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In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down com-
pletely, giving rise to a fundamentally new many-body phase. Whether and under which conditions
MBL can occur in higher dimensions remains an outstanding challenge both for experiments and
theory. Here, we experimentally explore the relaxation dynamics of an interacting gas of fermionic
potassium atoms loaded in a two-dimensional optical lattice with different quasi-periodic potentials
along the two directions. We observe a dramatic slowing down of the relaxation for intermediate
disorder strengths and attribute this partially to configurational rare-region effects. Beyond a criti-
cal disorder strength, we see negligible relaxation on experimentally accessible timescales, indicating
a possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct inter-
play of interactions, disorder, and dimensionality and provide insights into regimes where controlled

theoretical approaches are scarce.

Introduction: The ergodic hypothesis underlies
quantum statistical mechanics, linking reversible micro-
scopic dynamics to irreversible macroscopic behavior. In
an ergodic system local degrees of freedom get rapidly
entangled with one another and local quantum correla-
tions are rapidly erased [1-4]. Non-ergodic many-body
localized (MBL) [5-10] systems, however, defy this ubig-
uitous behavior and show persistent local quantum corre-
lations [11-14]. Furthermore, MBL systems are believed
to be robust to small, local perturbations and form a
distinct, non-ergodic phase of matter. The phase transi-
tion from the ergodic phase to the MBL phase appears
to be a highly unusual critical phenomenon; as ergod-
icity breaks down in the MBL phase, its description lies
beyond the scope of thermodynamics and traditional sta-
tistical physics [8, 9].

Due to limitations of the available numerical meth-
ods, most theoretical explorations of MBL concentrate on
one-dimension. Whether, and under which conditions,
MBL can occur in higher-dimensional systems remains
a challenging question for both theory and experiment.
While the initial theoretical work in Ref. [5] on MBL
does not depend strongly on dimensionality, it was re-
cently argued that rare, locally thermal regions [15] in
systems with true random disorder, can destabilize the
MBL phase in two dimensions. It is presently unclear if
such arguments also hold for systems with deterministic
disorder such as quasi-periodic potentials. At the same
time, initial experiments provided evidence for an MBL
phase in higher dimensions by measuring global trans-
port [16, 17]. Moreover, the nature of a possible MBL

transition in higher dimensions might itself be very dif-
ferent as compared to the one-dimensional transition [18—
23]; for example, a sub-diffusive phase as a precursor to
localization in one-dimension [18, 23-27] might not exist
in higher dimensions (but see Ref. [28]). Given the ap-
parent conflict of available theoretical results [15, 29, 30],
and infeasibility of reliable numerical simulations, exper-
iments stand to play an important role in elucidating
these regimes [10, 16, 17, 31, 32].

Ultracold atoms in optical lattices provide a particu-
larly well-suited platform to explore these phenomena, as
they combine almost ideal isolation from the environment
with individual experimental control of all microscopic
parameters. In this work, we employ ultracold fermions
in a quasi-periodic optical lattice to experimentally inves-
tigate the appearance of a non-ergodic many-body phase
in two dimensions by directly tuning the strength of a
quasi-periodic potential. By quantifying the dynamical
relaxation of an imprinted striped density-wave pattern,
we find evidence for three dynamical regimes: a regime
of fast relaxation at weak disorders consistent with ther-
malization, a regime of slow relaxation at intermediate
disorders, resembling the relaxation expected in a Grif-
fiths regime [22], and, finally, a strong-disorder regime
with negligible relaxation, consistent with the appear-
ance of an MBL phase. The slow relaxation regime only
begins once the single-particle states are already strongly
localized, highlighting that the slow dynamics is an in-
herent interaction effect. The relaxation dynamics in two
dimensions are distinctly different from the correspond-
ing one-dimensional case [22, 26|, revealing the impor-
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FIG. 1. Schematic of the experiment. (a) The system is ini-
tialized in a striped density-wave pattern of fermionic “°K
atoms in a random mixture of two spin states (red and blue)
in a square lattice with tunneling matrix element J, quasi-
periodic potential of strength A, and tunable onsite interac-
tions U between the different spins. The largest realized 2D
system is composed of approximately 200 x 100 sites with
several thousand atoms. (b) For weak disorder strength the
system thermalizes quickly (green area), whereas at strong
disorder it is likely to exhibit a many-body localized regime
(blue). Close to the transition (red dot, A.), a regime of slow
relaxation is observed, potentially caused by locally insulating
regions (red area).

tant role of dimensionality. Furthermore, tracking the
relaxation dynamics appears to be useful in locating the
many-body localization transition, even in the presence
of weak couplings to the environment [26, 33].

