2 A3 … A10 y

1000 class1

class2

class1 

…

x100 3 88 blue … 700 class1

… … … … … … …

… … … … … … …

x500 60 68 red … 1700 class2

x9999 3 85 green … 2500 class2

class1
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…
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…
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3
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…

x10000

A1 A2 A3 … A10 y

3500 class2

class1 

x100 3 88 blue … 700 class1

x9999 3 85 green … 2500 class2

400

…

…
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7
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f
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Data Reduction (Sample Selection) 

Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

Informative
Sampling

Random
Sampling(Ex) Classification
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Data Integration

Data Integration is concerned with the integration of 
different or heterogeneous data sources (sets) in 

order to enhance the total information about the 
problem at hand. 

Each data source contains partly independent and 
partly complementary pieces of information about the problem.
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Data Integration

A1 A2 … A10 y

1000 1

-1

1 

…
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…

…

…

…
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…
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x1
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…
x7

Vectorial Data

Graph (network)

Sequence (string)
x1 agctgtttagctatatgcgtatagggct 1

cagtgtcgaatagccgctcgaaaaa
a -1

…

-1

…

catgctgtatgcccgatagcgtgatcg

x2

…
x7

1+

1+

1+

1−

1−

1−

1+
x1

x2

x6
x7

x5

x3

x4

Ex) Heterogeneous Representation
of Multiple Data Sources

+

+
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Content

1. Basics 
2. Tasks
3. Learning
4. Models with Examples
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Learning
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Learning

Building a model  f given dataset {X,Y} is called 
“Learning” or “Training”

RegressionClassification
class 1

class 2

f

Clustering
f

ŷf(x)=
f

x-axis

y-axis

0

y
ε

f  

agctgtttagctatatgcgt
atagggct

Data Integration
f

Dimensionality Reduction

f

Data Reduction
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Learning

ŷf(x)=
f

x-axis

y-axis

0

y
ε

Regression

Building a model  f given dataset {X,Y} is called 
“Learning” or “Training”

Ex) Regression Model
f(x) = β1 x2 + β2 x + c 

In other words, given data {X, Y}, 
finding the values of parameters, β1, β2, and c is “Learning”
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Data Set Split

A1 A2 A3 … A10 y
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… … … … … … ?
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…
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yellow
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red
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6

7
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56

62

10

6
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…
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15

x1

x2

x3

…
x18

x19

“Known”
data points

“Unknown”
data points
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Data Set Split

Training set

Validation set

Training (or learning or building) a model f

Model selection (or model parameter selection)
* Best  parameters (β1 , β2, c) ? 

* Model : f(x) = β1 x2 + β2 x + c “Known”
data points

Test set
Prediction with a trained model

“Unknown”
data points
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Data Set Split & Learning

Training set

2

11

2 ))((∑∑
==

−=
n

i
ii

n

i
yxfε

Build a model “f ” minimizing the errors

x

y

0

Prediction Target

Error 
(SSE: sum of squared error)
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Data Set Split & Learning

Build a model “f ” minimizing the errorsTraining set

2

11

2 ))((∑∑
==

−=
n

i
ii

n

i
yxfεmin.

x

y 

0x

y

0 x

y

0

fA fB fC
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Data Set Split & Learning

Build a model “f ” minimizing the errorsTraining set

2

11

2 ))((∑∑
==

−=
n

i
ii

n

i
yxfεmin.

x

y

0

fC

x

y

0

fA

ε

x

y 

0

fB
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Data Set Split & Learning

Learning (Training) Error Curve

Learning Progress

Tr
ai

ni
ng

 E
rr

or

2

11

2 ))((∑∑
==

−=
n

i
ii

n

i
yxfε

Training Error
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Data Set Split & Learning

Learning Progress

Tr
ai

ni
ng

 E
rr

or

x

y

0

fA

ε

Learning (Training) Error Curve
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Data Set Split & Learning

Learning Progress

Tr
ai

ni
ng

 E
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or

x
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0

fB

x

y

0

fA

ε

Learning (Training) Error Curve
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Data Set Split & Learning

Learning Progress

Tr
ai

ni
ng

 E
rr

or

x

y

0x

y

0

fA

ε

x

y 

0

fB fC

Learning (Training) Error Curve
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Data Set Split & Learning

x

y

0

fA

ε

x

y

0x

y 

0

fB fC

Learning Progress

Tr
ai

ni
ng

 E
rr

or

Error of  fCError of  fA Error of  fB> >

Learning (Training) Error Curve
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Data Set Split & Learning

Training set fC is the best model ?

x

y

0

fC



HyunJung (Helen) Shin, Max Planck Society, European School of Genetic Medicine, 03. 2006 51

Data Set Split & Learning

Training set fC is the best model ? No

x

y

0

Why not?

fC
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Data Set Split & Learning

Test setTraining set

x

y

0x

y

0

fC
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Data Set Split & Learning

Test setTraining set

The data points in Test set are assumed to be drawn
the same distribution as those in Training set

x

y

0x

y

0
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Data Set Split & Learning

Test set
However, 

when the fully trained model fC is applied to the 
test data points, it does not fit them well any more

Training set

x

y

0x

y

0

fC fC
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Data Set Split & Learning

Test set
However, 

when the fully trained model fC is applied to the 
test data points, it does not fit them well any more

Training set

x

y

0x

y

0

fC

εPoor Generalization Ability

fC
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Data Set Split & Learning

Test set
On the contrary, 

a “properly” trained model fB has more generalization ability

Training set

y

x

y

0

fB

x0

fB
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Data Set Split & Learning

Test setTraining set

(note that Test set is 
unknown during Training)

Then, 
how can we find a “proper” model 

with absence of Test set ?
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Data Set Split & Learning

Training set Validation set

Then, 
how can we find a “proper” model 

with absence of Test set ?

Use Validation set (say, a Pseudo Test Set) !
: Temporarily assume that the data set is “Unknown”
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Data Set Split & Learning

Training set Validation set

Learning Progress

E
rr

or

Training Error

Validation Error
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Data Set Split & Learning

x

y

0x

y

0

fA

ε

x

y 

0

fB fC

Learning Progress

E
rr

or

Training Error

Validation Error
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Data Set Split & Learning

Learning Progress

E
rr

or

Training Error

Validation Error

x

y

0x

y

0

fA

ε

x

y 

0

fB fC

Early Stopping
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Data Set Split & Learning

Learning Progress

E
rr

or

Training Error

Validation Error

x

y

0x

y

0

fA

ε

x

y 

0

fB fC

Early Stopping
Underfitting Overfitting
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Data Set Split & Learning

If the known data points are large 
enough for training after 

separating the validation set off….

