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Quantum phases of matter are characterized by the underlying correlations of the many-body
system. Although this is typically captured by a local order parameter, it has been shown that
a broad class of many-body systems possesses a hidden non-local order. In the case of bosonic
Mott insulators, the ground state properties are governed by quantum fluctuations in the form of
correlated particle-hole pairs that lead to the emergence of a non-local string order in one dimension.
Using high-resolution imaging of low-dimensional quantum gases in an optical lattice, we directly
detect these pairs with single-site and single-particle sensitivity and observe string order in the
one-dimensional case.

The realization of strongly correlated quantum many-
body systems using ultracold atoms has enabled the di-
rect observation and control of fundamental quantum ef-
fects [1–3]. A prominent example is the transition from
a superfluid (SF) to a Mott insulator (MI), occurring
when interactions between bosonic particles on a lattice
dominate over their kinetic energy [4–8]. At zero tem-
perature, and in the limit where the ratio of kinetic en-
ergy over interaction energy vanishes, particle fluctua-
tions are completely suppressed and the lattice sites are
occupied by an integer number of particles. However, at
a finite tunnel coupling, but still in the Mott insulating
regime, quantum fluctuations create correlated particle-
hole pairs on top of this fixed-density background, which
can be understood as virtual excitations. These particle-
hole pairs fundamentally determine the properties of the
Mott insulator such as its residual phase coherence [9]
and lie at the heart of superexchange-mediated spin in-
teractions that form the basis of quantum magnetism in
multi-component quantum gas mixtures [10–12].

In a one-dimensional system, the appearance of cor-
related particle-hole pairs at the transition point from
a superfluid to a Mott insulator is intimately connected
to the emergence of a hidden string-order parameter OP
[13, 14]:

O2
P = lim

l→∞
O2
P (l) = lim

l→∞

〈 ∏
k≤j≤k+l

eiπδn̂j

〉
. (1)

Here δn̂j = n̂j − n̄ denotes the deviation in occupation
of the jth lattice site from the average background den-
sity, and k is an arbitrary position along the chain. In
the simplest case of a Mott insulator with unity filling
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(n̄ = 1), relevant to our experiments, each factor in the
product of operators in Eq. 1 yields −1 instead of +1,
when a single-particle fluctuation from the unit back-
ground density is encountered. In the superfluid, particle
and hole fluctuations occur independently and are uncor-
related, such that OP = 0. However, in the Mott insu-
lating phase, density fluctuations always occur as cor-
related particle-hole pairs, resulting in OP 6= 0. For a
homogeneous system, OP is expected to follow a scal-
ing of Berezinskii-Kosterlitz-Thouless (BKT) type [15].
Non-local correlation functions, like the string-order pa-
rameter defined above, have been introduced in the con-
text of low-dimensional quantum systems. They classify
many-body quantum phases that are not amenable to
a description through a local order parameter, typically
used in the Landau paradigm of phase transitions. Exam-
ples include spin-1 chains [16] and spin-1/2 ladders [17],
fermionic Mott and band insulators [18] and Haldane in-
sulators in one-dimensional Bose gases [13, 14]. Recently,
the intimate connection of string order and local symme-
tries has been uncovered [19] and wide-ranging classifi-
cation schemes for quantum phases using such symmetry
principles have been introduced [20, 21]. Here we show
for the first time that correlated particle-hole pairs and
string order can be directly detected using single-atom-
resolved images of strongly correlated ultracold quantum
gases [22, 23].

We prepared a two-dimensional degenerate gas of ul-
tracold 87Rb atoms, before shining in a two-dimensional
square optical lattice (lattice spacing alat = 532 nm) with
variable lattice depths in x and y directions [23] (see Ap-
pendix). A microscope objective with a resolution com-
parable to the lattice spacing was used for fluorescence
detection of individual atoms. Because inelastic light-
assisted collisions during the imaging lead to a rapid loss
of atom pairs, our scheme detects the parity of the atom
number. We used an algorithm to deconvolve the im-
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FIG. 1. Quantum-correlated particle-hole pairs
in one-dimensional Mott insulators. (A) In a two-
dimensional array of atoms (blue circles), decoupled one-
dimensional systems were created by suppressing tunneling
along the y direction. Quantum fluctuations then only induce
correlated particle-hole excitations (yellow ellipses) along the
x direction of the one-dimensional Mott insulators. (B) Such
correlated fluctuations in the occupation n̂j are detected in
the experiment as correlated fluctuations in the parity ŝj . The
light red bar in (A) marks the one-dimensional chain chosen
in (B) for further explanations.

ages, yielding single-site-resolved information of the on-
site parity. Typically, our samples contained 150 − 200
atoms in order to avoid MIs of occupation numbers n̄ > 1.

