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A B S T R A C T

Seasonal climate predictions show very limited skill over Europe, especially for
the summer season. Those predictions are usually generated in ensembles and
the skill is assessed as the mean over all ensemble members. Most scientific
studies expect an increase in skill with an increase in ensemble size. However, the
ensembles can spread out with increasing lead time, such that seasonal climate
predictions over Europe show a high spread and an ensemble mean with low
variability and values around the climatological mean.

Here, I show a way to refine an ensemble by grouping the members according
to the physical process they represent. For this, I assess which processes dominate
the climate of individual European summers and confirm that the dominant
seasonal process can be explained by either a meridional or a zonal pressure
gradient, in their positive or negative phase. The evaluated dynamical seasonal
climate prediction model is able to represent the spatial pattern and overall
frequency of occurrence of the assessed processes, but the individual members
disagree on the process they predict for each summer. I thus show that the high
spread of the ensemble results from the ensemble members predicting a variety of
physical processes for European summers. A mean taken over all those members
thus averages over different physical processes, which is not physically consistent.
For a physically consistent prediction, I restrict the ensemble mean to those
members, that predict the dominant physical process in each summer, which is
obtained through observations. With such a refinement, significant hindcast skill
can be achieved over many parts of Europe and the North Atlantic, showing that
the model is capable of predicting European summers if the physical processes
are considered.

In line with such a process-based approach I, instead of using observations to
obtain the dominant physical process in each summer, show an alternative way
in which I am able to predict the zonal pressure pattern and its teleconnections. I
assess these connections in the ensemble through a chain of physical relations
based on the process. I then refine the ensemble by choosing only those members
that represent all proposed connections. A mean over only the chosen members
then also leads to improved spread and significant skill over central Europe.

I show in this dissertation that maintaining the ensemble’s physical consistency
by focusing on physical processes leads to improved skill in the areas the processes
are influencing. This process-based approach could be extended for further
regions that are also influenced by several processes and for which the ensemble
shows a large spread and allows for improved predictions in those regions.
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Z U S A M M E N FA S S U N G

Saisonale Vorhersagen für Europa zeigen eine sehr geringe Vorhersagegüte, beson-
ders für die Sommersaison. Die Vorhersagen werden üblicherweise in Ensembles
erstellt und deren Vorhersagegüte dann als Mittel über alle Ensembleläufe eva-
luiert. Die meisten wissenschaftlichen Studien erwarten eine Verbesserung der
Vorhersagegüte mit steigender Anzahl der Ensembleläufe. Die Streuung eines
solchen Ensembles kann jedoch mit steigender Vorhersagezeit zunehmen. Sai-
sonale Klimavorhersagen über Europa weisen deshalb eine hohe Streuung auf
und resultieren somit in einem Ensemblemittel mit geringer Variabilität und
Werten um das klimatologische Mittel.

Ich zeige hier, dass ein solches Ensemble präzisiert werden kann, indem ich die
Läufe nach dem physikalischen Prozess gruppiere, den sie repräsentieren. Dazu
analysiere ich, welche Prozesse einzelne europäische Sommer dominieren und
belege, dass der dominante saisonale Prozess entweder durch einen meridionalen
oder einen zonalen Druckgradienten, in jeweils ihrer positiven oder negativen
Phase, erklärt werden kann. Das evaluierte dynamische saisonale Klimavorhersa-
gemodell ist in der Lage, die räumlichen Strukturen und die generelle Häufigkeit
des Auftretens der analysierten Prozesse darzustellen. Die einzelnen Läufe sagen
jedoch unterschiedliche Prozesse als dominant für denselben Sommer voraus.
Ich zeige damit, dass die hohe Streuung des Ensembles darauf zurückzufüh-
ren ist, dass die Ensembleläufe eine Vielzahl von physikalischen Prozessen für
einen europäischen Sommer voraussagen. Ein Mittel über all diese Läufe bedeutet
dementsprechend ein Mittel über verschiedene physikalische Prozesse zu nehmen
und ist daher physikalisch nicht konsistent. Für eine physikalisch konsistente
Vorhersage beschränke ich die Vorhersage auf die Läufe, die den dominanten
physikalischen Prozess vorhersagen. Der dominante physikalische Prozess wird
dabei den Beobachtungen entnommen. Mit einer solchen Präzision des Ensembles
kann in weiten Teilen Europas und des Nordatlantiks eine signifikante Vorhersa-
gegüte erreicht werden. Dies zeigt, dass das Modell in der Lage ist, europäische
Sommer vorherzusagen, wenn die physikalischen Prozesse in der Vorhersage
berücksichtigt werden.

Im Sinne eines solchen prozessbasierten Ansatzes zeige ich, anstatt Beobachtun-
gen zu verwenden, um den dominanten physikalischen Prozess in jedem Sommer
zu erhalten, einen alternativen Weg, bei dem ich in der Lage bin, das zonale
Druckmuster und seine Telekonnektionen vorherzusagen. In den Ensembleläufen
verwende ich dazu eine Kette von physikalischen Verbindungen, die auf dem
Prozess basieren. Ich präzisiere das Ensemble, indem ich nur diejenigen Läufe
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auswähle, die alle aufgezeigten Verbindungen aufweisen. Ein Mittel über nur
diese ausgewählten Läufe führt ebenfalls zu einer verbesserten Streuung und
signifikanter Vorhersagegüte über Mitteleuropa.

