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We report on the observation of the Meissner effect in bosonic flux ladders of ultracold atoms.
Using artificial gauge fields induced by laser-assisted tunneling, we realize arrays of decoupled ladder
systems that are exposed to a uniform magnetic field. By suddenly decoupling the ladders and
projecting into isolated double wells, we are able to measure the currents on each side of the ladder.
For large coupling strengths along the rungs of the ladder, we find a saturated maximum chiral
current corresponding to a full screening of the artificial magnetic field. For lower coupling strengths,
the chiral current decreases in good agreement with expectations of a vortex lattice phase. Our work
marks the first realization of a low-dimensional Meissner effect and, furthermore, it opens the path
to exploring interacting particles in low dimensions exposed to a uniform magnetic field.

The Meissner effect is the hallmark signature of a su-
perconductor exposed to a magnetic field [1, 2]. For
a type-II superconductor, full screening of the applied
external field occurs up to a critical field Hc1. Such a
screening is the result of circular surface currents on the
superconductor that generate an opposite field, cancel-
ing the applied field. The superconductor thus acts as a
perfect diamagnet in the Meissner phase. For larger field
strengths H > Hc1, however, the superconductor is not
able to fully screen the applied field and an Abrikosov
vortex lattice phase is formed in the system. In low-
dimensional quantum systems it has been a longstanding
challenge to probe analogue ideas and to investigate the
interplay of orbital magnetic field effects and interactions.
While a single one-dimensional system does not allow for
any orbital magnetic field effects, a ladder system is the
simplest extension where these are permitted [3–8].

Here we report on the realization of such bosonic lad-
ders for ultracold atoms exposed to a uniform artificial
magnetic field created by laser-assisted tunneling [9–17].
Previously, such ladders have been discussed in the
context of Josephson-junction arrays [3, 18–21] and more
recently also for ultracold atoms exposed to an artificial
gauge field [6–8]. In our experiment we can measure
the probability current on either leg of the ladders
and, in addition, observe the momentum distribution
of the system after time-of-flight expansion. Rather
than varying the external field strength, we determine
the response of the system as a function of the ratio of
transverse rung coupling K to coupling along the legs of
the ladder J (see Fig. 1). In full analogy to the type-II
superconductor, we find evidence for a Meissner phase
with maximum chiral currents that screen the applied
field. Below a critical coupling strength (K/J)c we find
a decreasing chiral current, in good agreement with
theoretical expectations for a vortex phase with only
partial screening.

ba

y

x

J 

Keilφ

dy

dx

l

l+1 1

E
 (J

)

0

4

-4

q (π/dy)
0-1

K/J
0 1 2 3

(K/J)C

L R

FIG. 1. Experimental setup and energy bands. (a) The ex-
periment consists of a one-dimensional array of ladders in the
xy-plane with lattice constants given by dx,y. An effective ho-
mogeneous magnetic field in each ladder is realized through
laser-induced tunneling (red arrows) between the left (L) and
right (R) legs of the ladder [13, 22], which leads to spatially de-
pendent complex tunneling amplitudes along the rungs of the
ladder Kei`φ, with constant magnitude K. The flux per pla-
quette is then given by φ, where in our experiments φ = π/2
is realized. (b) Band structure of the flux ladder for different
values of K/J and flux φ = π/2. The system exhibits two
bands, colored with a blue-red gradient that indicates the
value of K/J . The lowest band presents a single minimum in
the Meissner phase K/J > (K/J)c and two symmetric min-
ima in the vortex phase K/J < (K/J)c, where (K/J)c =

√
2.

In the spin-orbit representation, the legs of the ladder play
the role of pseudo-spins.

The simplest theoretical description for our system is
that of non-interacting bosonic particles in an infinitely
extended two-leg ladder geometry, subject to a magnetic
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FIG. 2. Phase diagram of ladder currents. (a) Chiral current strength along the legs of the ladder as a function of the flux φ
and the ratio K/J calculated for the ground state of a ladder with 300 sites and periodic boundary conditions. The solid line
shows the critical boundary that separates the Meissner and the vortex phase. The lower graph shows a profile of the current
for a fixed value of K/J =

√
2. In the Meissner phase the current increases with flux, until a critical flux φc is reached after

which the system transitions into a vortex phase where the chiral current decreases with flux. The graph on the right is a profile
line for a fixed flux φ = π/2, as used in the experiment. In that case, the chiral current increases in the vortex phase when
increasing K/J until one enters the Meissner phase at the critical point (K/J)c where the current saturates. (b) Theoretically
calculated individual currents and particle densities for the different values of K/J marked in (a). The thickness and length of
the arrows denotes the current strength, which is normalized to the maximum current for each K/J . To clearly illustrate the
modulation of the density, we have subtracted a homogeneous offset and renormalized the density modulation for each K/J .