Training

Validation
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Data Set Split & Learning

Validation

Training If the known data points 
are insufficient for training 
after taking the validation 
set out ?
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Data Set Split & Learning

(Ex)  5 Cross-Validation (5CV) 

fold 1Validation
fold 2

fold 3
Training fold 4

fold 5

Validation 
Error 
(fold 1)

Validation 
Error 
(fold 2)

Cross-
Validation 

Error

Validation 
Error 
(fold 5)

+ ++ …
=

5
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Learning Schemes

• Supervised

• Unsupervised

• Semi-Supervised
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Supervised Learning

Learning or Training

Input: x  
Output: y 

yxf ≈)( : Supervised

A1 A2 A3 … A10 y
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… … … … … … ?
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…
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…
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…
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n
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l
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Supervised Learning

Prediction or Test

Input : x

Predicted 
Output : f(x) 

A1 A2 A3 … A10 y

1000 1
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x21 5 42 red … 560 ?

… … … … … … ?

x50 25 56 blue … 600 ?
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…
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…
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…
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…
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7

…
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…
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…

x18
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Supervised Learning

Learning or Training Prediction or Test

Input: x  
Output: y 

yxf ≈)( : Supervised
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Unsupervised Learning

Learning or Training Prediction or Test

Input: x  
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Semi-Supervised Learning

Known Data Input: x
Unknown Data Input: x
Known Data Output: y 

Learning or Training Prediction or Test

Predicted 
Output : f 
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Why “Semi-” ? :In learning, supervised for known data,             , 
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Models
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Content

1. Basics 
2. Tasks
3. Learning
4. Models with Examples
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Models
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Models

• Traditional Statistical Methods 
• Neural Networks
• Decision Trees
• Kernel Methods
• Semi-Supervised Learning (SSL)
• Ensemble Methods
• Generative (Probabilistic) Methods
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Models: Traditional Statistical Models 

Task Model

• Regression, etc

• Logistic Regression,
• Discriminant Analysis, etc

• Principal Component Analysis (PCA),
• Canonical Correlation Analysis (CCA),  
• Factor Analysis (FA), etc

• k-Means Clustering, 
• Agglomorative (hierarchical) Clustering, etc

Classification •

Regression •

Clustering •

• ANalysis Of VAriance (ANOVA)

•Random Sampling, 
•Stratified Sampling, etcSample Selection •

Variance Analysis •

Feature Extraction
& Selection •

• Hypothesis and TestSignificance Validation •
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Models: Neural Networks

Task Model

• Multi-Layer Perceptron (MLP) Network

• Self-Organized Map, etc

Classification •

Regression •

Clustering • • Radial Basis Function Network
Feature Extraction

& Selection • • etc, etc, etc,…
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Models: Decision Trees (or Rule-base)

Task Model

• CART

• C4.5

• QUEST

• MARS

• CHAID

Classification •

Regression •

Feature Extraction
& Selection •

• FOREST

• etc, etc, etc,…
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Models: Kernel Methods

Task Model

• Support Vector Machines (SVM)

• kCCA

• Kernel Independent Component 
Analysis (kICA)

• kPCA

Classification •

Regression •

Feature Extraction
& Selection •

• etc, etc, etc,…

Clustering •
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Models: Semi-Supervised Learning

Task Model

Classification •

Regression •

• Semi-Supervised Learning (SSL)

• Transductive Inference Methods

• etc, etc, etc,…

* Note that, currently, the term of “Semi-Supervised Learning” has been used 
as a name of “model” as well as the concept of “learning scheme”
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Models: Generative (Probabilistic) Methods

Task Model

Classification •

Regression •

• Bayesian Models

• Gaussian Process

• Naive Bayes

Clustering •

• etc, etc, etc,…etc, etc, etc,… •
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Models: Ensemble Methods

Task Model

Better Performance
for Various Tasks

• • Bagging

• Arcing

• Boosting

• etc, etc, etc,…
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The Most Up-To-Date Models

Kernel Methods

Support Vector Machines (SVM), kPCA, kCCA, kICA, etc

Semi-Supervised Learning Methods 

Graph-based SSL,Transductive Inference Methods, etc

* Note that, currently, the term of “Semi-Supervised Learning” has been used 
as a name of “model” as well as the concept of “learning scheme”
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The Most Up-To-Date Models

Kernel Methods

Support Vector Machines (SVM), kPCA, kCCA, kICA, etc

Semi-Supervised Learning Methods 

Graph-based SSL, Transductive Inference Methods
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Kernel Methods:
Support Vector Machines (SVM)
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Kernel Methods

Why KM?

• Kernel methods can operate on very general types of data
and can detect very general types of relations

• Various tasks-- can be performed on diverse data

PCA, 
CCA,
FA, 
DA, 
Clustering

vectors, 
sequences, 

text, 
images, 
graphs

• Integration of different types of data is easy and natural
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Kernel Methods
Procedure

A1 A2 … A5

… 100

350

400

…

700

…

…

…

…

5

6

7

…

88

10

6

7

…

3

x1

x2

x3

…

x10

),( ji xxK

Modeling

SVM
CCA
PCA 
FA
DA 

Clustering
etc

Data Set

Kernel Function

Model Output

)(xf
10 data points
5 attributes

Kernel Matrix: K

`

10 × 10 matrix

where Φ(.) is a mapping function)()(),( jjij KK xxxx ii φφ ⋅==
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Kernel Methods

( )⋅ΦMapping

IInput Space

“Hyper-Surface”

KM operates in Feature Space!

“Hyper-Plane”

Feature Space

( )Φ
( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ
( )Φ

( )Φ ( )Φ

Φ

Feature Space
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• Highly Nonlinear
• Dimension Expanding (up to infinite dim.)
• Not unique to a Feature Space, Probably UnknownUnknown

The Mapping from Input to Feature space is…

Kernel Methods

Feature Space

Finding the mapping function has been the most difficult 
barrier in the traditional statistics and 

early machine learning algorithms
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Kernel Methods

Kernel Function: )()(),( yxyx φφ ⋅=K
Kernel Function

In KM, those difficulties could be circumvented 
by means of  “Kernel Trick”

which replaces the dot product between mapping functions
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Kernel Function:

Functions Satisfying Mercers’s Theorem

Polynomial kernels

Radial Basis (Gaussian) kernels

Sigmoid Kernels (3-MLP NN)                                                    }(tanh{ Θ)y)xκK(x,y) +⋅=

Py)(xK(x,y) ⋅=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
= 2

2

2
exp

σ
yx

K(x,y)

)()(),( yxyx φφ ⋅=K
Kernel Function

Kernel Methods
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A Single Kernel Produces Multiple MappingsA Single Kernel Produces Multiple Mappings

Ex) Input Space : R2,   Polynomial Kernel 

)y()x(22)yx(
2
2

21
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(3) Feature Space : R4(2) Feature Space : R4(1) Feature Space : R3
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Kernel Methods

The flexible combination of appropriate kernel design and 
relevant kernel algorithms has given rise to a powerful 
class of methods, whose computational and statistical 

properties are well understood

Particularly, KM has increasingly been used in in Bioinformatics
as diverse as biosequences and microarray data analysis, 

etc.
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SVM Classification

Basic Idea of SVM

Properties of SVM

• Margin 

• Convexity

• Duality

• Kernels 

• Sparseness

…Optional
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Basic Idea of SVM
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Basic Idea of SVM

SVM looks for the Separating Hyperplane with the Largest Margin.