To detect particle-hole pairs, we evaluated two-site
parity correlation functions [24]

C(d) = 〈ŝkŝk+d〉 − 〈ŝk〉〈ŝk+d〉, (2)

where ŝk = eiπδn̂k is the parity operator at site k and
d is the distance between the lattice sites. For the case
of n̄ = 1, ŝk yields +1(−1) for an odd(even) occupation
number nk. If a particle-hole pair exists on sites k and
k+ d, the same parity s(nk) = s(nk+d) = −1 is detected
(Fig. 1). The existence of correlated particle-hole pairs
therefore leads to an increase of 〈ŝkŝk+d〉 above the fac-
torized form 〈ŝk〉〈ŝk+d〉, which results from uncorrelated
fluctuations, e.g., due to thermal excitations. We ob-
tained C(d) from our deconvolved images by an average
over many experimental realizations and by an additional
average over k in a central region of interest.

We first analyzed two-site parity correlations in one-
dimensional systems (Fig. 2A and B). To create iso-
lated one-dimensional tubes, we kept the lattice axis
along y at a constant depth of Vy = 17(1)Er, where

Er = h2/(8ma2lat) denotes the recoil energy and m is the
atomic mass of 87Rb. We recorded the nearest-neighbor
correlations C(d = 1) for different values of J/U along
the direction of the one-dimensional tubes (red circles in
Fig. 2B), where J and U are the tunneling matrix element
and the on-site interaction energy in the Bose-Hubbard
model, respectively (see Appendix). For small J/U , the
nearest-neighbor correlations vanish, since only uncorre-
lated thermal excitations exist deep in the MI regime.
As particle-hole pairs emerge with increasing J/U , we
observe an increase of nearest-neighbor correlations un-
til a peak value is reached, well before the critical value
(J/U)1dc ≈ 0.3 [25, 26] for the one-dimensional SF-MI
transition. The observed signal is a genuine quantum
effect because thermally induced particle-hole pairs ex-
tend over arbitrary distances and are therefore uncorre-
lated. Their presence leads to a reduction of the corre-
lation signal. We found no correlations when performing
the same analysis perpendicular to the one-dimensional
tubes (blue circles in Fig. 2B), showing that the coupling
between the tubes was negligible.

Our data show very good agreement with ab-initio
finite-temperature Matrix Product State (MPS) calcu-
lations [27, 28] at temperature T = 0.09U/kB (Fig. 2A,
solid line) that also take into account our harmonic trap-
ping potential with frequency ω/(2π) = 60(1)Hz. Com-
pared to a homogeneous system at T = 0 (dashed-line),
the experimental signal is reduced, especially around the
maximum. This reduction can be attributed in equal
parts to the finite temperature of our system and the av-
eraging over different local chemical potentials. The lat-
ter is especially severe in the one-dimensional case owing
to the narrow width of the Mott lobe for n̄ = 1 close
to the critical point [15]. Interestingly, the growth of
particle-hole correlations ∝ J2/U2 expected from first-
order perturbation theory (see Appendix) is limited to
very small values J/U < 0.05, before significant devia-
tions in the experiment and the numerical simulations
are observed.

As the dimensionality of the system plays an im-
portant role in its correlation properties, we also mea-
sured the two-site parity correlations across the two-
dimensional SF-MI transition by simultaneously varying
J/U along both lattice axes (Fig. 2C). In contrast to the
one-dimensional case, we now clearly observe the same
nearest-neighbor correlations within our error bars along
both axes. The maximum correlations are significantly
smaller than in one dimension, and the peak value is
now reached around the critical value (J/U)2dc ≈ 0.06
[29]. We compared our data with Quantum Monte
Carlo (QMC) simulations for a homogeneous system at
T = 0.1U/kB (solid line in Fig. 2C) and found good
quantitative agreement. Here, the broader shape of the
Mott lobe leads to a weaker averaging effect over dif-
ferent local chemical potentials. The increased strength
of the correlations and the larger shift of the maximum
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FIG. 2. Non-local parity correlations. (A) Top row:
Typical experimental fluorescence images for J/U = 0.06
(A1), J/U = 0.11 (A2) and J/U = 0.3 (A3) for the one-
dimensional geometry. Bottom row: Reconstructed on-site
parity. Particle-hole pairs are emphasized by a yellow shad-
ing in (A1). For increased J/U the pairs start to proliferate
and an identification in a single experimental image becomes
impossible (A2, A3) (B) One-dimensional nearest-neighbor
correlations C(d = 1) as a function of J/U along the x
(red circles) and y directions (blue circles). The curves are
first-order perturbation theory (dashed-dotted line), Density-
Matrix Renormalization Group (DMRG) calculations for a
homogeneous system at T = 0 (dashed line) and finite-
temperature MPS calculations including harmonic confine-
ment at T = 0.09U/kB (solid line). (C) Parity correlations
in two dimensions. Symbols have the same meaning as in (B).
The curves are first-order perturbation theory (dashed-dotted
line) and a QMC calculation for a homogeneous system at
T = 0.01U/kB (dashed line) and T = 0.1U/kB (solid line).
Each data point is an average over the central 9 × 7 lattice
sites from 50 − 100 pictures. The error bars denote the 1σ
statistical uncertainty. The light blue shading highlights the
SF phase.