flux φ per plaquette. The corresponding Hamiltonian is:

H =− J
∑
`

(
â†`+1;Lâ`;L + â†`+1;Râ`;R

)
−K

∑
`

(
e−i`φâ†`;Lâ`;R

)
+ h.c. (1)

Here, the operator â`;µ annihilates a particle at site ` in
the left or right leg of the ladder, where µ = (L,R). The
hopping amplitude between neighbouring sites along the
ladder is J , and Kei`φ denotes the spatially dependent
tunneling amplitude between legs. This Hamiltonian can
be mapped onto a spin-orbit coupled system, where the
pseudo-spin represents the legs of the ladder [6, 9]. Ob-
servables that can be readily measured in the experiment,
and that allow one to characterize the different phases of
the system, are the gauge-independent average current
on either side of the ladder jµ = N−1

leg

∑
`〈ĵ`,`+1;µ〉 and

the chiral current jC = jL − jR [6]. Here Nleg is the

number of sites along the ladder and ĵ`,`+1;µ denotes the
current operator for currents flowing from site `→ `+ 1.

For low flux values φ ≤ φc, the ground state of the
Hamiltonian exhibits a Meissner phase (see Fig. 2), with
maximal and opposite currents along the two legs of the
ladder |jµ| = (2J/~) sin(φ/2), i.e., a full screening of the

applied magnetic field. Increasing the flux leads to in-
creasing edge currents up to a critical flux φc beyond
which the current abruptly starts to decrease. At this
point the system enters a vortex phase with decreasing
edge currents, where the magnetic field partially pene-
trates the system. Such a behaviour exactly parallels the
one of the Meissner effect in a type-II superconductor
and its transition into an Abrikosov vortex lattice phase.
For a neutral superfluid in a thin rotating annulus, the
Hess-Fairbank effect has been discussed as an analogue
of the Meissner effect [23, 24]. The phase transition from
the Meissner to the vortex phase in our system is char-
acterized by a change in the band structure, where the
single minimum at q = 0 in the lower band splits into two
minima at finite q (Fig. 1b). In our experiment we chose
the following strategy to observe the transition from a
Meissner to a vortex phase: rather than changing the
magnetic field strength, we worked at a fixed flux and
varied the rung-to-leg coupling ratio K/J . As can be
seen in Fig. 2a, in this case one expects to observe an
increase in the leg currents for increasing K/J up to a
critical coupling strength (K/J)c after which a satura-
tion in the current occurs, signaling the transition from
the vortex to the Meissner phase. In the vortex phase,
the wave function exhibits a vortex structure for the cur-
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rents, whose period increases with K/J , and the atom
density on the ladder also becomes modulated with the
same periodicity. In the Meissner phase, on the other
hand, the size of the vortex is infinite and the density is
uniform (Fig. 2b).

Our experimental setup consists of a Bose-Einstein
condensate of 87Rb atoms loaded into a three dimensional
optical lattice potential. This potential is created by a
standing wave of wavelength λs = 767 nm along y and
a superposition of a short and a long standing wave of
wavelengths λs and λl = 2λs respectively along x. Ad-
ditionally, a weak standing wave of λz = 844 nm that
does not isolate different planes is used along z. The
resulting superlattice potential in the x direction is of
the form V (x) = Vlxsin2(klx+ϕ/2)+Vxsin2(ksx), where
ki = 2π/λi, i ∈ {s, l}. The lattice depths Vlx/x and
phase ϕ were chosen to have an array of isolated tilted
double well potentials along x, where each double well
corresponds to a single realization of a ladder. Using the
same scheme as in our previous works [13, 14], we em-
ploy a pair of far-detuned running-wave beams to induce
left-right tunneling inside each double well. This lattice
configuration creates a one-dimensional array of isolated
ladders in the xy-plane, with a total flux per plaquette
φ = π/2 (see Fig. 1a and [22]).