Ich zeige in dieser Dissertation, dass die Aufrechterhaltung der physikalischen
Konsistenz eines Ensembles, durch Fokussieren auf physikalische Prozesse, zu
einer verbesserten Vorhersagbarkeit in den Regionen führt, die von diesen Pro-
zessen beeinflusst werden. Dieser prozessbasierte Ansatz könnte auf weitere
Regionen ausgedehnt werden, die ebenfalls durch mehrere Prozesse beeinflusst
werden und für die das Ensemble ebenfalls eine große Streuung aufweist und
ermöglicht verbesserte Vorhersagen in diesen Regionen.
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1
O V E R C O M I N G C H A L L E N G E S I N S E A S O N A L P R E D I C T I O N
O F E U R O P E A N S U M M E R C L I M AT E

Even the longest journey begins
with a first step.

— Lao Tzu

Decisions in climate-sensitive sectors in Europe, such as agriculture, finance,
health, resource management, and energy rely on climate and its variations on
seasonal time scales. The decisions-making process in those sectors would profit
from accurate seasonal climate forecasts over Europe (e.g., Cantelaube and Terres,
2005; Soares and Dessai, 2015; Lowe et al., 2016; Lledó et al., 2019). However,
the skill of seasonal forecasts for European climate compared to observations
is still very low in most state-of-the-art prediction systems, especially for the
summer season (e.g., Arribas et al., 2011; Kim et al., 2012; Mishra et al., 2018).
This lack of skill in seasonal climate predictions hinders decision-makers to
prepare for unexpected summer temperature, such as the many record-breaking
European summers during the past two decades (e.g., Russo et al., 2014). Those
events caused an extraordinary high number of heat-related deaths (e.g., Robine
et al., 2008) and an increasing number of crop failure and forest fires, leading
to severe financial losses and environmental damages (e.g., Zaneti et al., 2004).
Better seasonal forecasts for European summers would be a valuable asset for
the decision-making process and would lead to better-informed decisions (Soares
and Dessai, 2015).

In this dissertation I address the question why we still lack skill in seasonal
forecasts for European summer climate and investigate how better skill could be
achieved.

1.1 challenges in seasonal prediction of european summer cli-
mate

Seasonal climate prediction refers to the prediction of climate on time scales
between one month and one year. Forecasts on shorter time scales are investigated
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2 overcoming challenges in seasonal climate prediction

Figure 1.1: Seasonal climate prediction skill for 500 hPa geopotential height (Z500) anomaly in
summer (July-August mean) depicted as the Anomaly Correlation Coefficient (ACC)
comparing the model predictions of the ensemble mean of the 30 ensemble member
generated by MPI-ESM-MR to the ERA-Interim reanalysis in 1982-2016. Increasing
positive correlation implies increasing seasonal climate prediction skill. Dots show
significant correlation at the 95% confidence level derived via bootstrapping using 500

samples.

in weather and sub-seasonal prediction, longer ones in decadal prediction and
climate projection (Doblas-Reyes et al., 2013). Unlike weather prediction, seasonal
climate prediction does not attempt to forecast the actual day-to-day progression
of the climate system, but instead the evolution of climate as a seasonal average
(Council et al., 2010).

Seasonal climate prediction considers the various components of the climate
system - the atmosphere, ocean, land and cryosphere (e.g., Shukla and Kinter III,
2006). These components vary on different time scales and react to perturbations
with different response times. The different response time scales can be seen as
the memory of climate processes. While the atmosphere has memory of only a
few days, the memory of sea ice, land and ocean can last up to several years (e.g.,
Boer et al., 2016).

Skill in seasonal climate prediction generally arises from the interaction of
the atmosphere with the components of the climate system that have a longer
memory and are thus predictable, such as the ocean, land and cryosphere. Those
components of the climate system store heat and moisture, and the response
of the atmosphere that interacts with them through coupling is a premise for
seasonal climate predictability (Palmer and Anderson, 1994).

Even given the memory of the climate system, the quality of forecasts vary
substantially. It is therefore necessary to measure the skill of a forecast. The skill
of seasonal climate prediction is assessed relative to some reference, preferably
observations. Since we do not know how the future evolves, predictions are
performed for the past in so-called hindcasts, such that they can be compared to
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Figure 1.2: A schematic illustrating an ensemble forecast. An ensemble of forecasts (thin red lines)
for any variable starts from slightly different initial condition of this variable from
where it naturally spreads out with increasing forecast time. Ensemble forecasts are
usually assessed by the ensemble mean (thick red lines), which is the mean over all
ensemble members. a Optimally the spread of the ensemble results in a probability
density function (PDF) that is clearly distinguishable from the PDF of the observed
climatological values. b In some forecasts the ensemble spread results in a PDF close
to that of the observed climatology.

existing records of observed past data. The similarity between past observations
and the hindcast can then be evaluated as so-called hindcast skill.