Class 1

Class 2

0)( =+⋅= bxf i wx
)1(yi +=

)1(yi −=

}1,1{    ,,...,1i  },,{ −∈= iii ylyx
Training data

Separating Hyperplane

0)( =+⋅= bxf xw

  
 0        1

0        1
) f(x) sign(

⎩
⎨
⎧

<+⋅−
≥+⋅+

=
bif
bif

wx
wx
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Basic Idea of SVM

SVM looks for the Separating Hyperplane with the Largest Margin.

Class 1

Class 2

Margin

0)( =+⋅= bxf i wx
)1(yi +=

)1(yi −=

1:1 +=+⋅ bH i wx

1:2 −=+⋅ bH i wx

Supporting Hyperplanes

1yfor     1:2
1yfor     1  :1

i

i

−=−≤+⋅
+=+≥+⋅

bH
bH

i

i

wx
wx

Margin

Distance between H1 and H2Distance between H1 and H2

 
b-1-b-1

w
2

ww
=−
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Basic Idea of SVM

Find the Pair of Hyperplanes (Support Vectors) 

under the constraints which gives Maximum Margin         ! 2
w

1yfor     1
1yfor     1

i

i

−=−≤+⋅
+=+≥+⋅

b
b

i

i

wx
wx
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Basic Idea of SVM

Separable Case 

Class 1

Class 2

f(x)

Margin
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i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

Quadratic Programming 
(convex QP : obj ftn is convex, constraints form a convex set)

Minimize ||w||2 under the constraints !!

Basic Idea of SVM

Separable C
ase

Separable C
ase
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Basic Idea of SVM

Non-Separable Case ?

Class 1

Class 2

f(x)
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Basic Idea of SVM

Use Slack Variables !

i

2

    ,1)(   ..

|||| 
2
1  min

∀−≥+⋅

+ ∑
ii

i
i

byts

C

ξ

ξ

wx

w

i

C: Error Tolerance ParameterC: Error Tolerance ParameterNonSeparable

NonSeparable Case
Case
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Basic Idea of SVM

Nonlinear Case ?

Class 1

Class 2
f(x)
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Basic Idea of SVM

Solve (linear) problem in the Feature Space !

FRN →:    Φ

LinearLinear AlgorithmAlgorithm
in in Feature SpaceFeature Space

NonLinearNonLinear Algorithm Algorithm 
in in Input SpaceInput Space

Feature Space

Class 1

Class 2
f(x)

Class 1

Class 2

f(x)

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

( )Φ

Input Space
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Basic Idea of SVM

Feature Space

SVMs map the training data nonlinearly into a higher-dimensional 
feature space via φ and construct a separating hyperplane with 

maximum margin there. 

This yields a nonlinear decision boundary in input space. 
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< Example >
Nonlinear & NonSeparable
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< Example >
Nonlinear & NonSeparable
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Properties of SVM …optional
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[Margin] Convexity    Duality    Kernel    Sparseness

SVM looks for the Separating Hyperplane with the Largest Margin.

0)( =+⋅= bxf xw
Separating Separating HyperplaneHyperplane

  
 0        1

0        1
) f(x) sign(

⎩
⎨
⎧

<+⋅−
≥+⋅+

=
bif
bif

wx
wx

Class 1

Class 2

0)( =+⋅= bxf i wx
)1(yi +=

)1(yi −=

}1,1{    ,,...,1i  },,{ −∈= iii ylyx

Training dataTraining data
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[Margin] Convexity    Duality    Kernel    Sparseness

SVM looks for the Separating Hyperplane with the Largest Margin.

Class 1

Class 2

Margin

0)( =+⋅= bxf i wx
)1(yi +=

)1(yi −=

1:1 +=+⋅ bH i wx

1:2 −=+⋅ bH i wx

Supporting Supporting HyperplanesHyperplanes

1yfor     1:2
1yfor     1  :1

i

i

−=−≤+⋅
+=+≥+⋅

bH
bH

i

i

wx
wx

MarginMargin
Distance between H1 and H2Distance between H1 and H2

 
b-1-b-1

w
2

ww
=−
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[Margin] Convexity    Duality    Kernel    Sparseness

SVM looks for the Separating Hyperplane with the Largest Margin.

Class 1

Class 2

Margin

0)( =+⋅= bxf i wx
)1(yi +=

)1(yi −=

1:1 +=+⋅ bH i wx

1:2 −=+⋅ bH i wx

Support VectorsSupport Vectors

1yfor     01:2
1yfor     01  :1

i

i

−==++⋅
+==−+⋅

bH
bH

i

i

wx
wx

xxii’’ss are the Closest Dataare the Closest Data
from Separating from Separating HyperplaneHyperplane,,

0=+⋅ bxw
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[Margin] Convexity    Duality    Kernel    Sparseness

Find the Pair of Find the Pair of HyperplanesHyperplanes (Support Vectors) (Support Vectors) 

under the constraints which gives Maximum Margin       !under the constraints which gives Maximum Margin       ! 2
w

i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

Minimize ||w||Minimize ||w||2 2 under the constraints !!under the constraints !!

1yfor     1
1yfor     1

i

i

−=−≤+⋅
+=+≥+⋅

b
b

i

i

wx
wx
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[Margin] Convexity    Duality    Kernel    Sparseness

Separable Case 

Class 1

Class 2

f(x)

Margin
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[Margin] [Convexity] Duality   Kernel   Sparseness

i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

Quadratic Programming Quadratic Programming 
(convex QP : (convex QP : objobj ftnftn is convex, constraints form a convex set)is convex, constraints form a convex set)

Minimize ||w||Minimize ||w||2 2 under the constraints !!under the constraints !!
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[Margin] [Convexity] Duality   Kernel   Sparseness

Non-Separable Case ?