Experiment and Model: Our system is composed
of a degenerate K Fermi gas prepared in an equal
two-component spin mixture of its two lowest hyperfine
states. The spinful fermions hop on a square lattice and
the two species interact via onsite interactions that are
tunable by a Feshbach resonance. Two quasi-periodic
potentials with different incommensurabilities are cre-
ated along the x- and y-directions of the lattice and form
a quasi-periodic two-dimensional disorder potential, see
Fig.1. Our system is described by the following Hamil-
tonian:
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Here, é:a(éi’g) is the creation (annihilation) operator
of a fermion with spin o € {|1),[})} on a lattice site
i = (m,n), characterized by the Cartesian coordinates
(m,n), and Ny, = é;o-éi,a is the particle number opera-
tor. In the first term, the angle brackets (,) restrict the
sum over nearest-neighbor sites. The tunneling matrix
element is set to J ~ h x 300Hz (h is Planck’s con-
stant) and U denotes the on-site interspecies interaction
strength. The disorder potential is characterized by the
strength A and the incommensurable wavelength ratios
Bz ~ 0.721 and 5, ~ 0.693 [35].

To probe the many-body dynamics of this system,
we prepare a far-from-equilibrium initial state where
atoms are selectively loaded only on the even stripes, see
Fig.1(a). In an ergodic time evolution, this density-wave
pattern will quickly vanish as the dynamics erase the mi-
croscopic details of the initial conditions. In contrast, a
persistent pattern indicates a memory of the initial state
and hence non-ergodic behavior. This can be captured
by the normalized atom number difference between the
even N, and odd N, stripes, defined as the imbalance
Z = (N, — N,)/(N + N,), which serves as our dynami-
cal order parameter. Such an observable has several key
advantages: Whereas mass transport is a slow process
even in clean ergodic systems [36], the imbalance relaxes
within a few hopping times [10, 37]. This allows us to
clearly identify any longer relaxation timescales induced
due to disorder. Furthermore, the dynamical time evolu-
tion of the imbalance could capture eventual microscopic
Griffiths-type effects, even in higher dimensions, where
mass transport might not be sensitive to them [22].

Identifying Slow Relaxation: We choose a fixed
intermediate interaction strength of U = 5 J and monitor
the time evolution of the imbalance for varying disorder
strengths A, see Fig.2. In the initial state, almost all
the atoms occupy even stripes, such that the imbalance
at zero evolution time is close to unity (see Fig. 2 (a)). For
low disorder strength (A = 1.J) we observe a quick relax-
ation and the imbalance vanishes within a few tunneling
times. However, upon increasing the disorder, relaxation
slows down dramatically (A = 4.J) and essentially comes
to a full stop for strong disorder (A = 10.J).

To quantitatively analyze this slow relaxation, the time
dependence of imbalance is modeled as Z(t) = Z(t) X f(¢).
Here, Z(t) is the closed-system imbalance describing the
dynamics of a perfectly isolated system, and f(t) repre-
sents a weak coupling to the environment. Such cou-
plings are present in all real systems and will always
thermalize any system at long enough times [34, 38]. In
our experiment, this weak coupling is dominated by a
small but non-zero hopping rate between multiple two-
dimensional planes along the z-direction, with a rate
J1 ~ J/10® [34]. We model the resulting imbalance re-
laxation due to this weak coupling with a stretched ex-
ponential f(t) = e_(rt)ﬂ, with the decay rate I' = T'eyp, =
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FIG. 2. Time evolution of an imprinted density-wave pattern in the interacting, two-dimensional Aubry-André model: We
measure the time evolution of the imbalance between atom numbers on even and odd stripes for intermediate interactions
U = 5J and varying disorder strength A. (a) At weak disorder (A = 1.J) the imbalance vanishes quickly within a couple of
tunneling times, signaling ergodic dynamics. For intermediate disorder (A = 4 .J), we observe a markedly slow relaxation. At
even stronger disorders (A = 10.J), relaxation is absent up to a weak, previously measured [34] coupling to the environment.
(b) The same time evolution is shown on a double logarithmic scale for additional values of the disorder strength. The solid
lines denote fits to the model described in the main text (Z t‘clog(t)), where ( is the relaxation exponent. In both plots,
error bars denote the error of the mean from six individual experimental realizations. All times are in units of the tunneling

time, 7 = h/(2nJ).

10727~ ! and the stretching exponent 3 = 0.6 measured
independently in a previous experiment [34].

The resulting Z(¢) is shown in Fig. 3 (a) for short (107)
and long (1007) evolution times and fixed interaction
strength U = 5J as a function of the disorder strength.
We can identify three dynamical regimes. For weak dis-
orders A < 2J (1), we observe vanishing values of short
and long time imbalances, signaling the presence of a
rapidly thermalizing system. Upon increasing the disor-
der strength, for 2J < A < 9J, we find a regime )
characterized by a non-vanishing imbalance and clearly
visible differences between the short and long time closed-
system imbalances. This indicates that, in this regime,
the system relaxes much slower than the microscopic
timescales. For A > 2 J, all single-particle states are lo-
calized, but in many regions of the system, interactions
with nearby atoms can still result in local thermal equilib-
rium. However, in some rare regions with anomalously
low density or large spin imbalances (see below), this
thermalization mechanism could be largely ineffective.
Such regions can be thermalized only by their greater
surroundings, which are thermal, but to which they cou-
ple significantly weaker. Thus, the overall thermaliza-
tion timescale grows. As the disorder is increased, these
surroundings themselves gradually become more local-
ized and less effective thermal baths. For strong disorder
A > 9J, we identify regime (), where the values of Z(t)
at short and long times are both large and, within the ex-
perimental uncertainty, identical. This is consistent with
the system being many-body localized.