Seasonal hindcasts performed with the Max Planck Institute Earth System
Model (MPI-ESM) are skilful mainly in the tropical and ocean areas, but less
skilful in the extra-tropical and land regions (Fig. 1.1). Due to the persistence
of the climate in the tropics, tropical regions are predictable for a longer lead
time (i.e. for more time in advance) than the extra-tropical regions (Palmer
and Anderson, 1994). Predictability in the extra-tropical regions is most often
associated with connections to the predictable tropics through teleconnections,
that connect variability in the climate on seasonal timescales (e.g., Shukla et
al., 2000). Teleconnections are physical processes that must be represented by
the climate model, so that it is able to generate predictability. Seasonal climate
prediction skill thus depends on how well the relevant physical processes are
represented in a prediction model.

To account for the different physical pathways that a climate simulation could
take, a prediction is usually assessed in an ensemble. The climate system is chaotic
and thus very sensitive to small perturbations in the initial state of the system.
Ensemble forecasting takes into account the sensitivity of the model to initial
conditions by running a large number of realisations of the model started from
slightly different initial conditions (Fig. 1.2). The resulting different forecasts show
the many different possible physical pathways of the climate system. Seasonal
climate prediction then results in a range of possible forecasts, the spread of the
ensemble.

Seasonal climate prediction aims at forecasting an anomaly from the observed
climatological mean of the assessed season (Council et al., 2010). The spread of
the ensemble is seen as the uncertainty of the prediction (e.g., Ho et al., 2013). In
an optimal ensemble prediction, the individual ensemble members agree on the
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a

b

Figure 1.3: a The spread of the 30 ensemble members generated by the MPI-ESM-MR depicted
as the average spread of all summers (July-August mean) in 1982-2016 for 500 hPa
geopotential height (Z500) anomaly. b Spread-error-ratio for Z500 anomaly in summer,
derived as the ratio between the average spread of all ensemble members and the
root-mean-square-error of the mean over all 30 ensemble members in comparison to
the ERA-Interim reanalysis in 1982-2016. Optimally, this ratio is equal to one. Dots
indicate areas where the ratio is significantly different from one at the 5% level.
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physical pathway resulting in an ensemble spread that is clearly distinguishable
from the probability density function (PDF) of the observed climatology (Fig.
1.2a). However, in many forecasts, the individual ensemble members predict
several different physical pathways resulting in an ensemble prediction with a
larger spread that is not necessarily distinguishable from the PDF of the observed
climatology (Fig. 1.2b). Forecasts are usually assessed by the mean over all
ensemble members. But, if a mean is taken over those members with a PDF close
to the climatological PDF, the ensemble mean prediction results in a mean value
close to the observed climatological mean.

Comparing the spread of the seasonal forecast to the skill of the ensemble mean
prediction (Figs. 1.3a and 1.1), we see that most areas of significant hindcast skill
overlap with areas of low spread in the ensemble. Therefore, significant hindcast
skill is mainly achieved in areas in which ensemble members do not spread out
much and thus presumably agree on the physical pathways. Since the spread of
an ensemble is a measure of the uncertainty of the forecast, in a reliable forecast
this uncertainty is about equal to the error of the forecast (Ho et al., 2013), which
is assessed as the difference between the ensemble mean and the observations.
Thus, the spread-error-ratio of the ensemble is ideally equal to one.

Analysing this ratio shows that, especially over Europe, values larger than one
are obtained, demonstrating that the spread of ensemble predictions over Europe
is too high (Fig. 1.3b), as was shown by previous studies as well (e.g., Ho et al.,
2013; Eade et al., 2014; Dobrynin et al., 2018). Seasonal ensemble hindcasts for
European summer climate thus show a spread that is higher than its error (cf. Fig.
1.3b) and a hindcast skill that is not significant (cf. Fig. 1.1).

Previous studies showed that seasonal European summer climate is influenced
by various physical processes (e.g., Cassou et al., 2005). Individual ensemble mem-
bers could thus predict the different physical processes for European summers.
A mean taken over all ensemble members thus averages over different physical
processes. Such a prediction is not physically consistent and the signal of the
physical processes in the prediction is lost.

In this dissertation, I refine the ensemble prediction for seasonal European
summer climate by concentrating on the different physical processes that influence
this region on seasonal timescales. I assess the high spread of the ensemble and
the physical pathways that are predicted by individual ensemble members. I
propose a physically consistent prediction by grouping the ensemble members
according the physical process they represent.

This cumulative thesis is structured into two individual articles attached in
Chapters 2 and 3. In the first article, I analyse the processes that drive Euro-
pean summer climate on seasonal time scales and assess if those processes are
represented in the considered seasonal climate prediction system. I investigate
if the seasonal climate prediction skill of the model is influenced by the dom-
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inant physical processes and how the skill is affected if the governing process
is considered in the analysis. The second article then focuses on one of those
processes, which is the second leading mode of summertime pressure variability
over Europe. I assess how this process influences the seasonal climate prediction
skill of MPI-ESM-MR.

In the following, I give an overview over those two articles and guide through
my research by asking four questions, answering these questions along the way.
I put them in the scientific context and finish with an outlook concerning the
findings of this dissertation.