Class 1

Class 2

f(x)
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[Margin] [Convexity] Duality   Kernel   Sparseness

Use Slack Variables !

i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

ProblemSeparable C
ase

Separable C
ase

i

2

    ,1)(   ..

|||| 
2
1  min

∀−≥+⋅

+ ∑
ii

i
i

byts

C

ξ

ξ

wx

w

i

Problem
NonSeparable

NonSeparable Case
Case

C: Error Tolerance ParameterC: Error Tolerance Parameter
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Margin   [Convexity] Duality   Kernel   Sparseness

i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

Minimize ||w||Minimize ||w||2 2 under the constraints !!under the constraints !!

Prim
al P

roblem

How to Solve?How to Solve?
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Margin   [Convexity] Duality   Kernel   Sparseness

Use Lagrange theory !
(Karush-Kuhn-Tucker Condition)
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Margin   [Convexity] Duality   Kernel   Sparseness

Karush-Kuhn-Tucker Condition

1) Gradient of the Lagrangian = 0

2) Constraints: h(x) = 0 & g(x) ≤ 0 

3) Complementary Slackness: u.s = 0

4) Feasibility for the inequality constraints: s≥ 0

5) Sign condition on the inequality multipliers: u >= 0

Min: f(x)

s.t.  h(x) = 0  (m equality constraints)

g(x) ≤ 0 (k inequality constraints)

L(x,a,m) = f(x) + a h(x) + ∑ u_i (g_i (x) + s_i )Lagrangian:
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Margin   [Convexity] Duality   Kernel   Sparseness

KKT conditions are satisfied 
at the solution of any constrained optimization problem 

For convex problem, 
KKT conditions are necessary and sufficient condition

for primal, dual solution. 
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Margin   [Convexity] Duality   Kernel   Sparseness

i

2

    0   ≥1-)(   ..

|||| 
2
1  min

∀+⋅ byts i wx

w

i

Prim
al P

roblem

∑∑ ++⋅−≡
l

i
ii

l

i
i bybwL αα )(|||| 

2
1),( 2 wxw i

LagrangianLagrangian
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Margin   [Convexity] Duality   Kernel   Sparseness
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…… Dual  FeasibilityDual  Feasibility

i    ∀=−+⋅ 0)1)wx(( i byiiα …… ComplementarityComplementarity ConditionsConditions
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Margin   [Convexity] Duality   Kernel   Sparseness

Solving the SVM problem is equivalent Solving the SVM problem is equivalent 
to finding a solution KKT conditions.to finding a solution KKT conditions.
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Margin    Convexity   [Duality] Kernel   Sparseness

Lagrangian L has to be minimized w.r.t. the primal variables w and b 
and maximized w.r.t. the dual variables αi

•• Minimize Minimize LpLp with respect to w, b :with respect to w, b :

•• Maximize LMaximize LDD with respect to with respect to ααii ::
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Margin    Convexity   [Duality] Kernel   Sparseness

Why Dual ?

jjij
l

ji
i

l

i
iD yyL xxi •−≡ ∑∑ ααα

,2
1   max

      ,     0,    .. i0yts i

l

i
ii ∀=∑αα ≥



HyunJung (Helen) Shin, Max Planck Society, European School of Genetic Medicine, 03. 2006 55

Margin    Convexity   [Duality] Kernel   Sparseness

Why Dual ?

jjij
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i
iD yyL xxi •−≡ ∑∑ ααα
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1   max

      ,     0,    .. i0yts i

l

i
ii ∀=∑αα ≥

Dot Product between Training Vectors:
We can use Kernel functions !
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Margin    Convexity   Duality    [Kernel] Sparseness

Nonlinear Case ?

Class 1

Class 2
f(x)
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Margin    Convexity   Duality    [Kernel] Sparseness

Nonlinear Mapping from Input space(RN) to Feature Space(F)    
(EX)                     ,

FRN →:    Φ

32 RR →:    Φ )z,z,z()x,x( 32121     a

LinearLinear AlgorithmAlgorithm
in in Feature SpaceFeature Space

NonLinearNonLinear Algorithm Algorithm 
in in Input SpaceInput Space

Class 1

Class 2

f(x)

Feature Space

Class 1

Class 2
f(x)

Input Space
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Margin    Convexity   Duality    [Kernel] Sparseness

Feature Space

SVMsSVMs map the training data nonlinearly into a highermap the training data nonlinearly into a higher--dimensional dimensional 
feature space via feature space via φφ and construct a separating and construct a separating hyperplanehyperplane with with 

maximum margin there. maximum margin there. 

This yields a This yields a nonlinear decision boundarynonlinear decision boundary in input space. in input space. 
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From Input Space to Feature Space
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Margin    Convexity   Duality    [Kernel] Sparseness
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Margin    Convexity   Duality    [Kernel] Sparseness

Mapping Function (Φ) ?

However, 

Mapping function is not unique. 

Feature Space could be (possibly) infinite dimensional.

difficult to
 find !

Computation 

Demanding
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Margin    Convexity   Duality    [Kernel] Sparseness

Mapping Function (Φ) ?

How can we know the mapping function ?
How can we to handle the infinite dimensionality? 
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Margin    Convexity   Duality    [Kernel] Sparseness

Use Kernel Functions !

SVM depends only on SVM depends only on Dot ProductsDot Products between patterns. between patterns. 

By the use of a kernel function, it is possible to compute tBy the use of a kernel function, it is possible to compute the dot he dot 
product in input space product in input space without explicitly carrying out the map without explicitly carrying out the map 
into the feature spaceinto the feature space
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Margin    Convexity   Duality    [Kernel] Sparseness

Kernel Function:

Functions Satisfying  Mercers’s Theorem

Polynomial kernelsPolynomial kernels

Radial Basis kernelsRadial Basis kernels

Sigmoid Kernels (3Sigmoid Kernels (3--MLP NN)                                                    MLP NN)                                                    )κ Θ+•= )yx(tanh()y,x(k

Pk )(),( yxyx ⋅=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
= 2

2

2
exp),(

σ
yx

yxk

)()(),( yxyx φφ ⋅=k
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Nonlinear & Nonseparable Case

Margin    Convexity   Duality    [Kernel] Sparseness
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Margin    Convexity   Duality   Kernel   [Sparseness]

Only the points nearest to the hyperplane have 
positive weight !

They are called Support Vectors !
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Margin    Convexity   Duality   Kernel   [Sparseness]

i    ∀=−+⋅ 0)1)wx(( i byiiα
Remind the Remind the ComplementarityComplementarity ConditionsConditions
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Margin    Convexity   Duality   Kernel   [Sparseness]

SVsSVs are distributed around decision boundary !are distributed around decision boundary !