Relazxation Exponents and Non-Interacting In-
clusions: Identifying a suitable model to analyze the
slow relaxation in regime ) is challenging, as the under-
lying dynamics in two-dimensions at intermediate disor-
ders is theoretically unknown. In one dimensional models
with random disorder, anomalously strongly disordered
regions have been argued to give rise to a characteristic
sub-diffusive phase via Griffiths effects [18-20, 22]. Be-
cause our system contains quasi-periodic disorder instead
of true randomness, it should not contain such anoma-
lously disordered regions. One possible mechanism ex-
plaining the slow relaxation at the observed timescales
could be the randomness in the initial state, which can
contain rare configurations, where some regions or inclu-
sions are effectively noninteracting and therefore, might
appear localized at intermediate times, provided that the
single-particle states are localized (A > 2.J). In particu-
lar, thermalizing collisions cannot occur in a region where
all atoms have the same spin; a region consisting, e.g.,
only of spin-up atoms and vacancies is effectively non-
interacting and consequently, localized on intermediate
timescales. These regions can relax on longer timescales
by coupling to the rest of the system, provided the disor-
der is not too high, by two possible mechanisms: First,
particles inside the inclusion can tunnel out of the inclu-
sion, at a rate that is exponentially small in their dis-
tance from the inclusion’s edge. Second, the spin and
density imbalances can relax through slow nonlinear dif-
fusion processes, so that the inclusion evaporates from
outside. While this could dominate at late times, we do
not expect these diffusion processes to becomes relevant
on the probed timescales [35].
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FIG. 3. Closed-system imbalance and relaxation exponents
near the critical regime. (a) Closed-system imbalance Z(t),
at short times (107, green points) and at long times (1007,
blue points) for fixed interaction strength of U = 5J. Three
dynamical regimes can be identified: @) a rapidly thermal-
izing regime at low disorder, 2) a regime of slow relaxation
at intermediate disorder (visualized by the gray area), and
® a regime at strong disorder in which relaxation is absent
on experimentally accessible time scales, consistent with a
many-body localized phase. (b) The relaxation exponent ¢
obtained from Eq. (2) decreases continuously with increasing
disorder until a threshold value A., at which it vanishes (green
points). A piecewise fit ¢ o< {|A — A.|”,0} for ¢ in the regime
A € {5J,12J} yields A. = 9J + 0.5 J as the critical disor-
der strength of the possible MBL transition. The yellow line
is an approximate upper bound for the relaxation exponent.
The inset shows the same analysis for Z(t), i.e., neglecting
the weak coupling to the environment. Apart from a small
offset (dashed line) consistent with the known background
coupling [34], we still find a sharp change of the extracted
exponents at A.. Error bars denote the fit error, and are
typically smaller than the symbol size.

We define inclusions of size L or larger as those con-
taining a site from which any path of L steps encounters
only atoms of one spin species or vacancies. The time
to thermalize such a region through tunneling increases
exponentially with L, as t(L) ~ e*//¢, where ¢ is the
single-particle localization length of the noninteracting
Aubry-André model and the factor of two in the expo-
nent results from squaring the matrix element in Fermi’s
Golden Rule. The density of such inclusions is exponen-

tially small in their volume, i.e., n(L) ~ pLd in d dimen-

sions, where p is the probability of a given site belonging
to such an inclusion. Combining these expressions for
n(L) and t(L), we find that the density of inclusions that

have not relaxed at time ¢ goes as e~¢1°8"() [22]  where
¢ is the relaxation exponent quantifying the relaxation.
While this Ansatz results in a power-law relaxation in
one-dimension [23], in two dimensions, d = 2, it results
in a slightly faster than power law relaxation of the form:

Z(t) ~ e~ Clog*(0) o y—Cloa(t), (2)

Fitting this model to the experimental time traces in
Fig.2(b) (solid lines), we find that it is able to capture
the dynamical relaxation remarkably well in the entire in-
termediate regime (2) and hence, can be used to extract
the relaxation rates relevant for the probed timescales.
The fitted relaxation exponents ( are found to contin-
uously decrease with increasing disorder strength, as
shown in Fig. 3 (b), demonstrating that the system takes
increasingly long to relax. Furthermore, the fitted expo-
nent ¢ appears to vanish completely beyond a critical dis-
order A.. A simple power-law fit near the critical region
¢ ox [A—=Ag|” for A < A, and 0 otherwise yields a critical
disorder strength A. = (9 = 0.5) J and a critical expo-
nent v ~ 0.9. However, as the size of the critical region
where universal scaling is expected to hold is unknown,
the uncertainty in extracting such a critical exponent is
also unknown.