of the correlations relative to the critical point in the
one-dimensional case directly reflect the more prominent
role of quantum fluctuations in lower dimensions. This
can also be seen from the on-site fluctuations C(d = 0)
at the critical point which are significantly increased in
the one-dimensional case (see Appendix). In both the
one-dimensional and the two-dimensional systems, two-
site correlations are expected to decay strongly with dis-
tance. Our data for the next-nearest-neighbor correla-
tions C(d = 2) is consistent with this predicted behavior
(see Appendix).

In addition to two-site correlations, we evaluated

string-type correlatorsO2
P (l) =

〈∏k+l
j=k ŝj

〉
(see Eq. 1 and

Fig. 1B) in our one-dimensional systems, where the prod-
uct is calculated over a chain of length l + 1. In the
simplest case of a zero-temperature MI at J/U = 0, no
fluctuations exist and therefore O2

P (l) = 1. As J/U in-
creases, fluctuations in the form of particle-hole pairs ap-
pear. Whenever a certain number of particle-hole pairs
lies completely within the region covered by the string
correlator, the respective minus signs cancel pairwise.
However, there is also the possibility that a particle-hole
pair is cut by one end of the string correlator, for ex-
ample when a particle exists at position < k and the
corresponding hole has a position ≥ k, resulting in an
unpaired minus sign. As a consequence, O2

P (l) decreases
with increasing J/U since the probability to cut particle-
hole pairs becomes larger. Finally, at the transition to
the SF phase, the pairs begin to deconfine and overlap,
resulting in a completely random product of signs and
O2
P = 0.
To support this intuitive argument, we calculated
O2
P (l) numerically using DMRG in a homogeneous sys-

tem at T = 0. We show O2
P (l) in Fig. 3 for selected dis-

tances l together with the extrapolated values of O2
P =

liml→∞O2
P (l) (inset to Fig 3), which we computed using

finite-size scaling (see Appendix). We performed a fit to
the extrapolated values close to the critical point with an
exponential scaling

O2
P ∝ exp

(
−A

[
(J/U)1dc − (J/U)

]−1/2)
(3)

characteristic for a transition of BKT type (Fig. 3) that
one expects in one dimension [14, 15]. From the fit we
find (J/U)1dc = 0.295 − 0.320, which is compatible with
previously computed values [25, 26] (see Appendix). The
fact that OP = 0 in the SF and OP > 0 in the MI as well
as the agreement with the expected scaling show that OP
serves as an order parameter for the MI phase in one di-
mension [14]. Additionally, the simulations demonstrate
that OP (l) is well suited to characterize the SF-MI tran-
sition even for finite lengths l.

Our experimentally obtained values of O2
P (l) for string

length l ≤ 8 (Fig. 4A) agree qualitatively well with in-
trap MPS calculations at T = 0.09U/kB (Fig. 4B). We
observe a stronger decay of O2

P (l) with l compared to
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FIG. 3. Numerical calculation of the string-order
parameter. O2

P (l) as a function of J/U calculated with
DMRG for a homogeneous chain (n̄ = 1, T = 0) of to-
tal length 216. Lines show O2

P (l) for selected lengths l
(black to red colors). Inset: Extrapolated value O2

P =
liml→∞O2

P (l) together with a fit (black line) of the form

O2
P ∝ exp

(
−A

[
(J/U)1dc − (J/U)

]−1/2 )
, characteristic for a

transition of BKT type (see Appendix).

the T = 0 case, because at finite temperature thermal
fluctuations lead to minus signs at random positions of
the chain and reduce the average value of O2

P (l). Despite
that, we still see a strong growth of O2

P (l), once the tran-
sition from the SF to the MI is crossed, with a similar
behavior as in Fig. 3.