 αi 0=(1) Patterns OUT OF THE MARGIN 

(2) Patterns ON THE MARGIN (SVs)

(3) Patterns BETWEEN THE MARGINS (SVs)

Ci <<α 0

Cαi =

0 < αi < C

αi = 0 αi = 0αi = CCLASSCLASS
(1)(1)

CLASSCLASS
((--1)1)
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SVM Decision Function

  
 0f(x)      2) (class  1  

0f(x)     1) (class  1
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Support Vectors

Test Data Point
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Wrap-up

SVM QP Problem: SVM QP Problem: 
( ( NonNon--linearlinear & & NonNon--SeparableSeparable )
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Wrap-up
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Recognition of Alternatively Spliced Exons in C.elegans

Application I 

Task : Classification
Model : Support Vector Machines

Application: C.elegans Genes - Alternative Splicing
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Splicing
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Splicing

Splice sites are
- the exon/intron boundaries
- recognized by five snRNAs
- assembled in snRNPs
- flanked by regulatory elements 

Spliceosomal Proteins
- interact with snRNPs and mRNA
- regulate recognition of splice sites
- can lead to alternative transcripts

One gene may correspond to several transcripts/proteins !!
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Alternative Splicing
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Alternative Splicing

Alternative Splicing (AS) ..

- can produce several mRNA transcript per gene
(sometimes leading to more than 100 slightly different proteins)

- greatly increases the proteome diversity in eukaryotes      
(about 70% of human genes are alternatively spliced! )
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Alternative Splicing

Methods for identifying alternative splicing …

- usually need many EST sequences or
- exploit conservation between several  organisms

Novel AS prediction method only using the pre-mRNA
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Alternatively Spliced Exons

Idea: Use Machine Learning to

- understand differences between alternative and constitutive splicing
- exploit and identify regulative elements
- predict unknown alternative splicing events
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Alternatively Spliced Exons

Previous work
Analysis of conserved alternatively spliced exons

(Sorek et al., Yeo et al. and others)
- consider conserved alternative spliced exons (ACE)
- exploit that ACE and flanking introns are more conserved 
between mouse and human

Problem
only works for conserved exons

Derive the features from the “pre-mRNA” in order to find “novel” exons !!
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Task Formulation

Two-class Classification Problem

A (or B) is true splice site or not?

Use Support Vector Machines!
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Remind the Procedure of Kernel Methods !
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Procedure - Data Set

True sites (y=1): fixed window around a true splice site
Decoys sites (y=-1): generated by shifting the window
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Procedure - Data Set

),( ji SSK

`

Modeling

SVM

Data Set – Strings

Kernel Matrix: KKernel Function

Model
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Procedure - Kernel Function (Matrix)

Given two sequences S1 and S2 of equal length, the kernel 
consists of a weighted sum to which each match in the 

sequences makes a contribution. 

The longer matches contribute more significantly.

Kernels measure similarities between sequences
Weighted Degree Kernel (Sonnenburg et al., 2002)
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Procedure - Kernel Function (Matrix)

`

Modeling

SVM

Data Set – Strings

Kernel Matrix: KKernel Function

Model Output

)(xf
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Procedure - Modeling & Output
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Procedure - Modeling & Output

`

Modeling -- SVMData Set – Strings

Kernel Matrix: KKernel Function

Model
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Results

- 21,000 exons and 28,000 introns (single EST confirmed) 

Exons Known
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Results

280 AS spliced exons (total)
• ~ 1% of known exons are alternatively spliced (AS)
• ~ 0.25% of AS exons are yet completely unknown

RT-PCR with primers in flanking exons
(25 random exons & introns from 1-2% top ranks)

•13 confirmed by RT-PCR

Additional  80 AS exons can be found with less than 
200 additional RT-PCRs
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The Most Up-To-Date Models

Kernel Methods

Support Vector Machines (SVM), kPCA, kCCA, kICA, etc

Semi-Supervised Learning Methods 

Graph-based SSL, Transductive Inference Methods

* Note that, currently, the term of “Semi-Supervised Learning” has been used 
as a name of “model” as well as the concept of “learning scheme”
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Semi-Supervised Learning Methods: 
Graph-Based SSL
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Semi-Supervised Learning

Semi-Supervised Learning utilizes every possible information in hand 
(known + unknown), therefore enhances prediction 

accuracy of a  model

vs.Supervised
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Semi-Supervised Learning with a Single Graph

1+

1+

1+

1−

1−

?

?
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Semi-Supervised Learning with a Single Graph

• Adjacency (similarity) matrix of the network: W
• Known Labels : 
• Unknown Labels :
• Predicted outputs :

should be close to those of adjacent nodes,         where i~j.
should be close to the given label     at training nodes

}1  ,1{,...,1 −∈lyy
}0{,...,1 ∈+ nyly

nff ,...,1
if

iyif
sjf '
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1+
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1−
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Semi-Supervised Learning with a Single Graph

Learning Problem

  )( 
~

)(       min 22 ∑ −+∑ −
i

iyif
ji

jfifijwµ

Equivalent Vector Form

,WDL −=

  )()(        min yfyfff
f

−−+ TLTµ

∑==
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ijwididdiagD     ),(
L L is called the graph is called the graph LaplacianLaplacian matrixmatrix wherewhere
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Semi-Supervised Learning with a Single Graph

1+
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1+
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f

−−+ TLTµObjective Function

{ } yIf 1     −+= LµSolution
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Application II

Functional Class Prediction with Multiple Networks

Task : Classification, Data Integration
Model : Semi-Supervised Learning

Application: Yeast Protein :  Protein Function Prediction
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Functional Class Prediction on a Protein Network

Proteins : Nodes
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Functional Class Prediction on a Protein Network

Functional Classes of Proteins : Labeled / Unlabeled Nodes
unknown

?

known
1−

1+1+known
?

1− 1+

+1/-1： Labeled proteins with/without a specific function
? : Unlabeled proteins
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Functional Class Prediction on a Protein Network

Similarities between Proteins : Edges

1+

1+

1+

1−

1−

?

?

• Edges in Physical Interaction Network: Two proteins physically interact (e.g., docking)

• Edges in Metabolic Network of Enzymes: Two enzymes catalyzing successive reactions
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Functional Class Prediction on a Protein Network

The task is to predict labels of unlabeled
proteins using similarities.
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Graph Representation on Biological Networks

Example: Metabolic Gene Network
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Graph Representation on Biological Networks

Glucose-1PGAL10 Glucose

PGM1 PGM2HKA HKB GLK1

Glucose-6P

PGT1

The first three 
reactions
of the Glycolysis
pathway, together with 
the catalyzing enzymes
in the Yeast 
S.serevisiae.