Extrapolating from one-dimension, where vanishing of
this relaxation exponent at a critical disorder strength A,
signals a transition into an MBL phase [19, 20, 23, 26, 33,
35|, our observations would support a transition into an
MBL phase in two dimensions in the isolated limit. The
extracted critical disorder strength of A2P ~ 9.J is sig-
nificantly larger than the corresponding critical disorder
strength in one-dimension AP ~ 4.J [26], even though
the non-interacting critical disorder AY=% = 2.J is identi-
cal in both cases. To show that these main results are es-
sentially independent of our model for the environmental
coupling, a corresponding analysis of Z(t), i.e. neglecting
the weak coupling to the environment [26, 35], is shown
in the inset of Fig.3(b). The resulting relaxation ex-
ponents also continuously decrease and exhibit a sharp
change before becoming constant at the same critical dis-
order strength A., thereby highlighting the robustness of
the result. The finite offset is consistent with the known
coupling to the environment (dashed line) [26, 34].

Estimating the Relazxation Exponents: We can
employ the above-mentioned model of counting the ex-
pected non-interacting inclusions to obtain a simple the-
oretical estimate of the exponents (. To this end, we
assume that the surroundings of the inclusions act as a
good thermal bath. To be specific, we focus on the central
part of the system, in which even rows essentially reach
unit filling. Here, a site in an occupied row has probabil-
ity 1/2 of hosting say a spin-up atom; meanwhile, sites



in empty rows are automatically part of the “inclusion”.
Accounting for the geometry of the inclusion, we esti-
mate the exponent (y, = (£/2)*log(2) [35]. Note that
this estimate does not account for imperfections of the
initial state preparation [35], the inhomogeneity of the
experimental system or for the possibility that an inclu-
sion can contain some small density of particles in the
other spin state without causing it to thermalize. This
theoretical estimate of ¢ (as indicated by the yellow line
in Fig.3 (b)) could thus be regarded as an upper bound
on the relaxation exponent. It carries qualitatively simi-
lar features as the experimental data and, except close to
A, is also of the same order of magnitude as the exper-
imentally extracted exponent. Near the transition, the
experimentally measured relaxation exponent becomes
significantly smaller than our theoretical estimate. Such
a discrepancy is expected, as in this regime the typical
surroundings of an inclusion themselves become increas-
ingly localized and thus cease to act as a good bath, which
invalidates the assumptions of our theoretical model.

Interaction Effects and Energy Density Depen-
dence: To highlight that the observed slow relaxation
at intermediate disorders is driven by interactions and
is completely absent in the non-interacting system, we
compare it to the case of vanishing interactions U = 0 in
Fig.4 (a). While the non-interacting system is strongly
localized, showing a saturation of the imbalance at a fi-
nite value, the interacting system relaxes slowly. This
supports that the slow relaxation is completely interac-
tion driven.

To probe the impact of changing the energy-density
on the relaxation, we additionally prepare initial states
with finite fraction D of particles on doubly occupied lat-
tice sites (doublons), which changes the energy density
of the initial state by ~ D x U/2. Fig.4 (b) shows the
resulting imbalance after an evolution time of 50 7. Due
to a dynamical symmetry of the Hamiltonian, we expect
the evolution to be the same for both repulsive and at-
tractive interactions [10, 36]. Hence, we concentrate on
the attractive side of the Feshbach resonance [39] to be
able to access very strong interactions. For small and
moderate interactions (JU] < 10.J), we measure a strong
decrease in the imbalance, highlighting again the delocal-
izing effect of interactions. Additionally, the imbalance is
identical for both energy densities. For stronger interac-
tions, however, we find a higher imbalance for the state
with more doublons, indicating a stronger localization.
Qualitatively, this effect can be understood by consider-
ing the reduced hopping rate of doublons Jp ~ J?/U at
large interactions, which should result in stronger local-
ization [10]. In one dimension, the hard core limit of in-
finitely strong interactions in the absence of doublons can
be mapped back onto a non-interacting model [10, 40].
Consequently, the imbalance for low doublon fraction is
identical for the two extreme cases of vanishing and hard-
core interactions [10]. In contrast, such a mapping does
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FIG. 4. Interaction and energy density dependence. (a) Time
evolution of the imbalance for fixed disorder strength A =5 J
and vanishing U = 0 and finite interactions U = 5.J. While
there is negligible relaxation in the non-interacting case, the
interacting time trace shows slow relaxation. This indicates
that the relaxation is inherently due to interactions. We also
show the normalized total atom number A to show that atom
loss is minimal on the timescales of the experiment [34]. Each
point is averaged over six individual experimental realizations
and error bars denote the error of the mean. (b) We measure
the imbalance for fixed disorder strength A = 6 .J but start-
ing from initial states with two different doublon fractions
D =~ 5%,30%. In the large interaction limit, we observe a
significantly higher imbalance for the larger doublon fraction.
This can be qualitatively understood by the reduced mobil-
ity of the bound doublon state. Solid lines are guides to the
eye. Each point is averaged over six individual experimental
realizations.

not exist in two-dimensions and, accordingly, the imbal-
ance is significantly different for the two extremes; again
a striking qualitative difference in comparison to one di-
mension.