For a completely uncorrelated state, O2
P (l) factorizes

to
∏
k≤j≤k+l〈ŝj〉, and in a homogeneous system we would

expect a decay with string length of the form 〈ŝj〉l+1,
which can be slow provided the mean on-site parity 〈ŝj〉
is close to one. To rule out that our experimental data
shows only such a trivial behavior, we define a new quan-
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P (l) as defined in Eq. 4 for lengths 1 ≤ l ≤ 8 (D)
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tity Õ2
P (l) that more naturally reflects the underlying

correlations:

Õ2
P (l) = O2

P (l)−
∏

k≤j≤k+l

〈ŝj〉. (4)

First, we notice that Õ2
P (l) for length l = 1 is equal

to the two-site correlation function C(d = 1). Second,
Õ2
P (l) ≈ O2

P (l) for long distances l since
∏
k≤j≤k+l〈ŝj〉

eventually decays to zero (except for the singular case
J/U = 0 and T = 0). The correlation function Õ2

P (l) can
therefore be understood as an extension of the two-site
correlation function, that essentially captures the physics
behind string order in one-dimensional MIs.

Experimental and theoretical values for Õ2
P (l) are

shown in Figs. 4C and D. For small J/U , Õ2
P (l) is signifi-

cantly reduced compared to O2
P (l) since few particle-hole

pairs exist and O2
P (l) is close to its factorized form for

short lengths l. In the case of vanishing J/U , we even
expect Õ2

P (l) = 0 since all sites are completely decou-
pled. For intermediate J/U ≈ 0.1, Õ2

P (l) grows rapidly
with length l showing a strong deviation from the fac-
torized form. Finally, in the SF regime, Õ2

P (l) becomes
indiscernible from zero for large lengths in contrast to the
nearest-neighbor two-site correlation function. Further-
more, our data shows a genuine three-site correlation,
which we revealed after subtracting all two site correla-
tors in addition to local terms (see Appendix).

We have shown direct measurements of non-local
parity-parity correlation functions on the single-lattice-
site and single-atom level and we demonstrated that a
one-dimensional Mott insulator is characterized by non-
local string order. A natural extension of our work would
be to reveal, e.g., topological quantum phases such as
the Haldane insulator of bosonic atoms [13, 14]. A Hal-
dane insulator exhibits a hidden antiferromagnetic order-
ing and is expected to occur in one-dimensional quantum
gases in the presence of longer ranged interactions, which
could be realized in our experiment using Rydberg atoms
[30].
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rberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D.
Lukin, and I. Bloch, Science 319, 295 (2008).

[13] E. G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev.
Lett. 97, 260401 (2006).

[14] E. Berg, E. Dalla Torre, T. Giamarchi, and E. Altman,
Phys. Rev. B 77, 245119 (2008).

[15] T. Kühner and H. Monien, Phys. Rev. B 58, R14741
(1998).

[16] M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709
(1989).
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APPENDIX

Preparation of a two-dimensional degenerate
quantum gas

Most of the experimental details are the same as in
Refs. [23] and [31], but several improvements have been
implemented in order to increase the stability of the sys-
tem. We started by transporting a thermal cloud of
87Rb atoms in the hyperfine state |F = 1,mF = −1〉 with
a single-beam optical dipole trap (wavelength 1064 nm,
beam waist w0 = 40µm) in front of the high-resolution
imaging system. Afterwards, the atoms were loaded
into a crossed dipole trap, which consists of the hori-
zontal lattice beams (wavelength 1064 nm, beam waist
w0 = 70µm) whose retro-reflections were blocked with
mechanical shutters. We evaporatively cooled the atoms
in this trap by changing its depth from 20µK to 10µK
within 1 s, before transferring the atoms into a ver-
tical standing wave (wavelength 1064 nm, beam waist
w0 = 70µm) of which we typically populate 40 antin-
odes.

To extract a single two-dimensional system, we used
a position-dependent microwave transfer in a magnetic
field gradient of ∂B/∂z = 45 G/cm, 1.9 times larger com-
pared to Ref. [23]. After a transfer of all atoms from
|F = 1,mF = −1〉 to |F = 2,mF = −2〉 with a broad mi-
crowave sweep, the atoms from one antinode of the stand-
ing wave were transferred back to |F = 1,mF = −1〉 us-
ing a HS1-pulse [31] of 5 ms duration and a sweep width
of 3.5 kHz. The remaining atoms in state F = 2 were
removed from the trap by a laser pulse resonant with the
F = 2→ F ′ = 3 transition.

For the final evaporation, we added a focussed laser
beam of wavelength 850 nm shone in through the imaging
system, with a beam diameter of ∼20µm at the position
of the atoms. The intensity of the beam is adjusted in
such a way that a small number of atoms is lost due to
three-body recombination, resulting in a stabilization of
the atom number. In this configuration, we evaporatively
cooled the atoms by tilting the trap horizontally with a
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magnetic field gradient of 11.25 G/cm and by reducing
the power of the 850 nm beam. We adjusted the atom
number by changing the end point of this evaporation
and achieved an atom number stability better than 20 %.