Fructose-6P

FBP1 PFK1 PFK2

Fructose-1, 6P2

FBA1
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Graph Representation on Biological Networks

Substrate of PFK1Fructose-6P

PFK1 Enzyme or Protein, PFK1

Fructose-1, 6P2 Product of PFK1
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Graph Representation on Biological Networks

Glucose-1PGAL10 Glucose

PGM1 PGM2HKA HKB GLK1

Glucose-6P

PGT1

Fructose-6P

FBP1 PFK1 PFK2

Fructose-1, 6P2

FBA1
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Graph Representation on Biological Networks

FBA1

GAL10 Glucose Glucose-1P

Glucose-6P

Fructose-6P

Fructose-1, 6P2

HKA HKB GLK1 PGM2PGM1

PGT1

PFK1 PFK2FBP1

How to Make a Graph ?
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Graph Representation on Biological Networks

Glucose-1PGAL10 Glucose

PGM1 PGM2HKA HKB GLK1

Glucose-6P

PGT1

Fructose-6P
A Node
corresponds to a 
Protein

FBP1 PFK1 PFK2

Fructose-1, 6P2

FBA1
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Graph Representation on Biological Networks

FBA1

GAL10 Glucose Glucose-1P

Glucose-6P

Fructose-6P

Fructose-1, 6P2

HKA HKB GLK1 PGM1

PGT1

PFK1 PFK2FBP1

FBA1

PFK1

Fructose-6P

Fructose-1, 6P2

An Edge is made if the 
Product of the First 
protein is the Substrate 
of the Second one

PFK1

FBA1
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Graph Representation on Biological Networks

FBA1

GAL10 Glucose Glucose-1P

Glucose-6P

Fructose-6P

Fructose-1, 6P2

HKA HKB GLK1 PGM2PGM1

PGT1

PFK1 PFK2FBP1

FBA1

Fructose-6P

Fructose-1, 6P2

PFK1 PFK2

FBA1

PFK1

PFK2

An Edge is made if the 
Product of the First 
protein is the Substrate 
of the Second one
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Graph Representation on Biological Networks

FBA1

GAL10 Glucose Glucose-1P

Glucose-6P

Fructose-6P

Fructose-1, 6P2

HKA HKB GLK1 PGM2PGM1

PGT1

PFK1 PFK2FBP1

FBA1

PFK1

PFK2

FBP1

FBA1

Fructose-6P

Fructose-1, 6P2

PFK1 PFK2FBP1
An Edge is made if the 
Product of the First 
protein is the Substrate 
of the Second one
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Graph Representation on Biological Networks

GAL10

HKA

HKB

GLK1 PGM2

PGM1

PGT1
FBA1

PFK1

PFK2

FBP1
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Semi-Supervised Learning with a Single Graph

GAL10

HKA

HKB

GLK1 PGM2

PGM1

PGT1
FBA1

PFK1

PFK2

FBP1

 )()(        min yfyfff
f

−−+ TLTµObjective Function

{ } yIf 1     −+= LµSolution
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If Multiple Graphs are Given ?
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If Multiple Graphs are Given?

1+

1+

1+

1−

1−

?

?
1G

1+

1+

1+

1−

1−

?

?

KG

1+

1+

1+

1−

1−

?

?
2G

1+

1+

1+

1−

1−

?

?

3G
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If Multiple Graphs are Given?

1+

1+

1+

1−

1−

?

?
1G

1+

1+

1+

1−

1−

?

?

KG

1+

1+

1+

1−

1−

?

?
2GProtein-protein interactions Cell cycle gene expression 

measurements
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?

?

3G

Genetic interactions Co-participation in a protein complex
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If Multiple Graphs are Given?

1+
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?

?
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1+

1+
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1−

?

?
2G

Each graph can solely predict the label of the unlabeled nodes depending 
on its own similarity.
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If Multiple Graphs are Given?

Since different graphs contain 
partly independent and partly complementary

pieces of information about the problem at hand, 

one thus can enhance the total information about the problem 
by combining those graphs.
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If Multiple Graphs are Given?

Example: Multiple Graph Sources on Proteins

Physical interactions of the proteins
[Schwikowski,et al., 2000, Uetz et al., 2000, von Mering et al., 2002]

Gene regulatory relationships 
[Lee et al., 2002, Ihmels et al., 2002, Segal et al., 2003] 

Edges in a metabolic pathway [Kanehisa et al., 2004]

Similarities between protein sequences [Yona et al., 1999]

etc.
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If Multiple Graphs are Given?

Lee et. al., 2004. 
A Probabilistic Functional Network of Yeast Genes, 

Science, vol. 306
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Lee et. al., 2004. A Probabilistic Functional Network of Yeast Genes, Science, vol. 306
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Lee et. al., 2004. A Probabilistic Functional Network of Yeast Genes, Science, vol. 306
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Lee et. al., 2004. A Probabilistic Functional Network of Yeast Genes, Science, vol. 306

“a label of an unlabeled node is more likely to be that of more adjacent or 
more strongly connected node to it.”
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Lee et. al., 2004. A Probabilistic Functional Network of Yeast Genes, Science, vol. 306

Since different graphs contain 
partly independent and partly complementary

pieces of information about the problem at hand, 

one thus can enhance the total information about the problem by 
combining those graphs.

“a label of an unlabeled node is more likely to be that of more adjacent or 
more strongly connected node to it.”
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If Multiple Graphs are Given?

SDP/SVM : Semi-Definite Programming based 
Support Vector Machine

[Lanckriet et al., Bioinfomatics, 2004]

Previous Previous ApproachApproach
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SDP/SVM (Kernel Method)

Each graph is converted to a kernel matrix

Kernel matrices are combined with weights which are
automatically learned by Semi-Definite Programming

Labels are predicted based on the combined kernel matrix

Diffusion Kernel

SDP

SVM

kµ++ LL3µ+2µ+1)( µµ =K K1 K2 K3 KK
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SDP/SVM (Kernel Method)

Each graph is converted to a kernel matrix

Kernel matrices are combined with weights which are
automatically learned by Semi-Definite Programming

Labels are predicted based on the combined kernel matrix

Diffusion Kernel

SDP

SVM

Good accuracy Good accuracy 
which is mwhich is much better than Markov Random Fielduch better than Markov Random Field

But  But  
Very Very SlowSlow
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SDP/SVM (Kernel Method)

SDP/SVM : Semi-Definite Programming based SVM

In SDP/SVM, multiple kernel matrices
corresponding to each of data sources are combined with

weights obtained by solving an SDP. 