In order to reveal the presence of the chiral edge cur-
rents, we prepared the system in the ground state of the
flux ladder and measured the currents on the left and
right legs averaged over an array of about 15 individual
ladders. In the experimental sequence we loaded a Bose-
Einstein condensate of about 5× 104 atoms into the iso-
lated flux ladders for different values of K/J (see [22] for
a description of the experimental sequence). To extract
the currents along the legs, the wave function was then
suddenly projected into isolated double wells along y and
held for a certain holding time t in this configuration (see
Fig. 3a and [8, 22, 25]). During the projection we also
decoupled the legs of the ladder by switching off the left-
right laser-assisted tunneling such that atoms can only
tunnel within a single double well along y. If JD is the
tunnel coupling inside each individual double well, then
the averaged even-odd atom fraction oscillates according
to

neven;µ(t)− nodd;µ(t) =

[neven;µ(0)− nodd;µ(0)] cos(2JDt/~)

− jµ
J/~

sin(2JDt/~), (2)

where nodd;µ(t) =
∑
` n2`+1;µ(t) and neven;µ(t)

=
∑
` n2`;µ(t) are the averaged atom frac-

tions over the individual double wells, with
n`;µ(t) = 〈â†`;µâ`;µ〉/

∑
`〈a
†
`;µâ`;µ〉. The quantity

jµ = N−1
leg

∑
`〈ĵ2`,2`+1;µ〉 is the normalized average of

the currents on the left or right side of the ladder where
the expectation value is calculated for the initial state
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FIG. 3. Current measurement. (a) Schematics of the pro-
jection into isolated double wells along y used to measure
the currents. Current measurements are carried out simul-
taneously for every other bond. (b-d) Time evolution of
the population fractions nodd;L(t) (dark blue) and nodd;R(t)
(light blue) for the fluxes φ = 0 (b), φ = +π/2 (c) and
φ = −π/2 (d). The expected current in the case φ = 0 is
zero and therefore there are no even-odd oscillations. When
the flux φ = +π/2 (φ = −π/2) the edge current flows coun-
terclockwise (clockwise). For (c, d) the coupling ratio was
K/J = 330(20) Hz/150(10) Hz = 2.2(1). The small initial
phase offsets of nodd;µ(t) are caused by the finite projec-
tion time. Each experimental point is an average over three
measured values and the error bars depict the correspond-
ing standard deviations. The solid lines are sinusoidal fits to
the experimental data, where the frequency was fixed to the
calibrated double well coupling 2JD/~. The atom fractions
nodd;µ(t) and neven;µ(t) were determined by transferring the
atoms to higher lying Bloch bands and applying a subsequent
band mapping technique [22, 26].

directly after the projection. Though the average runs
only over the bonds within the projected double wells
(i.e., every other bond, see Fig. 3a), it is a very good
approximation of the average leg currents for our system.
The first oscillating term of the atom fraction in Eq. 2
is proportional to the initial population imbalance and
should be ideally zero due to the averaging. The second
term is proportional to the current amplitude and
dominates the time evolution. Therefore, currents with
opposite directions along the legs result in population
oscillations in the double wells that are out of phase by
π. In Fig. 3(b-d) the experimentally measured time evo-
lution nodd;µ(t) for positive, negative and zero flux are
displayed. For φ = +π/2 the current flows downwards
on the left leg and upwards on the right leg yielding an
even-odd oscillation of nodd;L(t) and nodd;R(t) with an
initial phase of π and zero, respectively. When the flux
is reversed to φ = −π/2, the phases of nodd;L(t) and
nodd;R(t) are also reversed. This demonstrates that the
flux ladder exhibits a chiral edge current in the ground
state whose chirality is reversed when inverting the
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FIG. 4. Chiral current as a function of K/J . (a) Average
chiral current jC obtained from sinusoidal fits to the individ-
ual oscillations of nodd;µ(t) for different values of K/J . The
darker (lighter) area indicates the vortex (Meissner) phase.
The solid green line is a theory curve fitted to the experimen-
tal data, which was calculated using the Hamiltonian of Eq. 1.
The fitted amplitude and offset were 0.14(1) and 0.001(2) re-
spectively [22]. The gray point was measured in a ladder
with φ = 0 where the chiral current is zero. The two insets
above show the average of three individual oscillations for
K/J = 0.52(7) (i) and for K/J = 2.2(1) (ii). (b) Phase dif-
ference ∆ϕ between the oscillations nodd;L(t) and nodd;R(t) for
different values of K/J . We observe that ∆ϕ ≈ π for K/J > 1
and decreases when K/J . 1. All data points were extracted
from three individual measurements of nodd;µ. For the chiral
current, the data points were evaluated through |IL−ei∆ϕIR|,
where we averaged the three independently fitted amplitudes
Iµ and calculated the resulting standard deviations. For the
phase measurements we fitted the phase of the average of the
three independent oscillations and from the errors of the fits
we determined the error bars.

direction of the flux, in agreement with the theoretical
expectation. For the case without the applied artificial
magnetic field (φ = 0), the wave function is homoge-
neous throughout the ladder and no chiral currents are
present, leading to a vanishing oscillation amplitude in
the double wells, as observed in the experiment (see [22]
for a detailed description of the experimental sequence).