1.2 physical processes driving european summer climate

The lack of skill in seasonal climate predictions often results from a lack in
understanding the relevant physical processes (Doblas-Reyes et al., 2013). In
the last decades a lot of emphasis has been put into the understanding of the
physical processes that influence seasonal climate variability (Wang et al., 2009).
For Europe, most previous studies agree that the seasonal European winter
climate is primarily driven by the North Atlantic Oscillation (NAO) (e.g., Hurrell,
1995), which explains up to 50% of variability and thus dominates almost all
winters (e.g., Hurrell et al., 2003). In summer, on the other hand, low-frequency
variability modes influencing Europe on seasonal timescales have been less
extensively studied (e.g., Hannachi et al., 2017), partly because they are not as
easily separable as in winter and appear to be less pronounced (e.g., Hurrell and
Deser, 2010; Cattiaux et al., 2013). In summer, the NAO is much less distinct,
explaining around 30% of variability (e.g., Bladé et al., 2012). The second mode
of atmospheric variability that explains about 20% of the total variance (e.g.,
Saeed et al., 2014; Wulff et al., 2017; Neddermann et al., 2019) is thus almost as
pronounced as the NAO in summer. Finding the mechanism that is dominant in
an individual summer is therefore a more complex problem than in winter and
has not yet been investigated throughout the entire 20

th century.
However, assessing the dominant process per summer in observational data is

necessary to later relate the processes of European summers to their prediction
and to conduct a physically consistent forecast. Therefore, I concentrate on the
following first research question:

1 . Which physical processes are dominating European summer climate in in-
dividual summers throughout the entire 20th century?

I use the ERA-20C reanalysis data set to address this question for the period
1900-2010. As opposed to many previous studies that focus on mechanisms
influencing European in the more recent decades, I investigate the entire 20th
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century to be able to better differentiate between the different physical processes
in individual years.

Most previous studies further assume the spatial patterns of the processes
influencing Europe on seasonal timescales to be constant over time (e.g., Folland
et al., 2009). A recent study by Wang et al. (2012), however, discloses that the
spatial pattern of the winter NAO shows multidecadal variations. To account for
such pattern variations in summer as well, I apply a cluster analysis that allows
for the spatial patterns of the mechanisms to change over time.

Unlike previous work that investigated cluster analysis for European summers
based on daily data (e.g., Cassou et al., 2005; Cattiaux et al., 2013), I analyse
seasonal means and can thus identify the one dominating cluster per summer.
With this analysis, I find that the dominant seasonal European summer process
can be described by the two governing mechanisms of European summer climate
in their positive and negative phase - a meridional pressure gradient, known as
the NAO, and a more zonal pressure gradient (PD), with similarities to the East
Atlantic Pattern (e.g., Wallace and Gutzler, 1981; Barnston and Livezey, 1987).
Both mechanisms exhibit asymmetries in their positive and negative phases,
resulting in four different clusters. For every summer from 1900-2010, I identify
which of those clusters dominates a particular summer. I find that the first half
of the 20th century is dominated by the NAO in its positive and the PD in its
negative phase, while the second half of the century is dominated by the NAO in
its negative and the PD in its positive phase (Fig. 2.2a).

1.3 physical processes in an ensemble-based seasonal climate

prediction system

The correct representation of the observed processes and their spatial patterns and
persistence properties is essential for a model to properly simulate the climate
variability and its long term changes (Cattiaux et al., 2013). The representation
of mechanisms in prediction models has largely been discussed on the weather
timescale and shown, that the prediction skill and ensemble spread on those
timescales depends on the mechanism that is predicted by the model (e.g., Ferranti
et al., 2015; Matsueda and Palmer, 2018). However, the representation of such
patterns on seasonal timescales and in a seasonal climate prediction model has
been less intensively studied.

Here, I work with the ensemble-based fully-coupled seasonal climate prediction
system based on the Max Planck Institute Earth System Model at mixed resolution
(MPI–ESM–MR) to answer the second research question:

2 . Does the MPI-ESM-MR represent the processes that dominate European
summer climate on seasonal timescales?
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Most former studies restrict their hindcast analysis to the last decades. Some
recent studies consider hindcasts throughout the entire 20th century, but focus
solely on the winter season (e.g., Weisheimer et al., 2017; O’Reilly et al., 2017;
Weisheimer et al., 2018). Here, I consider hindcast runs in the fully coupled
model MPI-ESM-MR in the summer season. For this, 10 ensemble members were
generated starting every May from 1902-2008.

I assign every ensemble member in every year to one of the four observed
clusters using a pattern matching algorithm in terms of the root mean square
error. I show that the MPI-ESM-MR is able to represent the spatial pattern of the
four identified clusters (Fig. 2.1). The model also agrees with the overall frequency
of the four clusters if all ensemble members in all years are considered. However,
the predicted cluster only agrees with the observed cluster in one third of the
analysed years. Thus, the model predicting the dominant cluster per year only
slightly outperforms a prediction by chance. And while I show in the reanalysis
that one cluster is dominating a particular summer, the 10 ensemble members
generated by the model for every summer disagree on the cluster and thus the
physical process they predict for individual summers (Fig. 2.2b). Therefore, the
MPI-ESM-MR is able to reproduce the overall spatial patterns and the frequency
of the four dominant clusters of seasonal European summers, but is not able to
predict the timing of the clusters for individual summers.