Experimental sequence and lattice calibration

For the measurements on the one-dimensional systems,
we changed the potential depth of lattice axis y to a
fixed final value Vy = 17(1)Er using an s-shaped ramp of
120 ms duration after having created a degenerate quan-
tum gas in a single antinode of the vertical lattice beam.
At the same time and using the same ramp shape, we
ramped the lattice depth along x to variable final depths
Vx to attain different values of J/U . The vertical lattice
depth was kept at Vz = 20(1)Er during these ramps. For
the measurement of two-site correlations in two dimen-
sions, the depths of lattice axis x and y were changed
simultaneously to the same final value.

We obtained J and U from the lattice depths by a nu-
merical band-structure calculation. In order to calibrate
the lattice depths, we modulated the lattice intensity and
measured parametric excitations of the atoms from the
zeroth to the second Bloch band. As a result, we ob-
served a resonance in the in-situ width of the atom cloud
as a function of the modulation frequency. Our method
allowed us to measure the transition frequency with an
uncertainty of 2%. Besides this, we saw drifts of the
lattice depth during our measurements of typically 5%.
Both errors together lead to an experimental uncertainty
of ∼ 10% for J/U .

For the detection, we froze the density distribution
of the atoms by increasing all axes simultaneously to
Vx = 72Er, Vy = 78Er, and Vz = 83Er within 0.2 ms.
We checked that our ramps were fast enough to avoid any
local number-squeezing dynamics [22]. Finally, the indi-
vidual atoms on the lattice were detected using a high-
resolution objective with numerical aperture NA = 0.68.
For this, we further increased the lattice depths along
all three directions to ∼ 3000Er within 2 ms and illumi-
nated the atoms with an optical molasses that induces
fluorescence and simultaneously laser cools the atoms
[23].

Bose-Hubbard model and perturbation theory

For the temperatures and lattice parameters relevant
to the presented measurements, the physics of a gas of
interacting bosons in a lattice is captured by the Bose-
Hubbard model [5]:

Ĥ = −J
∑
<i,j>

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i (5)

Here, âi and â†i correspond to the bosonic annihilation

and creation operators at site i, n̂i = â†i âi is the on-site
number operator, and εi denotes the energy offset due to
an external harmonic confinement.

The emergence of quantum-correlated particle-hole
pairs in a Mott insulator with finite tunnelling can be
readily understood within first-order perturbation the-
ory. For a Mott insulator in the atomic limit, where the
ratio of the tunneling energy J to the on-site interac-
tion energy U vanishes, the many-body state is simply
given by |Ψ〉J/U=0 =

∏
i |ni = 1〉 for the case of unity

filling and T = 0. For finite but still small tunnelling,
J/U � 1, the ground state can be approximated by con-
sidering the tunnelling term as a perturbation. To first
order, one obtains:

|Ψ〉J/U�1 ∝ |Ψ〉J/U=0 +
J

U

∑
〈i,j〉

â†i âj |Ψ〉J/U=0, (6)

which yields a probability to find a particle-hole pair
on neighboring sites proportional to (J/U)2. Within
the approximation of Eq. 6 the nearest-neighbor parity-
correlation function is given by C(d = 1) = 16(J/U)2 +
O[(J/U)4]. Closer to the transition to the superfluid and
for large system sizes, higher-order perturbation terms
become more important and essentially lead to a rapid
increase of bound particle-hole pairs and an extension of
their size, eventually resulting in deconfinement of the
pairs at the transition point.

On-site variance and next-nearest-neighbor
correlations

In addition to the nearest-neighbor parity correlation
C(d = 1), we also evaluated the correlations C(d) (Eq. 2)
for distances d = 0 and d = 2 in our one-dimensional
systems (Fig. 5-A1). For d = 0, this amounts to measur-
ing the on-site variance C(d = 0) = σ(ŝk)2. Deep in the
Mott-insulating regime, the on-site number distribution
is strongly squeezed and the variance is close to zero,
whereas in the SF regime, it saturates at σ(ŝk)2 = 1,
as expected for the case of a parity detection1. C(d)
drops rapidly as a function of the distance d and the
numerical calculations predict only a small maximum of
0.01 in the next-nearest-neighbor correlation C(d = 2)
at J/U ∼ 0.17, which is however indiscernible from the
statistical noise in our measurements (Fig. 5-A2).

We also show the parity correlation C(d) in the two-
dimensional system for different distances (Fig. 5-B1).