However, when trying
to apply SDP/SVM to large problems, the computational cost

can become prohibitive, since both Converting the data to a
kernel matrix for the SVM and Solving the SDP are

time and memory demanding



HyunJung (Helen) Shin, Max Planck Society, European School of Genetic Medicine, 03. 2006 39

SDP/SVM (Kernel Method)

Diffusion Kernel [Kondor and Lafferty, 2002]. 

K++++=+
∞→

== 32
6

3

2

2
)(lim LLLLL βββIs

s
βI

s
βeβK

L : graph Laplacian.
β : diffusion rate
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SDP/SVM (Kernel Method)

[Vandenberg and Boyd, 1996] Semi-Definite Programming
[Boyd and Vandenberg, 2003] 

.,...,1     ,0)(    ..
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k
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j =≥+= ∑
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,  where KR∈c ,nn
k RF ×∈ definite-semi positive symmetric, :)( nnRF ×∈u

Convex optimization problem since its objective and constrains are convex
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SDP/SVM (Kernel Method)

SDP/SVM
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SVM dual problem
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SVM cast as an SDPSingle Kernel Case



HyunJung (Helen) Shin, Max Planck Society, European School of Genetic Medicine, 03. 2006 42

SDP/SVM (Kernel Method)

SDP/SVM [Lanckriet et al., 2004]
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SDP/SVM (Kernel Method)

Calculating a Diffusion Kernel from a Graph

O(n3), A dense matrix of n x n

Solving SDP

O((m+n)2n2.5)

m: the number of kernel matrices
n: number of nodes (data) 

Computationally Expensive both in Time and Memory
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Why not use a more direct approach for combining graphs 
based on  significant progress of

graph-based semi-supervised learning methods ?

- Zhou et al., 2004  
- Belkin and Niyogi, 2003 
- Zhu et al., 2003 
- Chapelle et al., 2003
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Semi-Supervised Learning Extension to Multiple Graphs

• Combining weights are automatically assigned to Graphs 
• Comparable Accuracy to SDP/SVM
• Very Fast
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Extension to Multiple Graphs

Linear Combination of Laplacians

∑
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Extension to Multiple Graphs

Single Graph

   c )()(     min ffyfyf
f

LTT +−−

Without loss of generality, the problem is rewritten
by penalizing the upper-bound

 .        ,)()(     min γγ
γ

≤+−− ffyfyf
f,

LTcT
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Extension to Multiple Graphs

Multiple Graphs

} ...   { c )()(     min k2211 ffffffyfyf
f

kLTLTLTT βββ ++++−−

Without loss of generality, the problem is rewritten
by penalizing the upper-bound
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Extension to Multiple Graphs: Optimization
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Extension to Multiple Graphs: Solution

Solution
yIf
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Extension to Multiple Graphs: Meaning of Weights

By KKT complementarity condition, we have the following relationship at the 
optimal solution, 

0) ( =−δff kk LTβ

 0>βkδ<ff   iff kLT δ=ff   iff kLT0=βk

The score vector f would not 
be changed much with those 

graphs, thus those are 
considered as redundant

Those graphs are considered 
important.
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Extension to Multiple Graphs

Computational Efficiency

1. Repetition of an Identical Form of Inverse Matrix

2. Implicit Calculation of Matrix Inversion
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Extension to Multiple Graphs

Computational Efficiency

1. Repetition of an Identical Form of Inverse Matrix:
in the objective function and the derivative, (and the network output).
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Extension to Multiple Graphs

Computational Efficiency

2. Implicit Calculation of Matrix Inversion:
The solution can be obtained by solving the “sparse linear systems.”

Therefore, computational cost is nearly linear in the number of non-zero 
entries of                – (Spielman and Teng, 2004).∑

=

K

1k
kLkβ

Matrix Inversion Linear Systems
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Function Prediction Experiments

MIPS Comprehensive Yeast Genome Database (CYGD-mips.gsf.de/proj/yeast).

3588 yeast proteins

13 functional categories
Binary classification for each category 

5 networks

5 fold cross validation
5 times repetition 

Data

Output

Input

Setting
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Protein Functional Categories

MIPS Comprehensive Yeast Genome Database (CYGD-mips.gsf.de/proj/yeast). 

1. metabolism
2. energy
3. cell cycle and DNA processing
4. transcription
5. protein synthesis
6. protein fate
7. cellular transportation and transportation mechanism
8. cell rescue, defense and virulence
9. interaction with cell environment
10. cell fate
11. control of cell organization
12. transport facilitation
13. others

13
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Inputs (5 networks)Inputs (5 networks)

Network created from Pfam domain structure. A protein is represented by a 
4950-dimensional binary vector, in which each bit represents the presence or 
absence of one Pfam domain. An edge is created if the inner product between two 
vectors exceeds 0.06. The edge weight corresponds to the inner product.

1W

2W

3W

4W

Co-participation in a protein complex (determined by tandem affinity 
purification, TAP). An edge is created if there is a bait-prey relationship between 
two proteins.

Protein-protein interactions (MIPS physical interactions)

Genetic interactions (MIPS genetic interactions)

Network created from the cell cycle gene expression measurements [Spellman 
et al., 1998]. An edge is created if the Pearson coefficient of two profiles 
exceeds 0.8. The edge weight is set to 1. This is identical with the network used 
in [Deng et al., 2003]

5W
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Inputs (5 networks)Inputs (5 networks)

Network created from Pfam domain structure. A protein is 
represented by a 4950-dimensional binary vector, in which 
each bit represents the presence or absence of one Pfam
domain. An edge is created if the inner product between two 
vectors exceeds 0.06. The edge weight corresponds to the 
inner product.

1W
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Inputs (5 networks)Inputs (5 networks)

Co-participation in a protein complex (determined by 
tandem affinity purification, TAP). An edge is created if there 
is a bait-prey relationship between two proteins.

2W
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Inputs (5 networks)Inputs (5 networks)

3W Protein-protein interactions (MIPS physical interactions)
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Inputs (5 networks)Inputs (5 networks)

4W Genetic interactions (MIPS genetic interactions)
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Inputs (5 networks)Inputs (5 networks)

Network created from the cell cycle gene expression 
measurements [Spellman et al., 1998]. An edge is created 
if the Pearson coefficient of two profiles exceeds 0.8. The 
edge weight is set to 1. This is identical with the network 
used in [Deng et al., 2003]

5W
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Inputs (5 networks)Inputs (5 networks)

Network created from Pfam domain structure. A protein is represented by a 4950-
dimensional binary vector, in which each bit represents the presence or absence 
of one Pfam domain. An edge is created if the inner product between two vectors 
exceeds 0.06. The edge weight corresponds to the inner product.