Conclusion: We observe an extended regime of ex-
ceedingly slow relaxation of an imprinted density pat-
tern, in which the relaxation becomes progressively
slower for increasing disorder strength. After account-
ing for a known weak coupling to the environment, the
relaxation vanishes above a critical disorder strength,
thereby indicating the existence of an MBL phase in
two-dimensional quasi-periodic systems. We describe a
simple model based on configurational inhomogeneities



in high-temperature states that captures the qualitative
trend of the experiment. However, a full quantitative
description of the regime of critically slow relaxation
and the apparent MBL transition goes substantially be-
yond the currently known theory, thereby underlining
the importance of experimental results in resolving such
regimes. Already in one dimension, recent numerical cal-
culations have supported that sub-diffusion can arise, at
least to intermediate times, even in systems with no rare-
regions in the underlying potential, such as quasi-periodic
systems [41, 42] and have shown that the emerging relax-
ation can appear very similar to the case of systems with
a truly disordered potential [23, 33]. Another possibil-
ity in two dimensions would be an intermediate critical
phase between the fully ergodic and the fully MBL phase,
which could correspond to this extremely broad regime
with a markedly slow relaxation.

While our results already provide important insights
into MBL in higher dimensions, revealing the universal
critical properties of the transition remains a challenging
task for future experiments. This would require identi-
fying the regime where critical scaling holds and to un-
derstand the role of rare-regions in quasi-periodic versus
real-random systems in determining the critical proper-
ties [33, 42, 43]. Further isolating the system would allow
us to experimentally access even longer timescales and
understand the coupling to an external bath [26, 34, 38],
as well as to probe the interplay between the spin and
charge sectors arising from SU(2) symmetry [44], and pla-
quette resonances in two-dimensions [45]. Supplementing
such results with frequency resolved spectroscopy should
further provide fundamental insights into the MBL tran-
sition [46].
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SUPPORTING MATERIAL

Data Analysis and Supporting
Measurements

1D-2D Comparison: We compare the power-law
relaxation exponent 7 from of the 1D system (reported
in Ref. [26]) to the relaxation exponents ¢ obtained in this
work in 2D in Fig.S1. The abrupt change of the behav-
ior of the relaxation exponents at a certain value of the
disorder strength indicates the putative MBL transition.
We note that the different magnitude of the exponents
7 in 1D and ¢ in 2D results from extracting using dif-
ferent functional forms. Hence, the graphs shows that
for almost all the disorder strengths where slow relax-
ation is observed in 2D, the 1D system is already in the
MBL phase. This highlights the consequences of dimen-
sionality on the relaxation dynamics and shows the very
different critical disorder strengths.

Power Law Fits: We plot the closed-system imbal-
ance Z on a double logarithmic plot (Fig. S2). The closed-
system imbalance appears to decay slightly faster than
a power-law, supporting the analysis in the main text.
However, to test the robustness of the main results pre-
sented in our paper, we also fit power laws o ¢~ without
the logarithmic correction to the relaxation of the imbal-
ance in 2D and find that the critical disorder strength
A, and the critical exponent v remain unchanged (not
shown).
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FIG. S1. Relaxation Exponents in 1D vs. 2D: We com-

pare the power-law exponent 7 obtained in 1D from fits
Z(t) o< t7" [26] to the relaxation exponent ¢ obtained in 2D
(Fig.3(b)). The graph shows the strong effect of dimension-
ality, with a much higher critical disorder strength in two-
dimensions AP ~ 9J as compared to the one-dimensional
case AP ~ 4J, which demonstrates the additional ways for
delocalization in higher-dimensions. Solid lines are guides to
the eye and error bars denote the fit error. The interaction
strength is U =4 J in 1D and U = 5 J in 2D case. Hence, the
resulting MBL transition in 2D gets as much support as in
1D, yet it is located at a markedly larger value of the critical
disorder strength.
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Interaction Dependence of Intermediate Time
Imbalance: Our experiment also allows us to explore
the influence of the interaction strength on the relaxation
dynamics by using a Feshbach resonance [39]. We mea-
sure the imbalance at finite but late evolution times of
50 7 as a function of the interaction strength Fig. S3. We
observe that tuning from weak (U ~ 0) to intermediate
interactions (U ~ 5.J) causes a significant reduction of
the imbalance, highlighting the delocalizing effect of in-
teractions. This trend stops when tuning to even stronger
interactions U > 10 J where a slight increase of the im-
balance is measured. We note that in the non-interacting
limit our system decouples the two orthogonal directions
and effectively reduces to a one-dimensional problem [34].
This happens because the onsite potential is a sum of two
quasi-periodic terms which can be prepared along two or-
thogonal directions. The solution to the two-dimensional
system in the non-interacting case is therefore the same
as the solution of the one-dimensional problem and the
transition stays at A, = 2J, as explored in our earlier
works [10, 26]. We also check this explicitly by compar-
ing the imbalance after an evolution time of 507 in the
non-interacting case in one and two-dimensions and find
them to be identical.