1 In Ref. [23] we used a different definition of the parity operator,
p̂k = (ŝk +1)/2, which yielded 1(0) for an odd (even) occupation
number. In that case, the maximum variance was σ(p̂k)2 =
σ(ŝk)2/4 = 0.25.
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FIG. 5. On-site variance and next-nearest-neighbor
correlations. (A1) Parity correlations C(d) for different dis-
tances d = 0, 1, 2 (green, red and gray circles, respectively)
for the one-dimensional systems. The solid lines are finite-
temperature MPS calculations including harmonic confine-
ment at T = 0.09U/kB . (A2) Enlarged view of C(d) for
d = 1, 2 for the same datasets as (A1). (B1) Same quantities
as in (A1), but for the two-dimensional case whereas the data
is the mean of C(d) for both possible directions. (B2) En-
larged view of C(d) for d = 1, 2 (red, gray) and additionally
the two-site correlations for the next-nearest-neighbor along
the diagonal (blue). The solid lines are a QMC calculation
for a homogeneous system at T = 0.1U/kB . The statisti-
cal errorbars in (A1) and (B1) are smaller than the dot size.
We attribute the systematic shift of C(d = 0) in (B) to the
inhomogeneous trapping potential.

We found that, similar to the one-dimensional systems,
next-nearest-neighbor correlations are not visible above
the statistical noise, whereas the QMC simulations show
a small maximum around J/U ∼ 0.065 (Fig. 5-B2). How-
ever, a striking difference is that the on-site fluctuations
around the critical point are significantly smaller than in
one dimension.

String order and multi-site correlations

In the following paragraph, we show that our data for
the string-type correlators (Fig. 4) cannot be explained
with pure two-site correlations. Additionally, we address
the connection between string order and multi-site cor-
relations.

To illustrate this, let us consider the simplest case of
a string-type correlator including three sites 〈ŝ1ŝ2ŝ3〉,
where ŝ1,ŝ2 and ŝ3 refer to the parity of three neigh-
boring sites on a one-dimensional chain. If one of the
sites is not correlated with the others, we can calculate
〈ŝ1ŝ2ŝ3〉 from two-site and on-site terms. For instance,
if site 3 is not correlated with sites 1 and 2, we have
〈ŝ1ŝ2ŝ3〉 = 〈ŝ1ŝ2〉〈ŝ3〉. This fact can be generally ex-
pressed using a three-site cumulant 〈ŝ1ŝ2ŝ3〉c, defined as

[32]:

〈ŝ1ŝ2ŝ3〉c = 〈ŝ1ŝ2ŝ3〉 − 〈ŝ1〉〈ŝ2〉〈ŝ3〉
−C1,2〈ŝ3〉 − C2,3〈ŝ1〉 − C1,3〈ŝ2〉 (7)

with two-site correlation functions Ci,j = 〈ŝiŝj〉 −
〈ŝi〉〈ŝj〉. The cumulant is a measure of the correla-
tions between all three sites as it vanishes if one of
the sites is not correlated with the others. Addition-
ally, if the cumulant vanishes, Eq. 7 can be written as
〈ŝ1ŝ2ŝ3〉 = 〈ŝ1〉〈ŝ2〉〈ŝ3〉 + C1,2〈ŝ3〉 + C2,3〈ŝ1〉 + C1,3〈ŝ2〉
and we therefore have a situation where 〈ŝ1ŝ2ŝ3〉 does
not contain more information than two-site and on-site
terms.

Our experimental values for the three-site cumulant
〈ŝ1ŝ2ŝ3〉c (Fig.6) show a significant signal for J/U < 0.20,
in quantitative agreement with a MPS calculation at
T = 0.09U/kB including the harmonic confinement.
Note that this is a substantial effect, as the peak value
constitutes about 40% of the peak value of Õ2

P (l = 2),
where only on-site terms have been subtracted. We draw
two conclusions from this: First, our data shows a three-
site correlation beyond simple two-site correlations. Sec-
ond, our data for string-type expectation values cannot
be expressed in terms of two-site correlations alone. Let
us explain the latter statement in more detail. It turns
out that if a three-site expectation value cannot be ex-
pressed via two-site terms, then expectation values in-
cluding more than three sites cannot be expressed in this
way either. The four-site term, e.g., can be written as:

〈ŝ1ŝ2ŝ3ŝ4〉 = 〈ŝ1ŝ2ŝ3ŝ4〉c + 〈ŝ1ŝ2ŝ3〉c〈ŝ4〉+ 〈ŝ2ŝ3ŝ4〉c〈ŝ1〉
+〈ŝ1ŝ2ŝ4〉c〈ŝ3〉+ 〈ŝ1ŝ3ŝ4〉c〈ŝ2〉+ C(2) (8)

where C(2) contains only terms including two-site and on-
site terms. Even if there were no correlations between
four sites 〈ŝ1ŝ2ŝ3ŝ4〉c = 0, we still had to include the
non-vanishing three-site cumulants. Therefore 〈ŝ1ŝ2ŝ3ŝ4〉
cannot be expressed via two-site and on-site terms. The
argument can easily be extended to longer strings and
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FIG. 6. Three-site correlator. Our experimental values
for three site cumulant 〈ŝ1ŝ2ŝ3〉c (green circles) show the ex-
istence of three-site correlations in our system. The curves
are DMRG calculations for a homogeneous system at T = 0
(dashed line) and finite-temperature MPS calculations includ-
ing harmonic confinement at T = 0.09U/kB (solid line).
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we conclude that our signal for string-type correlators
including more than two-sites cannot be explained with
pure two-site correlations.