In order to probe the phase diagram shown in Fig. 2a,
we studied the change of the chiral current amplitude
when increasing the ratio K/J for a constant flux φ =
π/2. On each leg of the ladder we measured nodd;µ(t) and
fitted its amplitude Iµ and phase ϕµ for different values of
K and constant J . To extract the chiral current, we made
use of the left-right symmetry of the wave function den-
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FIG. 5. Relative position of the momentum peaks. Experi-
mental peak separation between inner peaks as a function of
K/J fitted from the time-of-flight images. Each point cor-
responds to an average of 5-40 individual measurements and
the error bars are the standard deviations. The solid line is
the theoretically calculated peak separation, where there is
no free parameter. The light green shaded area shows the
peak separation calculated for a system with a density of 25
particles per single site of the ladder and for a temperature
range from 10nK to 30nK [22]. The inset shows the expected
momentum distribution along y as a function of K/J , and the
black circles highlight the measured peak separation.

sity i.e., neven;L(0)− nodd;L(0) = neven;R(0)− nodd;R(0),
from which we obtain jC = jL − jR ∝ |IL − ei∆ϕIR|,
with ∆ϕ = ϕR − ϕL. As shown in Fig. 4, in the vortex
phase the chiral current increases when increasing K/J
up to the critical point (K/J)c =

√
2 at which the sys-

tem enters the Meissner phase indicated by a saturation
of the chiral current. For a comparison with theory, we
fit the theoretically predicted behaviour with amplitude
and offset as free fit parameters and find good agreement
between theory and experiment. We also observe that
when K/J > 1, the value of the phase difference ∆ϕ is
close to π. This is to be expected whenever the averaged
initial population imbalance on neighbouring sites in the
double well is negligible (see Eq. 2) and a chiral current
is present in the system. For values of K/J < 1, we find
that ∆ϕ decreases, most likely due to the fact that the
smaller and smaller leg currents for decreasing K/J lead
to a larger effect of any possible initial population im-
balance on the phase of the double well oscillations (see
Eq. 2). These population differences are not perfectly av-
eraged out over the entire system in the experiment and
lead to the observed decrease in ∆ϕ for small values of
K/J (see Eq. 2). We note however that by subtracting
the two population oscillations, as described above for
the left and right leg of the ladder, we remove the os-
cillation term caused by the initial population imbalance
and, therefore, we can still reliably determine the chiral
current.

In a second series of measurements, we investigated the
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momentum distribution of the system along the y direc-
tion after time-of-flight expansion as a function of K/J .
In the experimentally realized gauge, each quasimomen-
tum q has two real momentum components in the first
Brillouin zone located at ky = q±π/(4dy) [6]. Therefore,
for the Meissner phase where the lowest energy band has
a single ground state at q = 0, the momentum peaks are
located at ky = ±π/(4dy). In the vortex phase the en-
ergy band has two ground states at ± qK/J that depend
on the ratio K/J , and correspondingly four momentum
peaks at ky = qK/J± π/(4dy) and ky = −qK/J± π/(4dy)
are expected (see inset in Fig. 5). When K/J � (K/J)c
the two outer peaks at ky = ± qK/J ± π/(4dy) vanish
and the two inner peaks converge to ky = 0. In order
to study this behaviour, we used the same experimental
sequence as above, but instead of projecting into isolated
double wells along y, we directly released the atoms from
the trap and determined the time-of-flight momentum
distribution. For the Meissner phase, we observe the two
expected peaks, but in the vortex phase we only observe
the two inner peaks and cannot resolve the position of the
outer peaks. The reason for this is that close to the crit-
ical point the two peaks at ky = ± qK/J + π/(4dy) (and
at ky = ± qK/J − π/(4dy)) are too close to each other,
and the band flatness combined with the finite tempera-
ture do not allow to resolve the two peaks. On the other
hand, for K/J � (K/J)c where we could expect to re-
solve them, the peaks are well separated but the outer
peaks vanish. For the analysis of the momentum distri-
butions, we therefore fitted the position of the two inner
peaks and measured their relative distance as a function
of K/J . As can be seen in Fig. 5, we obtain a reasonable
agreement with the theoretically calculated peak sepa-
ration, where the small reduction in amplitude can be
explained by considering the finite temperature of the
system, which slightly reduces the separation of the mo-
mentum peaks as shown by the light green shaded area.
There is a two-fold reason for the reduction in the sepa-
ration due to finite temperature: Non-zero temperature
implies population of a fraction of the energy band, which
means that due to our experimental gauge the maximum
of the peaks are shifted closer to each other [6]. The sec-
ond reason is that the peaks get broader and are then
more strongly affected by the Wannier envelope in the
time-of-flight expansion, which also shifts the peaks to a
closer position. Additionally, we observed that near the
critical point the widths of the fitted peaks have a max-
imum, which is consistent with the especially flat band
at this critical point and with the presence of the outer
peaks that cannot be resolved [22].