Estimating Effects of a Weak Coupling to the
Environment: We understand the effects of a weakly
coupled environment in our system from our recent works
in one-dimension [26] and from coupling one-dimensional
tubes [34]. In the latter, the hopping between multiple
one-dimensional tubes enables them to collectively act
as a bath for each other. Numerical simulations in one-
dimension provide strong support that at times which
are at least about a few hundred tunneling times, the ef-
fect of the bath can be well captured by a multiplicative
stretched exponential as discussed in the main text [26].
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FIG. S2. Closed-system imbalance as a function of time: We
show T as a function of evolution time to see the slow relax-
ation, exhibiting a downward bending on the double logarith-
mic scale. The data is for the same parameters as in Fig. 2,
but corrected for the finite background coupling I' = Dexp.
Solid lines are fits as described in the main text.
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FIG. S3. Interaction dependence of the intermediate time
imbalance: The imbalance measured at times ~ 50 7 shows a
pronounced change as a function of both disorder and interac-
tion strength. Generally, we find that the interactions tend to
decrease the imbalance whereas disorder tends to increase it.
In contrast to one-dimension, where infinitely strong interac-
tions map to an effectively free theory, in our two-dimensional
sample the large interaction limit is significantly different from
the noninteracting case. Experimental data is measured at
the gray dots. Each point is an average of six individual ex-
perimental realizations.

To study the robustness of our conclusions, we perform
fits using the stretching exponents g between 0.4—0.7 and
the background lifetime 1/T" between 900 — 1200 7 which
leaves the main results unchanged (not shown). We note
that even completely neglecting the weak-coupling to the
bath gives a sharp change of the relaxation exponent
around the same critical disorder strength A. and has
no effect on the observation of slow dynamics, as shown
in the time traces themselves.

Coupling Identical Two-Dimensional Planes:
We explicitly check that indeed the coupling between
different two-dimensional planes can result in faster de-
localization, as in our previous work on coupling one-
dimensional MBL systems [34]. We measure the im-
balance after 507 as a function of hopping in the
z—direction, see Fig. S4, and find that indeed larger cou-
plings (i.e. larger J,/J) results in lower imbalances.
All measurements are performed for fixed interactions
U = 5J and disorder strength A =8 J.

Theoretical Analysis

Single-Particle Localization Length £: Our the-
oretical estimate of the relaxation exponent (;, =
(€/2)%log(2) requires the localization length ¢ of the
noninteracting system. Assuming exponentially local-
ized single-particle states 1(r) = e~ !/, we obtain the
non-interacting localization length £ by relating it to the
inverse participation ratio IPR = & 3 [¢(r)[*, where
N is the wavefunction normalization N = " _|¢(r)|%
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FIG. S4. Coupling identical planes: The graphs shows the
measured imbalance as a function of hopping J. in the z-
direction. It is measured after an evolution time of 50 7 for
fixed disorder strength A = 8.J and interactions U = 5J.
Similar to our previous work on coupling identical many-
body localized systems in one-dimension [34], we indeed find
that for higher coupling strength between the two-dimensional
planes (and hence larger J./J) the imbalance reduces. Note
that the smallest value of J./J in the figure is 10_3, as used
in the main text, and not exactly zero. Each point is an aver-
age of six individual experimental realizations and error bars
denote the error of the mean.

The inverse participation ratio can be computed numer-
ically from exact diagonalization of the non-interacting
system, as described by Eq. (1) with U = 0. We aver-
age the inverse participation ratio over different phases
of the quasi-periodic potential and choose systems of size
48 x 48 to obtain results that are representative for the
thermodynamic limit.

Size and Counting of Inclusions: The size of an
inclusion is operationally defined as follows (for concrete-
ness we assume an inclusion consisting of spin-up and
empty sites): if, starting from a particular site x, all
paths of L nearest-neighbor steps encounter only spin-
up or empty sites, then x belongs to an inclusion of size
> L. Note that the total matrix element from x to a
point y at the edge of the inclusion includes a combi-
natorial factor from the number of paths connecting the
two points. However, provided that single particle states
are well localized, this combinatorial factor is dominated
by the exponential decrease in the matrix element as a
function of L.

Thus, the minimal inclusion of L sites centered at x
is a square, with diagonals of length 2L along the lattice
directions. The area of the inclusion is then 2L2. If
the initial state created in the experiment were purely
random, the probability of such an inclusion would be
p2L2 , where p is the probability of a spin-up or empty site.
However, since the initial state in the experiment ideally
consists of alternating rows of empty and filled sites, the
true probability of an inclusion is pJLCQ, where py =1/2is
the probability that a site in one of the occupied rows is
either spin-up or empty. Setting L = £/2logt this leads
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FIG. S5. Numerical solution of the nonlinear diffusion equation. (a) The nonlinear diffusion equation (S1) is solved numerically
for an initial step-density profile (p(z) = 0 for z < 0 and p(z) = 1 for z > 0) and A/J = 4. (b) The spread of the wavefront
into the initially empty region (z < 0) is diffusive and hence grows as v2at. With increasing disorder strength the effective

diffusion constant « decreases.

to the simple parameter-free estimate in the main text.
(Recall that the decay at distance L is largely incoherent,
and hence has a timescale set by t ~ exp(2L/&), where
the factor of two results from Fermi’s Golden Rule.)