In general, every string-type correlator can be ex-
pressed as a sum of products of cumulants similar to
Eq. 8. Since cumulants are a measure of multi-site cor-
relations, such an expansion gives us information about
the contribution of multi-site correlations to string order.
In the atomic limit where J/U ≈ 0, even two-site corre-
lations are absent, but string order is present. In this
case, the string signal is trivially dominated by on-site
terms. For small but finite J/U values, three-site corre-
lations almost vanish and the string signal is dominated
by two-site correlations and on-site terms. In the range
of J/U ≈ 0.1 − 0.2, three-site correlations build up and
also contribute to the string-order signal. Generally, it
would be interesting to know how this relation extends
when approaching the critical point. One particularly
interesting question is whether close to the critical point
multi-site correlations between an infinite number of sites
exist in the thermodynamic limit. Such an analysis is dif-
ficult theoretically and experimentally, which can already
be seen from the expression for the four-site cumulant.
This is however beyond the scope of this manuscript and
a matter of further investigation.

Instead, we continue with an interpretation of the
present three-site correlations. One explanation for such
a signal would be the existence of pairs extending over
three sites. However, another possibility can explain
such correlations: Assume we restrict ourselves to a sys-
tem of only three sites, where the parity on each site
can take the values si = ±1, i = 1, 2, 3. The sys-
tem is fully characterized by the probability p(s1, s2, s3)
of finding the parities s1, s2 and s3 on sites 1,2 and 3.
In a situation, where only nearest-neighbor pairs exist
with probability pnn, we have p(+,+,+) = 1 − 2pnn,
p(−,−,+) = p(+,−,−) = pnn and p(s1, s2, s3) = 0 for
all other cases. Interestingly, we find a non-vanishing
three-site cumulant 〈ŝ1ŝ2ŝ3〉c = 16p2nn−32p3nn in this sit-
uation. The three-site correlation remains present even
if we consider the three sites as a subsystem of a longer
chain. We conclude that a three-site correlation can arise
from next-neighbor pairs alone, simply because site 1 is
correlated with site 2 and site 2 is correlated with site 3.
However, our signal extends far beyond the region where
first order perturbation theory is valid and we can there-
fore assume that particle-hole pairs with an extension of
more than two sites as well as more complicated clusters
play a significant role in our situation.

Finally, we would like to point out an important dif-
ference between two-site correlators and string correla-
tors: Averaging over many experimental realizations of
the system, a two-site correlator at distance d sums up
correlations from pairs with exactly an extension of d but
also anti-correlations from all pairs with a different size.
In contrast, a string-type correlator of length l sums up

positive contributions from all pairs which have a size
less than l and lie within the string length. This feature
makes the string-type correlator more suitable to study
the Mott insulating phase. In particular, the phase tran-
sition in one dimension is marked by the vanishing of the
string correlators for long lengths. It is not possible to
extract the same information using only two-site correla-
tors.

Comparison of string correlator with theory

For a more detailed comparison of the experimentally
obtained string correlations with theory (Fig. 4), we show
O2
P (l) for different lengths l = 1 (Fig. 7, red circles), l = 4

(blue circles) and l = 8 (green circles) together with MPS
calculations at T = 0.09U/kB including the harmonic
confinement. We observe a good qualitative agreement
of the data with the numerical simulations. Systematic
errors of the experimental data can arise from different
mean atom numbers for different J/U , leading to differ-
ent local chemical potentials. A systematic discrepancy
between theory and experiment can result from a small
mismatch of the trapping frequencies or the calibration
of J and U . Additionally, the theoretical prediction is
calculated at fixed temperature (in units of U), but the
experimental data is approximately taken at a constant
entropy. In the latter case, we expect the temperature
to scale with U for small J/U values, but it is not clear
that this scaling remains valid for higher J/U values. The
temperature for the numerical simulation was chosen to
yield the best agreement over the full range of J/U val-
ues.
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FIG. 7. String correlator - comparison with theory.
String correlator O2

P (l) for different lengths l = 1 (red cir-
cles), l = 4 (blue circles) and l = 8 (green circles). These
curves are cuts of the three-dimensional representation of the
data, as shown in Fig. 4. Solid lines correspond to finite-
temperature MPS calculations including harmonic confine-
ment at T = 0.09U/kB with the same color coding as the
experimental data.



