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In the framework of the EUROfusion Programme the EU is preparing the conceptual design of the fuel cycle for 
a pulsed fusion DEMO. Over the last years, a smart fuel cycle architecture has been developed, driven by the need 
to reduce the tritium inventory to an absolute minimum. To achieve this goal, batchwise processes used in the 
fusion fuel cycle so far were replaced by continuous processes wherever possible. This includes the change from 
discontinuous cryopumping to mercury based continuous vacuum pumping with zero demand on cryoplant power, 
and the introduction of temperature swing absorption processes for isotope separation in the tritium plant instead of 
large cryogenic distillation columns with tritiated liquid hold-ups. To circumvent handling of high inventories of 
tritium-bearing liquid fuel in cryogenic distillation columns of the tritium plant, superpermeable metal foils shall be 
installed in the divertor ports of the vacuum vessel to extract pure DT continuously from the exhaust gas. Direct 
internal fuel recycling takes place via the pellet injection system. The paper discusses the design drivers and 
limitations, and describes the development status of the novel technologies. 
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1. Implementation of requirements 

1.1 Requirements compilation 

Within the framework of the EUROfusion 
Programme a conceptual design for the fuel cycle of a 
pulsed fusion DEMO is being prepared. The fuel cycle 
architecture has been strictly delineated from relevant 
DEMO high level stakeholder requirements, as listed in 
the following. The DEMO plant shall [1]: 

(i) adopt a tokamak architecture; 

(ii) minimise its capital cost (minimise cost of 
demonstration for taxpayer); 

(iii) enable the extrapolation of key performance 
criteria for a fusion power plant (DEMO must provide a 
solid basis, also in terms of the technologies involved); 

(iv) generate 300-500 MW electrical power to a 
national grid, continuously for a minimum period of 2 
hours; 

(v) be designed and have a concept of operation 
such that a power plant based on it would have a 
predicted lifetime availability of at least 60%; 

(vi) achieve an overall availability of at least 30%, 
between commissioning and decommissioning; 

(vii) breed tritium exceeding that required for normal 
operation in order to provide sufficient tritium for the 
start-up of another plant; 

(viii) ensure that it does not exceed its licensed 
tritium inventory limit (aimed to be at ITER magnitude 
or less); 

(ix) provide safe confinement of tritium and 
radiation (environmental protection and workers´ dose 
minimization). 

Here, requirements (ii), (viii) and (ix) represent the 
main reasons to ask for inventory reduction, whilst the 
other requirements pose strong limitations on the 
technology choices. As discussed elsewhere [2, 3], the 
expected inventories on the basis of an up-scaled ITER 
fuel cycle are excessive at the level of 10-30 kg tritium 
depending on the assumptions taken. This number is 
found when the	 batch technology choices for primary 
pumping (cryopumping), rough pumping (cryopumping 
and mechanical pumping) and isotope separation 
(cryogenic distillation) are adopted from ITER.	Such a 
configuration, see Fig. 1, is characterised by a ´once-
through´ architecture in which all tokamak exhaust gas is 
routed through the tritium plant and finally separated to 
the level of the pure hydrogen isotopes (H2, D2, T2), for 
re-injection in the torus or for temporary storage. The 
addition of an outer circuit for tritium breeding at the 
level needed to achieve tritium self-sufficiency (at a 
fusion power of 2 GW and a tritium breeding ratio of 
1.05) and the technology to recover the tritium from the 
blanket coolant is adding another contribution to the 
integral tritium inventory of the DEMO plant.  

Such high tritium inventories have an issue in terms 
of nuclear licensing and from the fact that, within the 
time scale to start DEMO operation, the available tritium 
resources may be very limited [4]. The inventory aspect 
is hence regarded to be a clear showstopper. The novel 
DEMO fuel cycle architecture is solving this issue.  
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the tritium plant. The reference technology chosen for 
the IR&PR function is a (semi-continuous) thermal 
cycling temperature swing absorption process, derived 
from the known TCAP technology [30] to be able to 
achieve higher efficiencies and thus to minimize the size 
of the absorption part which is known to scale less good. 
As alternative approach, a pressure swing adsorption 
process is under closer investigation within the 
Prospective R&D Programme of EUROfusion.  

3. Viability  

An initial viability analysis has been made in order to 
confirm that the functional and technology choices of the 
new fuel cycle architecture hold for the DEMO scale. As 
regards the core fuelling pellet injection systems, 
frequencies of around 25 Hz are envisaged. The divertor 
ports needed for pumping do not conflict with the 
maintenance systems needed there. It is currently under 
discussion if the two functions can be integrated on 
different ports rather than to share on the same, to 
consider that the requirements of the in-vessel 
maintenance are different from the maintenance needs of 
the pump systems. If the advanced fuel cycle is realized, 
the tritium plant for DEMO will potentially not be larger 
than that for ITER (see also section 1.2 above).	 In case 
of a water-cooled blanket, the coolant purification may 
be done in an off-site extra facility. A first estimate 
shows that the global inventory is of the order of 1 kg 
(excluding the stored amounts in the U-beds), with less 
than 100 g in the blankets, several 100 g in the tritium 
plant, less than 100 g in the fuel injection and vacuum 
systems, and several 100 g in the first wall (to be re-
confirmed by on-going R&D programmes with 
irradiated tungsten materials with tritium exposure).  

4. Conclusions 

The DEMO fuel cycle architecture differs from the 
classical once-through concept. It features the direct 
internal recycling loop and two loops inside the tritium 
plant. We call this new architecture smart, because 

(i) it allows to drastically reduce the tritium 
inventories requiring processing in the Tritium Plant 

 (ii) it reduces cost (CapEX, OpEx) as cryogenic 
needs are reduced (completely eliminated for the 
pumping systems) 

(iii) it is derived from the plasma scenario directly.  

(iv) it decouples the fuel cycle operation from the 
plasma physics performance. 

(v) it allows to harvest optimization potentials by 
having the tritium, matter injection and vacuum systems 
all in one project, and unifies fuel injection and vacuum 
systems. 
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