In conclusion, the work presented here marks the first
demonstration of a low-dimensional Meissner effect and
the first observation of a Meissner effect for a bosonic lat-
tice superfluid. It also demonstrates an efficient way to
implement spin-orbit coupling in one-dimensional ultra-
cold quantum gases. In future works it would be intrigu-

ing to use the recently developed high resolution imaging
[27, 28] to measure the lattice currents in a spatially re-
solved way. This would enable one to not only directly
detect the vortices in the flux ladders, but also measure
their full current statistics [8]. Measuring the edge cur-
rents precisely would also open intriguing avenues for ex-
ploring their connection to the edge states of an inte-
ger quantum Hall insulator [6]. Furthermore, one could
also hope to realize new many-body phenomena in the
strongly interacting limit of a Mott insulator [29, 30],
where the existence of chiral Mott insulators [5, 31] and
a Spin-Meissner effect for two-component systems have
been predicted [4]. Detecting the quantum fluctuations
[32] of a chiral Mott insulator would enable one to directly
probe the chiral currents in this topologically highly non-
trivial insulating phase.
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SUPPLEMENTARY INFORMATION

S1: EXPERIMENTAL SEQUENCE
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FIG. S1. Schematic drawing of the experimental sequence for
the current measurements showing ramping times and depths
of the lattices as well as the strength of the laser-assisted
tunneling between the legs of the ladders. In the first part of
the sequence, the ground state in the ladders with magnetic
flux is prepared for a certain value of K/J . This state is then
projected into isolated double wells along y to measure the
chiral currents.

The experimental sequence for measuring the chiral
currents described in the main text is shown schemati-
cally in Fig. S1. In the first part of the sequence, the sys-
tem was prepared in the ground state of the ladders in the
presence of the magnetic flux. For this, a BEC of about
5×104 atoms was first loaded adiabatically in 200 ms into
a 3D lattice with Vlx = 25(1)Erl, Vy = 7.0(2)Ers and
Vz = 5.0(2)Erz, where Eri = h2/(2mλ2

i ), i ∈ {s, l, z}.
The tilted ladders were then formed by ramping up the
short lattice along x to its final value Vx = 3.2(1)Ers in
20 ms, where the phase of the superlattice along x was
chosen such that the offset was ∆/h = 5.57(4) kHz and all
atoms ended up on the left side of the ladders. In the next
step, laser-assisted tunneling between the initially iso-
lated legs of the ladders was switched on by ramping up
the running-wave beams to V 0

K = 4.1(2)ErK correspond-
ing to K/J = 2.1(1) in 10 ms, where ErK = h2/(2mλ2

K)
and λK = 2λs. After a holding time of 5 ms that en-
sures an equal left-right distribution of atoms (see section
S5), the running-wave beams were changed to their final
value within 10 ms. After a subsequent holding time of
10 ms, we measured the current amplitudes by project-
ing the system into isolated double well potentials along
the y direction. This was done by suddenly switching off
the running-wave beams followed by ramping up a long
lattice of wavelength λl along y to Vly = 18.0(8)Erl in
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0.2 ms. During this same time, the short lattice along x
was increased to Vx = 10.0(3)Ers to isolate the legs of
the ladders. Following a variable holding time between 0
and 2 ms, where the atoms oscillate in the double wells,
the even-odd fraction in each leg was determined using
the site-resolved band mapping technique described in
section S2.

For the measurements in the ladders with zero flux
shown in Fig. 3b and Fig. 4 in the main text, we used
the same sequence as described above, but with ∆ = 0,
Vx = 11.0(3)Ers and without running-wave beams. The
resulting ladders had a bare coupling along the rungs of
Jx/h = 250(10) Hz, and the total flux was zero due to the
absence of the Peierls phases in the hopping terms. The
used projection sequence differs from the one described
above in that Vx was ramped to 20Ers instead of 10Ers
to prevent left-right tunneling.

S2: SITE-RESOLVED DETECTION

2kl

Nodd,L

Neven,L

Nodd,R

Neven,R

a b c

FIG. S2. (a) Schematic drawing of a four-site square plaque-
tte labeled by the corresponding occupation numbers. (b)
Brillouin zones of the 2D lattice (kl = 2π/λl). (c) Typical
momentum distribution obtained after the band-mapping se-
quence, measured after 10 ms of time-of-flight.