9

DMRG and finite-size scaling

We use a DMRG code with open boundary conditions,
which implements the conservation of the number of par-
ticles. The considered system sizes span between L = 168
and L = 256. The number of retained states m has been
chosen in order to have a truncation error smaller than
10−8[33]. This results in a relative error for the shown
data which is smaller than 10−3, as estimated via com-
parison of data for different m between 185 and 235.

The string correlator is strongly affected by the pres-
ence of boundaries and finit- size effects. We introduce
the notation O2

P (J/U, l, L) to address the expectation
value of the string correlator of length l obtained from
the numerical simulation of a system of length L. The l
sites are always taken in the center of the system to min-
imize boundary effects. For the finite size scaling in the
inset of Fig. 3, we analyzed correlators O2

P (J/U, αL,L)
for a fixed fraction α of the total length L (l = αL).
We extrapolated O2

P (J/U, α) = limL→∞O2
P (J/U, αL,L)

using a scaling of the form O2
P (J/U, αL,L) = a + b/Lη

[34–36].

α = 1/4 α = 1/3 α = 1/2

[( J
U

)1, (
J
U

)2] = [0.23, 0.37] 0.303 0.306 0.296

[( J
U

)1, (
J
U

)2] = [0.24, 0.36] 0.310 0.311 0.299

[( J
U

)1, (
J
U

)2] = [0.25, 0.35] 0.319 0.318 0.305

[( J
U

)1, (
J
U

)2] = [0.26, 0.34] 0.321 0.319 0.311

[( J
U

)1, (
J
U

)2] = [0.27, 0.33] 0.317 0.314 0.309

TABLE I. Results for (J/U)c for different relative lengths α
and fitting intervals [( J

U
)1, (

J
U

)2]. The fitting error for a given

α and [( J
U

)1, (
J
U

)2] is below 0.003.

To determine (J/U)c, we fitted the extrapolated val-

ues with O2
P ∝ exp

(
− A

[
(J/U)1dc − (J/U)

]−1/2)
. The

results for (J/U)c appear to be strongly dependent on
the fitting interval [(J/U)1, (J/U)2] and α, as shown in
Table I. This large systematic error could be reduced us-
ing more advanced finite size-scaling methods [35, 37],
which is beyond the scope of this manuscript. In the
inset of Fig. 3, we show the fit using α = 1/2 and
[(J/U)1, (J/U)2] = [0.25, 0.35] .

Finite-temperature MPS

Thermal equilibrium states for a finite chain of q-
dimensional systems can be approximated by MPS us-

ing the techniques introduced in [27, 28]. For a chain
of length L, the density matrix can be expressed as a
vector in a Hilbert space of larger dimension, q2L. We
approximate this by a MPS of length 2L, where sites
2k and 2k + 1 correspond to the k-th site in the physi-
cal system. For inverse temperature β = 1/(kBT ), the
thermal state (up to normalization) is formally identical
to the imaginary time evolution of the identity operator

ρ ≈ e−βH = e−
β
2H1e−

β
2H . To obtain the MPS repre-

sentation of this operator, we use a second-order Suzuki-
Trotter decomposition of the exponentials, and apply the
imaginary time evolution to the initial state correspond-
ing to the identity operator [27].

Using this method, we have simulated the thermal
states of a Bose-Hubbard chain with length L = 30,
for up to n = 4 particles per site. We used an aver-
age over systems with different total atom numbers N ,
corresponding to the typical atom number distribution
in the experiment, as well as an average over the central
9 sites. The error of the numerical simulation originates
from the Trotter step δ and the bond dimension param-
eter D, which controls the number of parameters in the
MPS ansatz. Both errors can be reduced by running
simulations with increasing (decreasing) D (δ). We have
used D = 20, δ = 0.05, for which the estimated error is
below 10−3.

Quantum Monte Carlo calculations

Numerical results at finite temperature are obtained by
using the Quantum Monte Carlo worm algorithm [38] in
the implementation of Ref. [39]. This is an unbiased and
statistically exact path integral Monte Carlo algorithm,
formulated in continuous imaginary time, in which two
worm operators (corresponding to â and â† operators)
perform local updates in an extended configuration space
and hereby directly sample the Green function. These
updates lead to a fast decorrelation between the config-
urations resulting in an integrated autocorrelation time
of order unity. A bootstrap analysis shows that the rel-
ative error is below 10−3 for the presented data. It was
previously demonstrated that experiments on the Bose-
Hubbard model are in one-to-one agreement with such
first principles simulations for realistic system sizes (on
the order of a million atoms) and temperatures [40]. In
our simulations, we assume that temperature scales as
T ∼ U which was shown to be a good assumption in this
parameter regime [41].
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