Seasonal climate predictions are usually assessed by taking the mean over all
ensemble members. However, if different ensemble members predict different
physical processes, a mean taken over those members means to take an average
over different processes. Therefore, taking the mean over the full ensemble is not
physically consistent and results in a prediction in which the signal of individual
processes is lost (Fig. 1.4a,b). Since each cluster influences the pressure and
temperature over Europe in a different way (Figs. 2.1 and 2.6a-d), the values
predicted by the individual ensemble members differ strongly if they predict
a different cluster for a particular summer. The disagreement of the predicted
clusters then results in highly spread predicted values over Europe for all years.
A mean taken over those values then produces an ensemble mean prediction
close to the climatological mean with a variability that is considerably smaller
than observed (Fig. 2.3b).

For a physically consistent prediction I thus suggest to group the ensemble
members according to the physical process they predict in individual years and
to take a new mean only over those members that predict the same process. Such
a mean then results in a prediction in which the signal of the individual processes
is much more pronounced with a magnitude close to that of observations (Fig.
1.4c).

I thus find that the assessed model is predicting different physical processes
for individual summers and that those processes are better represented in the
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a

b

c

Figure 1.4: 500 hPa geopotential height (Z500) anomaly with respect to the climatological mean
for the summer (July-August mean) in 1978. a In the ERA-20C reanalysis the anomaly
shows the spatial pattern of the North Atlantic Oscillation in its negative phase (NAO-),
which was the observed dominant mechanism in that year (Fig. 2.2a). b The mean over
all 10 ensemble members generated by MPI-ESM-MR is predicting a different spatial
pattern of lower magnitude. The low magnitude likely results from the individual
members predicting different mechanisms for that year (Fig. 2.2b). Especially over
Europe this results in anomaly values of low magnitude close to the climatological
mean which disagree with the observed value. c The mean over only the ensemble
members that predict a NAO- and thus the dominant mechanism that is observed
results in a spatial pattern and predicted values over Europe that are much closer to
the observation.



10 overcoming challenges in seasonal climate prediction

MPI-ESM-MR if a mean is not taken over all ensemble members, but only over
those members that predict the dominant process in the observations.

1.4 hindcast skill using a process-based approach

The skill of a model is usually derived by comparing the ensemble mean pre-
diction to observations. This approach does not lead to significant seasonal skill
for European summers. I showed that the assessed model is predicting multiple
physical processes for one individual summer, such that the ensemble mean is a
mean over multiple processes that results in values for European summers that
differ from those observed. A physically more consistent prediction thus averages
over members reproducing the same physical process, which is also a way of
refining the ensemble.

Most previous studies assume that the skill of a model increases with an
increasing number of ensemble members (e.g., Murphy, 1990; Scaife et al., 2014).
Taking a mean over only the ensemble members that represent one physical
process, however, means to decrease the ensemble size, raising the question if
such an approach can lead to meaningful hindcast skill. I thus ask the third
research question:

3 . How is the hindcast skill of MPI-ESM-MR affected by refining the ensem-
ble using a process-based approach?

The dominant cluster per summer can be either found in the model, through
the cluster that is predicted by the model, or in the observations, through the
cluster that is observed in ERA-20C in each summer. I find that the cluster that is
predicted by the model does not agree with the observed cluster in two thirds
of the years. A new ensemble mean over only those ensemble members in the
predicted dominant cluster is thus not leading to skill (Fig. 2.3c). However, if
an ensemble mean is taken over the members in the observed dominant cluster,
significant hindcast skill can be obtained in large parts over Europe and the North
Atlantic (Fig. 2.3e). Additionally, the spread of the ensemble is increased for
values over Europe resulting in a variability comparable to that in observations
(Fig. 2.3f).

I thus show that the low skill and low variability of seasonal European summer
predictions can be related to the ensemble members disagreeing on the dominant
cluster for individual years. I demonstrate that including the dominant mech-
anisms of seasonal summer climate into the seasonal hindcast analysis of the
North-Atlantic-European sector is key to improving seasonal hindcast skill and
variability of hindcasted European summers.

The two considered mechanisms, the NAO and the PD both in their positive
and negative phase, explain about 50% of the variance of seasonal European
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summers. Potentially, further mechanisms could be investigated and included
in the prediction analysis. However, it is unclear if those mechanisms would
be represented by the assessed model and if the hindcast skill could be further
improved. Including more mechanisms in the analysis would also require more
ensemble members than the 10 members considered so far. I find, however,
that even though further mechanisms influence European summers on seasonal
timescales, the hindcast skill can already be remarkably improved if only the first
two leading mechanisms are considered in a hindcast analysis.

1.5 process-based prediction in a real forecast setup

I showed that it is possible to improve seasonal hindcast skill by shaping the
processes into the prediction through grouping of ensemble members according
to the process they predict. However, I so far only examined hindcast analysis
and thus retro-perspective forecasts, in which the dominating mechanism was
known in advance through observations and could therefore be included in the
analysis of the ensemble members. To apply this method in a real forecast setup,
I would need to be able to predict the dominant mechanisms, leading me to the
fourth and last research question:

4 . Can process-based seasonal climate prediction assessment be operated in a
real forecast setup?

So far I concentrated on two mechanisms in their positive and negative phase:
the NAO and the PD. Many previous studies analyse the NAO and try to predict
its phase (e.g., Butler et al., 2016; O’Reilly et al., 2017; Weisheimer et al., 2017;
Dobrynin et al., 2018). While most of those studies concentrate on the NAO
in winter, Düsterhus et al. (under review) show that the phase of the NAO in
summer can be predicted as well. However, little attention has been paid to the
PD, the second mode of seasonal variability in Europe, and its predictability in
summer.