After the projection into double wells, the system con-
sists of an array of isolated 2×2 plaquettes with neg-
ligible tunneling between neighboring double wells and
between the legs of the ladders. The occupation num-
bers in the four sites of each plaquette on the even/odd
and left/right (L/R) locations are denoted by Nodd;L,
Nodd;R, Neven;L, and Neven;R. These occupation num-
bers are extracted by transferring the populations to dif-
ferent Bloch bands, similar to the technique described
in refs. [S1, S2]. A subsequent band mapping allows us
to determine the populations in different Bloch bands
by counting the corresponding atom numbers. The col-
ors in Fig. S2 illustrate the connection between the long-
lattice Brillouin zones and the corresponding lattice sites.
The evolutions Nodd;L(t) and Neven;L(t) (Nodd;R(t) and
Neven;R(t)) are used to evaluate the amplitude of the cur-
rents in the left (right) leg of the ladders and nodd;µ(t) =
Nodd;µ(t)/(Neven;µ(t) +Nodd;µ(t)) with µ = L,R.
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FIG. S3. Measured oscillation amplitudes Iµ on the left (dark
blue) and right (light blue) legs of the ladder. Each data point
is an average over three individual measurements. The error
bars denote the standard deviation of the individual measure-
ments. The solid line is the fit of the theoretically calculated
chiral current amplitude (divided by two) to our data from
Fig. 4 of the main text. The experimental amplitudes are
∼ 14% of the predicted ones for a single non-interacting lad-
der. Some possible reasons for this reduction in amplitude
are the inhomogeneities in the system, imperfect projection
of the ladder ground state into the double wells, interactions
in the system, heating produced by the running-wave beams,
and also the presence of tubes in the transverse (z) direction
where there is a very weak lattice.

S3: TIME EVOLUTION IN DOUBLE WELLS

After preparing the ground state of the flux ladder, we
projected the state into isolated double well potentials
along the y direction, as described in section S1. Once
in the double wells, the atoms oscillate between even and
odd sites. The oscillation dynamics on each double well
depends on the initially projected state. As described in
the main text, the average even-odd oscillation has the
form

neven;µ(t)−nodd;µ(t) =

[neven;µ(0)− nodd;µ(0)]cos(2JDt/~)

− jµ
J/~

sin(2JDt/~).

According to the symmetry of the wave function
along the ladder, the initial averaged population im-
balance should be zero, and the oscillation amplitude
should be proportional to the normalized current jµ
(Fig. S3). However, due to experimental imperfections
in the system, there might be a small initial population
imbalance which leads to an oscillation component that
is in phase in the left and right leg (first oscillating term
in the expression above). Therefore, when the current
amplitude is small, i.e., when K/J � 1, both terms
compete and this affects the total oscillation amplitude
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Atom density (a.u.)0 1

θ = 0

θ = π/2

θ = π

Individual ground statesa

b

〉|-qK/J

〉|qK/J

Superposition eiθ+
〉|qK/J( 〉|-qK/J )/√2

FIG. S4. Currents and densities for different ground states.
(a) Current strength and population density for the individ-
ual ground states | ± qK/J〉 for K/J = 0.4. For smaller and
smaller values of K/J the population and currents get in-
creasingly concentrated on a single leg of the ladder, right
leg for |qK/J〉 and left leg for | − qK/J〉. (b) Current
strengths and wave function density for the superposition
state (|qK/J〉+eiθ|−qK/J〉)/

√
2 calculated for different values

of θ. The only effect of θ is to shift the wavefunction without
affecting the average current and density values. As in Fig. 2
in the main text, we have subtracted a constant density off-
set in the plot and normalized to the maximum density for a
better illustration of the spatial density modulation.

and phase. However, if the left-right symmetry of the
wave function density is preserved, this population
imbalance is the same on both sides of the ladder, and
they cancel when calculating the chiral current jC . From
our data we can obtain an upper bond for the average
population imbalance which is less than ∼ 20% of the
maximum measured oscillation amplitude for all values
of K/J . We also estimated the amplitude of a possible
current running in the same direction on both legs of
the ladder which could explain the slightly different
amplitudes IL and IR for a given value of K/J (see
Fig. S3). From our data we conclude that if such current
was present, then its amplitude would be smaller than
20% of the maximum measured oscillation amplitude.
We note, however, that when calculating jC this term
will also cancel and will not affect our measurements.