1W

2W

3W

4W

Co-participation in a protein complex (determined by tandem affinity purification, 
TAP). An edge is created if there is a bait-prey relationship between two proteins.

Protein-protein interactions (MIPS physical interactions)

5W

Genetic interactions (MIPS genetic interactions)

Network created from the cell cycle gene expression measurements [Spellman 
et al., 1998]. An edge is created if the Pearson coefficient of two profiles 
exceeds 0.8. The edge weight is set to 1. This is identical with the network used 
in [Deng et al., 2003]

0.7805

0.0570

0.0565

0.0435

0.0919

Density of  Laplacians (%)
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Density of Working Matrices
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SDP/SVM
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Kernel matrix

Dense

SSL Laplacian matrix L (or Similarity matrix W )

Sparse
kβ++ LL

3β+2β+1)( ββ =L L1 L3 LKL2
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Inputs (5 networks)Inputs (5 networks)

Network created from Pfam domain structure. A protein is represented by a 4950-
dimensional binary vector, in which each bit represents the presence or absence 
of one Pfam domain. An edge is created if the inner product between two vectors 
exceeds 0.06. The edge weight corresponds to the inner product.

1W

2W

3W

4W

Co-participation in a protein complex (determined by tandem affinity purification, 
TAP). An edge is created if there is a bait-prey relationship between two proteins.

Protein-protein interactions (MIPS physical interactions)

5W

Genetic interactions (MIPS genetic interactions)

Network created from the cell cycle gene expression measurements [Spellman 
et al., 1998]. An edge is created if the Pearson coefficient of two profiles 
exceeds 0.8. The edge weight is set to 1. This is identical with the network used 
in [Deng et al., 2003]

0.7805

0.0570

0.0565

0.0435

0.0919

Density of  Laplacians (%) Memory Saving Ratio (%) against Kernels

1/0.0078=128

1754

1770

2298

1088
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Methods in ComparisonMethods in Comparison

kL Label propagation with an Individual Graphs (k=1…5) 

Laplacian of  Combined Graph with Optimized WeightsoptL

fixL Label propagation with Equal Weights

MRF Markov Random Field, proposed by Deng et al [2003]

SDP/SVM Semi-definite Programming based Support Vector 
Machines, proposed by Lanckriet et al [2004]
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MeasurementsMeasurements

ROC (receiver operating characteristic) score 

TP1FP , TP10FP 

Computational Time
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MeasurementsMeasurements

ROC score
1

The area under ROC curve that plots true
positive rate as a function of false positive rate 

for differing classification thresholds.

It measures the overall quality of the ranking
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0.4 induced by the classifier, 
rather than the quality of a single value of 

threshold in that ranking.0.2

0
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False Positive Rate (1-specificity)
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MeasurementsMeasurements

ROC score
1

The closer the curve follows the left-hand
border and then the top-border of the ROC 

space, the more accurate the classifier.
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MeasurementsMeasurements

TP10FP
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False Positive Rate (1-specificity)
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TP10FP is the rate of true positives at the point
that yields 10% false positive rate on the ROC curve
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Results : Results : ROC scores of Lopt, Lfix vs. the Best Performing Individual Lk

White: the best performing individual network
Blue: Lfix
Black: Lopt

Across the 13 classes, Lfix or Lopt outperforms the best performing individual.
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Results : Results : TP1FP and TP10FP of  TP1FP and TP10FP of  Lopt, Lfix vs. Individual Lk’s

TP1FP (%)TP1FP (%) TP10FP  (%)TP10FP  (%)
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Results Results –– McNemar’s Test:

A pairwise test for ROC score difference:  
the combined graph vs. individual graphs
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Results Results –– McNemar’s Test:

A smaller p-value indicates a more statistically significant difference
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Results Results –– McNemar’s Test:

In 61% of  the total number of trials, there is a statistically significant difference 
(at a significance level of alpha=0.05).
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Results : Results : Obtained Weights

OthersOthers
Transport FacilitationTransport Facilitation

Cell OrganizationCell Organization
Cell FateCell Fate

Interaction w/ EnvironmentInteraction w/ Environment

TransportationTransportation
Protein FateProtein Fate

Protein SynthesisProtein Synthesis
TranscriptionTranscription

Cell CycleCell Cycle
EnergyEnergy

MetabolismMetabolism

Cell RescueCell Rescue

Protein ComplexProtein ComplexPfamPfam networknetwork Protein Interaction

Genetic Interaction Gene ExpressionGene Expression
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Results : Results : Comparison between Methods

White: MRF
Green: SDP/SVM
Blue: Lfix
Black: Lopt

For most classes, the proposed method achieves high scores, which are similar
to the SDP/SVM methods. In classes 11 and 13, the proposed method performs 
poor (but still better than the MRF method), However, taking into account the 

Simplicity and Efficiency the method shows the promising results
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Results : Results : Computational TimeComputational Time

Average Computation Time

1.41 seconds (std. 0.013)

49.3 seconds (std. 14.8)

Fixed Weights :

Optimized Weights :

SDP/SVM :

* Measured in a standard 2.2Ghz PC with 1GByte memory

Approx. Several CPU days
(G. Lanckriet, personal communication)

Combining Graphs
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Results : Results : Computational TimeComputational Time

Average Computation Time

Nearly linearly proportional to the number 
of non-zero entries of sparse matrices

Combining Graphs:

O(n3)+ O((m+n)2n2.5)SDP/SVM :
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Results : SummaryResults : Summary

Combining Graphs with Optimized Weights has “MORE”

When Compared with Combining Graphs with Fixed Weights

Selectivity

Combining Graphs has “MORE”

When Compared with SDP/SVM

Simplicity, Computational Efficiency, thus Scalablity
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Results : SummaryResults : Summary

Combining Graphs with Optimized Weights is “LESS”

When Compared with Combining Graphs with Fixed Weights

Simple

Combining Graphs is “LESS”

When Compared with SDP/SVM

Accurate
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Results : SummaryResults : Summary

Semi-Supervised Learning with Multiple Networks

• ...is Fast and Scalable

• …provides Selectivity
(redundant / irrelevant networks can be excluded)
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For Further Information…

R.A. Johnson & D.W. Wichern,  
Applied multivariate statistical analysis, 

Prentice-Hall. Inc, 1998.

B.F.J. Manly, 
Multivariate statistical methods: A primer, 

Chapman & Hall, 1997.

Multivariate Statistical Methods

Kernel Methods and SVM
V. Vapnik,  

Statistical learning theory, 
Wiley, NY, 1998
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For Further Information…

Kernel Methods and SVM

C.J.C. Burges, 
A tutorial on support vector machines for pattern recognition, 
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