Seasonal climate predictability arises from persistent and slowly-evolving
boundary forcing, most often found in the tropics (e.g., Palmer and Anderson,
1994). Prediction skill in extra-tropical regions like Europe then emerges from
those predictable regions through atmospheric teleconnections (e.g., Shukla et al.,
2000). In the North-Atlantic-European sector, the North Atlantic is the major
source of low-frequency climate variability (e.g., Marshall et al., 2001; Cattiaux
et al., 2013). In summer, warm sea surface temperature (SST) in the tropics excite
a Rossby wave in the northern hemisphere that is known as the circumglobal
wave-train (CGT, Branstator (2002)). In accordance with recent studies by Saeed
et al. (2014) and Wulff et al. (2017), I show in the ERA-Interim reanalysis for
1982-2016 that this CGT acts as a teleconnection between the tropical SST in the
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North Atlantic and the PD, that in turn influences seasonal European climate
(Fig. 3.1). Unlike previous work that only suggests that this connection could
lead to prediction skill (e.g., Ding and Wang, 2005; Gastineau and Frankignoul,
2015), I make use of this connection by predicting the phase of the PD in summer
through the phase of the tropical SST observed in ERA-Interim in April.

I apply this knowledge to the 30 ensemble members generated by MPI-ESM-MR
initialised every May for 1982-2016. I showed that different ensemble members
predict different physical processes to be dominant in individual summers. Using
the tropical SST observed in April, I anticipate one phase of the PD to be the
dominant mechanism in a particular summer and thus constrain the hindcast
analysis to one relevant mechanism only. Instead of including all ensemble
members in a prediction I instead only include the members that predict the
anticipated phase of the PD. To derive which ensemble member is predicting
which phase of the PD, I analyse each member individually and assess if it
predicts a chain of known physical relations connected to the PD. This chain of
connections is based on the observed relation between the PD and the wave-train,
as well as its influence on European summer temperature. For the prediction
I then select only the ensemble members that predict all parts of this chain
and form an ensemble mean over only those selected members. This selection
results in significant seasonal hindcast skill over central Europe (Fig. 3.6). Such a
prediction only includes observations from April, which is before the initialisation
of the ensemble. Therefore, such a prediction is feasible in a real forecast setup.

I show here a way of refining the ensemble that is based on a known successive
chain of physical relations. With this method, I assume the PD to be the dominant
mechanism throughout all summers in 1982-2016. This is opposed to my analysis
of the dominant mechanisms in ERA-20C for 1900-2010, in which I find that
either PD or NAO in its positive or negative phase is dominant. An analysis that
combines predicting both the phase of the NAO and the phase of the PD, and
which of those mechanisms dominate a certain summer, would thus be useful.

Unlike most previous studies that assume a larger ensemble to result in higher
prediction skill (e.g., Scaife et al., 2014; Butler et al., 2016), I show an alternative
approach in which the ensemble size is refined on the basis of known physical
relations. Refining a predicted ensemble through a process-based approach is
a method that combines observed statistic relations with a dynamical model.
Unlike other statistical methods, a process-based approach allows to form a
new ensemble mean over selected ensemble members for any of the variables
simulated by the model. Since entire ensemble members are selected and included
in the analysis, the fields derived out of those are dynamically self-consistent in
space and time (Dobrynin et al., 2018). This process-based approach thus makes
use of statistical connection while maintaining the advantages of a dynamical
model.
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a b

Figure 1.5: Same as Fig. 1.3, but for the refined ensemble and zoomed in for the investigated
North-Atlantic-European region.

Selecting individual members using the proposed method decreases the en-
semble to on average one fourth of its original size that are eventually analysed
for their hindcast skill (Table 3.1). Such a reduction of the ensemble size strongly
influences the spread of the ensemble over Europe (cf. Figs. 1.5a and 1.3a). In a
reliable ensemble forecast, the spread is comparable to the error of the forecast
(Ho et al., 2013). Through the refinement of the ensemble and thus reduction of
the ensemble spread, the ratio of the spread to the error of the ensemble over
Europe is close to one (Fig. 1.5b) and thus more reliable then the prediction in
which the ensemble mean is taken over the full ensemble (Fig. 1.3b).

The optimal size of an ensemble is a widely discussed and an ongoing topic (e.g.,
Scaife et al., 2014), to which this dissertation constitutes an alternative approach
in which a refined ensemble is leading to higher prediction skill than using the
full ensemble. Nevertheless should the ensemble from which the refinement is
conducted be large enough such that the resulting number of selected ensemble
members eventually results in a large enough spread, ideally comparable to the
error of the prediction.

1.6 process-based prediction in the future

In this dissertation my study area is Europe and my focus is on mechanisms
influencing this area in summer. Seasonal European summer climate is influenced
by several processes and its ensemble forecast shows a spread that is considerably
larger than the error of the prediction. I show that maintaining the physical
consistency of the ensemble forecast by focusing on physical processes in a
hindcast analysis leads to improved seasonal hindcast skill in the areas that the
processes are influencing, also resulting in a lower spread of the ensemble and
thus a more reliable ensemble forecast than a prediction with the full ensemble. I
therefore demonstrate that the knowledge of the physical processes is important
for a skilful prediction and show that, if the physical processes that influence
European summer climate on seasonal time scales are considered in the seasonal
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climate prediction, the assessed model is actually capable of predicting European
summer climate.