S4: CURRENTS AND DENSITY FOR THE
DEGENERATE GROUND STATES

As shown in Fig. 1 in the main text, in the vortex
phase the ladder system exhibits two energy minima at
| ± qK/J〉 in the lowest band. Each of the two ground
states presents different features: |qK/J〉 (| − qK/J〉) has
most of the population located on the right (left) leg and
the current flows mostly on the right (left) leg, with the
same chirality in both cases (see Fig. S4a). In our exper-
iment, we observe the same population on both legs of
the ladder, which is consistent with having populated a
superposition state (|qK/J〉+ eiθ| − qK/J〉)/

√
2 (see next

section). This argument is also supported by numerical
calculations, which show that for a finite size system with
an harmonic trap, the ground state is a linear superpo-
sition of | ± qK/J〉 with the same weight on both compo-
nents. A calculation of the currents and density of the
system for different values of θ shows that the phase only
shifts the currents and density globally (see Fig. S4b).

S5: LEFT-RIGHT DISTRIBUTION
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FIG. S5. Fraction of atoms in the right leg of the ladders
for the current measurements shown in Fig. 4 in the main
text. All data points are an average over three independent
measurements, in which the atom fraction was averaged over
the entire evolution and the error bars indicate the standard
deviations. The inset shows the time evolution after the pro-
jection into the double wells for K/J = 2.2(1), corresponding
to the measurements shown in Fig. 3c in the main text. Each
point is an average over three individual measurements and
the errors are the corresponding standard deviations

The site-resolved detection technique, which is used
to determine the atom number on the different sites of
the plaquettes, allows for a simultaneous measurement
of currents as well as atom populations on the left and
right legs of the ladders. Figure S5 shows the fraction
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of atoms on the right side for the current measurements
of Fig. 4 in the main text, proving that the number of
atoms is the same on both sides after the preparation
of the final state which started with all atoms initially
in the left leg. In addition, no changes in the left-right
distribution were observed during the oscillations in the
double wells, as expected since both legs are essentially
decoupled during this time.

S6: LIFETIME OF THE CHIRAL CURRENTS
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FIG. S6. Measured chiral current amplitude for K/J = 2.1(1)
as a function of holding time before projecting into double-
wells. The data points and error bars are determined from
three individual measurements as for Fig. 4 in the main text.
The solid line is a fit of an exponential decay to the data,
which gives a lifetime of 39(7) ms.

To determine the lifetime of the chiral currents in the
ladders, a series of measurements of the current ampli-
tude was performed for different holding times after the
preparation of the final state for a ratio of K/J = 2.1(1).
Fitting an exponential decay to the data shown in Fig. S6
results in a lifetime of 39(7) ms. The two main mecha-
nisms leading to the damping of the measured oscilla-
tions are most likely heating caused by the running-wave
beams as well as decoherence between the individual lad-
ders as the measured amplitude is averaged over the en-
tire system.

S7: NUMERICAL SIMULATIONS

A numerical simulation was used to estimate the effects
of the trap as well as the occupation of excited states on
the current amplitude. In order to do so, the ground state
of a homogeneous ladder with a length of 100 sites was
calculated for different values of K/J . Following the ex-
perimental sequence, this state was then projected onto
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FIG. S7. Vortex density as a function of the applied magnetic
flux for various values of K/J showing the transition from the
vortex-free Meissner phase to a vortex phase with finite vortex
density for φ > φC .

the two lowest eigenstates of the individual double wells
along the ladder. From the time evolution of the state
in a double well, one can extract the expected oscillation
amplitude by summing over the entire ladder, where the
contribution from each double well is weighted according
to its occupation probability in the ground state of the
ladder. A weak harmonic trapping potential along the
ladder with a trapping frequency of ≈ 25 Hz present in
the experiment causes a slight smoothing of the transi-
tion, but the general shape of the curve is not affected.
A similar effect can be seen when taking into account a
small occupation of excited states.

We also evaluated the density of vortices in the sys-
tem as a function of the applied magnetic flux. For this,
the density distribution of the ground state wavefunc-
tion was calculated in a ladder with a length of 300 sites
by numerical diagonalization, where we used more sites
as above to minimize finite-size effects (this same system
was also used to calculate the currents and densities plot-
ted in Fig. 2b in the main text). Changes of the atomic
density are directly linked to the vortices in the current
and can therefore be used to determine their size. The
results for different values of K/J are shown in Fig. S7,
where one can see the transition from the Meissner phase,
without any vortices, to the vortex phase when the flux is
increased beyond the critical value. For φ� φC the vor-
tex density approaches the value for a decoupled ladder
with K = 0, where the magnetic field penetrates the sys-
tem completely and the vortex density increases linearly
with the applied flux.