We note that this simple estimate systematically un-
dercounts inclusions. More refined estimates would al-
low for the presence of a sufficiently small density of
spin-down particles inside the inclusion, as these will not
themselves suffice to thermalize the inclusion. Moreover,
our counting of inclusions considered fully occupied even
rows and hence focused on the central region of the trap,
where the density is higher and inclusions are correspond-
ingly rarer.

Nonlinear Diffusion and the late-time “filling-
wn” of Inclusions: The “tunneling” process out of the
inclusions is one of two possible mechanisms by which an
inclusion can relax. The other mechanism is for parti-
cles to diffuse in from the edge of the inclusion. As we
now discuss, this diffusion process dominates tunneling
at sufficiently long times.

We note that for A > 2J, single-particle states are lo-
calized. Thus, in the low-density or highly spin-polarized
limit, the diffusion constant must vanish. Indeed, the
diffusion constant should be either strictly zero or non-
perturbatively small below some critical (or crossover)
density p.. We can estimate the density-dependence of
the diffusion constant perturbatively as follows. Since
single-particle moves do not cause relaxation, relaxation
must be due to collective m-particle rearrangements.
The matrix element for such rearrangements decreases
as ~ Jexp(—m/\), where \ is a parameter that de-
creases with increasing disorder; the level spacing for such
rearrangements also decreases as Aexp(—sm), where
s ~ plog4 is an entropy per site, and p is the density
per site. When As > 1 the system is in the thermal
phase, and the dominant rearrangements are at the scale
m* ~ log(A/J)/(plog2 — 1/]A), i.e., they involve rear-
ranging m* particles. The diffusion constant then de-

pends on the density as D(p) ~ p™ .
The general nonlinear diffusion equation in this system
is of the form

op =cV (pm*(p)Vp) . (S1)
ot

where c is a density-independent prefactor. Starting with
a step profile, the diffusion into an empty region from
a region of typical density can be seen numerically to
be diffusive (Fig.S5); however, the diffusion constant of
this “front” is strongly suppressed relative to that in-
side the typical region. Assuming diffusive behavior, the
timescale for an inclusion of size L to thermalize is ¢ ~ L?;
adapting the counting argument above, we expect that
in this case the decay due to rare regions will be ex-
ponential in time. Hence, the “filling-in” of inclusions
dominates the “tunneling” process out of the inclusions
at late times.

Crossover from Griffiths to Diffusive Behavior:
At present, it is unclear whether the perturbative esti-
mates above are valid near the MBL transition. Never-
theless, we can use these estimates to identify a timescale
on which Griffiths effects should cease to dominate dy-
namics in incommensurate systems. This timescale is
estimated as follows. The rate at which a particle flips
by “tunneling” out of an inclusion is exponential in the
size of the inclusion; however, the phase space for a tun-
neling event grows as the boundary area of the inclu-
sion. Thus, for an inclusion of size L, the tunneling rate
is ~ Jexp(—2L/&)L as obtained from Fermi’s Golden
rule. Meanwhile, the dominant typical relaxation out-
side the inclusion occurs at some, a priori unknown rate
v, governed by some optimal m-particle rearrangement.
This leads to an effective diffusion time of order L?/(avy)
for an inclusion of size L, where a ~ 1072 is the effec-
tive diffusion constant obtained from numerically solving
the nonlinear diffusion equation (S1). The crossover oc-
curs for inclusions of size Jexp(—2L/¢)L3 = a. Solv-



ing this equation perturbatively for L, we obtain L =
(&/2)1og]J/(ay)]. From inverting the effective diffusion
time L?/(ay), we estimate the rate at which such in-
clusions relax ~ 4ay/(¢log J/(ay))?. Unfortunately, we
cannot directly measure the rate v at which typical re-
gions relax; however, it is clear that v < J. Therefore,
we can bound Griffiths effects to be visible for times that
are at least on the order of 100/J. As A increases, this
crossover scale moves to later and later times.

An alternative mechanism: We have highlighted
the interpretation of the observed slow relaxation in
terms of Griffiths effects, as these reproduce both the
functional form and semi-quantitatively the observed
prefactor. It is possible that other mechanisms might
also play a role in the slow relaxation, however. One
example of such an alternative mechanism is as follows:
the spin exchange coupling constant, J; ~ U(J/A)?, is
much slower than the rate of charge motion. However,
since the spin-exchange Hamiltonian has random cou-
plings up to a weak breaking of the exact SU(2) symme-
try [46], but not random on-site fields, presumably spin
excitations are substantially less localized than charge.
Thus, one possible model of the intermediate regime is
in terms of localized charge excitations coupled to a spin
bath [47]. Spin exchange processes alone do not relax
the charge imbalance; that requires charge to move, us-
ing the spin as a bath with a narrow bandwidth or a
long correlation time [47, 48]. In this situation, the
spin-mediated charge rearrangement rate is parametri-
cally smaller than the spin timescale, being given by
L. ~ J(Jg/J)?/PAclogd) [47], where \. < 1/log4 is the
localization parameter of the charge sector. This form
arises because finding a charge transition that is reso-
nant to within energy J, requires going to high orders
in perturbation theory [48]. Since I'. < J, this picture
naturally accounts for the slowness of relaxation.