This process-based approach could be extended to further regions that are also
influenced by several processes and for which the ensemble prediction shows
a too large spread as well. This approach could potentially lead to improved
predictions in such regions and I encourage future work to test such an approach.

Predicting European summers is considered to be one of the most complex
issues in seasonal climate prediction (e.g., Beverley et al., 2019). The focus of
this dissertation is on understanding the physics behind such a prediction in an
ensemble-based setup, which is the first step for dissecting the complexity of the
issue to predict seasonal European summer climate. While the derived method
still needs further refinement to be applicable in an operational seasonal climate
prediction system, I show in this dissertation that this method has potential to
lead to increased seasonal prediction skill for European summer climate in the
future.



2
T H E I N F L U E N C E O F D I F F E R E N T P R O C E S S E S O N S E A S O N A L
P R E D I C TA B I L I T Y O F E U R O P E A N S U M M E R C L I M AT E
T H R O U G H O U T T H E 2 0 t h C E N T U RY

Nele-Charlotte Neddermann1,2, Wolfgang A. Müller3, André Düsterhus1,
Holger Pohlmann3,4, Johanna Baehr1

1Institute for Oceanography, CEN, Universität Hamburg, Germany
2International Max Planck Research School on Earth System Modelling,

Max Planck Institute for Meteorology, Hamburg, Germany
3Max Planck Institute for Meteorology, Hamburg, Germany

4Deutscher Wetterdienst, Hamburg, Germany

author contributions N.C.N. designed the research, performed the analysis and
drafted the manuscript including all text and figures with guidance from J.B. and W.M..
All authors contributed through discussions on the interpretation of the results. H.P. and
W.M. performed the model simulations.

15



16 the influence of different processes on seasonal predictability

abstract

We improve seasonal hindcast skill of European summer climate in an idealised
ensemble-based hindcast analysis through a refinement of the ensemble by group-
ing the ensemble members according to the physical process they reproduce.
For this, we assess the dominant mechanisms of European summer climate in
a coupled seasonal climate prediction system and examine how the different
mechanisms influence the hindcast skill throughout the entire 20

th century. With
a cluster analysis that allows for patterns to vary over time, we analyse seasonal
summer means of 500 hPa geopotential height. In the ERA-20C reanalysis we
find that the dominant mechanism for individual summers in 1900-2010 can be
explained by one of the first two leading modes of seasonal summer climate
variability in the North-Atlantic-European sector - a meridional pressure differ-
ence, known as the North Atlantic Oscillation, and a zonal pressure difference
with similarities to the East Atlantic pattern, both in their positive and negative
phases. With this analysis we examine how well the fully coupled MPI-ESM in
the mixed resolution setup is able to represent the different clusters. We analyse
the hindcasts for 1930-2008 using 10 ensemble members, initialised every year
in May. By identifying the different phases of the mechanisms in individual
ensemble members, we find that the model is able to reproduce the clusters
and their overall frequency. Yet, no hindcast skill for European summers is ob-
tained for the mean over all ensemble members. We show that this low skill
results from the individual members predicting different mechanisms for the
same summer. As a result, a mean over all members is a mean over different
physical processes. We group the ensemble members according to the cluster they
reproduce and refine the ensemble in an idealised hindcast analysis in which for
every summer only the members in the dominant cluster are considered. With
such a refinement, significant hindcast skill can be obtained over large parts of the
North-Atlantic-European sector, showing that the considered model is generally
capable of predicting European summers.
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2.1 introduction

Most current state-of-the-art prediction systems show only limited skill for sea-
sonal prediction of European climate in summer (e.g., Mishra et al., 2018; Ned-
dermann et al., 2019). The lack of skill in seasonal climate prediction often results
from a lack in understanding the relevant physical processes (Doblas-Reyes et al.,
2013) and a recent study by Beverley et al. (2019) showed that the poor skill of
a seasonal climate prediction model can be linked to poor representation of the
physical processes in the model. Seasonal European summer climate is affected
by a range of physical processes (e.g., Cassou et al., 2005) and in this study
we assess if this is the reason we still lack seasonal hindcast skill for European
summer climate. For this, we examine the ability of an initialised seasonal climate
prediction system to reproduce the different mechanisms that influence European
summer climate and analyse how the different processes affect the hindcast skill
over the 20

th century.
Mechanisms influencing European climate and their representation in predic-

tion models for the North-Atlantic-European sector has largely been discussed
on the weather timescale (e.g., Corti et al., 2003; Ferranti and Corti, 2011; Dawson
et al., 2012). On those synoptic timescales several studies show that the prediction
skill and the ensemble spread depend on the mechanism that is predicted by
the model (e.g., Ferranti et al., 2015; Matsueda and Palmer, 2018). However, the
representation of such patterns in seasonal climate prediction models has been
less intensively studied. Especially, how the seasonal climate prediction skill is
affected by the model predicting different physical processes over Europe has not
yet been assessed. Here, we analyse how the physical patterns that influence Eu-
ropean summer climate are represented in an initialised ensemble based seasonal
climate prediction system, and if the seasonal hindcast skill itself depends on the
different mechanisms.