S8: EXPERIMENTAL SETUP, LASER ASSISTED
TUNNELING

Along the x direction, we use a superlattice that cre-
ates an array of isolated double well potentials with a
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FIG. S8. Complex spatially dependent hopping terms realized
in our experiment. Along the horizontal direction there is a
bare tunneling Jx and an energy offset ∆ that inhibits left-
right tunneling inside each ladder. The pair of running-wave
beams with wavevectors |k1| ≈ |k2| = 2π/λK and frequency
difference ω = ω1 − ω2 = ∆/~ restores the tunneling and
induces a complex hopping term K, which has a spatially
dependent phase as shown on the rungs of the ladders.

coupling Jx and an energy tilt ∆. In the limit Jx/∆� 1,
left-right tunneling is inhibited, and as in our previous
experiments we create an artificial magnetic field by us-
ing a pair of running-wave beams with frequency differ-
ence ~(ω2−ω1) = ∆ that modulate the on-site potential
and restore the left-right hopping. The left-right effective
coupling has an amplitude K = JxJ1

(
V 0
K/(
√

2∆)
)
'

JxV
0
K/(2

√
2∆) and a spatially dependent phase distribu-

tion as shown in Fig. S8. The tunneling along y is deter-
mined through J = JyJ0

(
V 0
K/(
√

2∆)
)
. The total phase

accumulated by a particle when completing a closed tra-
jectory on a single plaquette is φ = π/2, and corresponds
to the magnetic flux per unit cell. By changing the wave-
length of the running-wave beams or the angle between
them, one can in principle engineer any flux. For the
measurements shown in Fig. 3 in the main text, we re-
verse the flux to φ = −π/2 by changing the frequency
difference to ~(ω2 − ω1) = −∆.

S9: ANALYSIS OF MOMENTUM
DISTRIBUTION IN TIME-OF-FLIGHT IMAGES

Figure S9b shows the theoretical momentum distribu-
tion for three different values of K/J , where the lad-
ders are oriented along the vertical (y) direction. Along
the horizontal (x) direction no coherence between the
different ladders was assumed. In the Meissner phase
there are two momentum peaks in the first Brillouin zone
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FIG. S9. Momentum distribution. (a) Time-of-flight im-
ages of the momentum distribution and (b) theoretically cal-
culated momentum distributions for K/J = 0.00(1) (left),
1.28(5) (center) and 2.1(1) (right). Along the x direction a
simple Gaussian was assumed. The densities are normalized
to the maximum value for each K/J .

at ky = ±π/4dy. At the bifurcation point the peaks
split into four peaks that continue separating, and for
K/J � (K/J)c the two outermost peaks vanish and the
two inner ones converge to a single peak at ky = 0 [S3].
Fig. S9a shows typical experimental images after 10 ms of
time-of-flight for the same values of K/J , as used for the
measurements shown in Fig. 5 of the main text. There,
one can see that in the Meissner phase, we can distin-
guish the two peaks very well. However, due to the finite
temperature of the system and the band flatness near
the critical point, we cannot distinguish the four peaks
in the vortex phase near K/J = (K/J)c, and we can
only resolve the two inner ones. For K/J � (K/J)c the
four peaks are separated enough to be in principle dis-
tinguishable, but since the two outermost peaks vanish
we still only observe two inner peaks. In our experiment,
we observe also interference effects along the horizontal
direction which are due to a residual coherence between
individual ladders.

For the analysis of the peak positions for Fig. 5 in
the main text, we first selected two boxes around the
two peaks at the center (shown in Fig. S9a) and inte-
grated the signal along the horizontal direction for each
box independently. Then we fitted a Gaussian func-
tion to each of the two integrated signals and extracted
the two peak positions ky1 and ky2 and the widths σ1

and σ2. We discarded all the images with a width
σ =

√
σ2

1 + σ2
2 > 0.4ky, for which the peak identification

was not reliable anymore, and then calculated the peak
separations ky1 − ky2. Figure S10 shows the averaged
values of the fitted widths σ for the data shown in Fig. 5
in the main text. We observed that it increases with
K/J and has a maximum value near the critical point.
We attribute this to the presence of the outer peaks at
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FIG. S10. Width of the momentum peaks after time-of-flight
expansion for the measurements from Fig 5 in the main text.
Each point is an average of 5-40 images, and the error bars
are the corresponding standard deviations.

ky = ± qK/J ± π/(4dy) that have a non-neglible weight
near the critical point. Additionally, the energy band be-
comes very flat near (K/J)c, which combined with the
finite temperature of the system increases the width of

the peaks.
The light green shaded area shown in Fig. 5 in the

main text indicates the theoretically calculated peak sep-
aration at finite temperature for the temperature range
from 10nK to 30nK. For the calculation, we considered
a ladder system with a density of 25 particles per single
site of the ladder. A further effect that is also considered
in this estimation was the one produced by the Wannier
envelope in the time-of-flight expansion. Its effect is to
bring the peaks closer, and it becomes more important
when the temperature is high, as the width of the peaks
gets larger in that case.
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