This explanation is also consistent with the exis-
tence of multiple timescales, as follows: although the
typical charge relaxation timescale is very slow, some
charge modes will relax atypically fast. Specifically,
let us consider the imbalance at a timescale t. On
this timescale, m-particle rearrangements can occur
when Jsexp(—2m/A.) 2 1/t, so m < (A./2)log(Jst).
The fraction of possible rearrangements at this scale is
(Js/J)exp(mlog4), which is (by definition) less than
unity on timescales shorter than 1/T'.. By this argument,
the fraction of the system that will relax on timescale ¢
is (J,/J)exp[(Ae/2) log4log(Jgt)] ~ t°8%A</2 The im-
balance should decay, according to this mechanism, as
t—1o84Xe/2 While consistent with slow relaxation, there-
fore, this scenario does not account for the observed
dimension-dependence of the imbalance decay.
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Technical Details of the Experiment

Lattice Parameters: All lattice potentials result
from retro-reflected laser beams of wavelengths of ei-
ther 532nm, 738nm or 1064nm. As in our previous
works, (Refs. [10, 34]), overlapped lattices of 532 nm and
1064 nm light form a superlattice along the z-direction
that is used to prepare the initial density wave and to
read out the even-odd imbalance. An additional, weak
and incommensurate lattice at 738 nm forms the dis-
order lattice along the z-direction and the same laser
is used to form the primary lattices along the orthog-
onal y and z-directions. Compared to Ref. [10], the
lattice along the y-direction is less deep to allow tun-
neling also in this direction and we have added a sec-
ond, weak and incommensurate lattice along this direc-
tion using the existing 1064 nm laser. This results in the
two slightly different incommensurable wavelength ratios
Bz = 532/738.2 = 0.721 and 3, = 738.2/1064 = 0.693.

General Sequence: The experiment produces an
ultracold gas of fermionic Potassium-40 (“°K) atoms by
sympathetically cooling “°K with bosonic Rubidium-87
(87Rb) in a plugged quadrupole trap followed by an opti-
cal dipole trap. Reducing the dipole trap depth lower
than a threshold value completely removes 8’Rb due
to its higher mass, such that only “°K remains in the
trap. We further evaporate *°K in an equal mixture
of the two lowest hyperfine states of the *5; /2 manifold
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FIG. S6. A schematic showing the lattice sequence for prepa-
ration and detection. Please see text for full details.



(IF,mie) = 9/2,-9/2) = 1) and [9/2,~7/2) = 1)) to a
final temperature of T/Tr = 0.19(0.02), where T is the
Fermi temperature. Interactions between the two states
can be tuned via an s-wave Feshbach resonance centered
at 202.1G [39]. Except in Fig. 4 (b), the scattering length
a is set to 140ag during lattice loading to restrict the
doubly occupied sites to a maximum of about 5 %. Here,
ag denotes the Bohr radius.

After loading into the deep lattices, we then set the
scattering length to control the desired interactions U in
the lattice for the following evolution time. At the end of
this preparation stage, we ramp down the z-main lattice
from 20 E; ; to 10 £} ; in 10 s and ramp down the z-long
lattice to 0 F;; in the same time. The primary lattice
along the y-direction is simultaneously ramped down to
7.3 E,; in order to have the same hopping element J in
both directions. Here, E, ; is the recoil energy of the re-
spective lattice ¢ € z,y. At the same time, the disorder
lattices are also ramped up along both the z and y di-
rections to the desired value so that we obtain the same
value of the effective disorder strength in both directions.
All of these lattice ramp times are short compared to a
tunneling time 7. Simultaneously, we also ramp down
the net dipole confinement to have overall less than 5 Hz
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trap frequency. The system is then allowed to evolve for
various evolution times. For detection, the short lattice,
the long lattice and the orthogonal lattices are ramped
high again to inhibit hopping and freeze all occupations.
Finally, we employ a bandmapping technique to obtain
the number of atoms on the even and odd sites [49]. All
bandmapped images are taken after 8 ms time of flight
and are imaged along the y-axis. Further details of the
bandmapping procedure, imbalance extraction and oth-
ers are provided in our earlier works [10, 34]. A simplified
diagram of the lattice laser ramps is shown in Fig. S6 for
easy visualization.

Disorder Strength: The disorder strength A de-
pends on the lattice depth of the main lattice, the lattice
depth of the disorder lattice and the ratio of their wave-
lengths ;. In z-direction we use 10 E, ;, as the main
lattice depth, and in y-direction we use 7.3 E, ,. Here
E, ; is the recoil energy of the main lattice in the respec-
tive direction. The disorder strength is then given by
A/J = asq, where sq4 is the depth of the disorder lat-
tice in units of its recoil energy. The value of « in the
a-direction is 11.11 and in the y-direction 5.21 [10].
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