The skill of an ensemble prediction is usually assessed by the mean over
all ensemble members. However, recent studies by Dobrynin et al. (2018) and
Neddermann et al. (2019) show that selecting ensemble members according
to the mechanism they represent can lead to improved seasonal hindcast skill.
Analysing the different mechanisms in a seasonal climate prediction system allows
us to group the ensemble members according to the mechanism they represent.
Instead of taking an ensemble mean over all ensemble members, a new mean
can be formed over the ensemble members reproducing the same mechanism.
A mean over ensemble members reproducing different mechanisms averages
over different physical processes, and therefore the signal of individual processes
is lost. Therefore, a mean over members reproducing just one mechanism is
physically more consistent.
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The skill of a model is assumed to increase with an increasing number of
ensemble members (e.g., Murphy, 1990; Scaife et al., 2014). Taking a mean over
only the ensemble members that represent one physical process however means
to decrease the ensemble size. Here we analyse if a physically more consistent
analysis by a refinement of an ensemble based on the physical process the model
represents, is leading to improved seasonal skill for European summer climate.

Former studies that assess the physical mechanisms influencing European
summer climate usually focus on the North Atlantic Oscillation (NAO), which
is the dominant mechanism of pressure variability in the North Atlantic sector
in summer and explains around 30% of the total variance (e.g,. Hurrell et al.,
2003; Bladé et al., 2012). The spatial structure of the NAO consists of a meridional
pressure gradient with one pressure center over Greenland and the other over
north-western Europe (Folland et al., 2009). Recent studies also focus on the
second leading mode of atmospheric variability over Europe and the North
Atlantic that explains up to 20% of the total variance in summer (e.g,. Saeed
et al., 2014; Wulff et al., 2017; Neddermann et al., 2019). Its spatial pattern reveals
a zonal pressure gradient with centers over the North Atlantic and Europe,
while the spatial structure appears to be asymmetric for its positive and negative
phase (Cassou et al., 2005). Further mechanisms influencing summer climate over
Europe on seasonal time-scales have received little attention in the literature so
far.

Most previous studies are restricted to the more recent decades and assume
the spatial patterns of the mechanisms to be constant in time. Nevertheless, some
recent studies show that the center of highest variability of the winter NAO is
shifted on decadal timescales (e.g., Jung et al., 2003; Wang et al., 2012). In our
investigation of the mechanisms in the 20th century, we allow for the spatial
patterns to change over time.

Other recent studies investigate if the seasonal hindcast skill of the winter NAO
is time dependent (e.g., Weisheimer et al., 2017; O’Reilly et al., 2017; Weisheimer
et al., 2018). They show that the hindcast skill of the NAO during winter strongly
varies over time in dependence on its dominant phase. Hindcast skill is found
to be higher during positive NAO phases, indicating that the hindcast skill does
depend on the dominating mechanisms, at least for European winters. Time
dependency of the seasonal hindcast skill however has not yet been investigated
for European summers. We thus assess how the hindcast skill for European
summers changes throughout the 20th century and how the skill depends on the
dominating mechanism.

To address the questions whether seasonal climate prediction in summer
depends on different mechanisms influencing Europe and to further also examine
the variability of the forecast skill over time, we have performed a long coupled
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seasonal forecast experiment with 10 ensemble members covering all summers
from 1902-2008.

The used data are described in section 2.2. We determine which mechanisms
dominate European summer climate in individual summers throughout the
entire 20th century and weather those mechanisms are represented in the assessed
initialised ensemble based seasonal climate prediction model in section 2.3. In
section 2.4, we investigate how those mechanism influence the hindcast skill
and the variability of the skill over time. The results are discussed in section 2.5,
followed by the summary and conclusions in section 2.6.

2.2 model and data

2.2.1 Reanalysis Data

We use the European Centre for Medium-Range Weather Forecast (ECMWF)
reanalysis of the 20th-century (ERA-20C, Poli et al., 2016) monthly-mean fields
from 1900 to 2010. To eliminate long-term trends, we linearly detrend the data
at each grid point. We consider only monthly anomaly with respect to the
climatological mean, that is taken over the same period.

2.2.2 Model Setup

The coupled global Max Planck Institute Earth System Model is used in its mixed-
resolution configuration (MPI-ESM-MR) to generate initialized seasonal hindcasts
for the period 1902-2008. The atmospheric component ECHAM6 (Stevens et al.,
2013) has a horizontal resolution of 200 km (1.875◦) and 95 vertical levels up to
0.01 hPa, which is coupled to the ocean component MPI-OM (Jungclaus et al.,
2006) with a horizontal resolution of 40 km (0.4◦) and 40 vertical layers. External
forcing is taken from CMIP5 (Giorgetta et al., 2013).

The assimilation experiments are performed by the coupled model, with full-
field nudging by Newtonian relaxation towards all atmospheric and ocean levels
except in the boundary layer. The atmosphere conditions of vorticity, divergence,
three-dimensional temperature and two-dimensional pressures are taken from
ERA-20C. In the ocean, three-dimensional daily mean salinity and temperature
anomalies are nudged at a relaxation time of approximately 10 days. The ocean
state is derived in an ocean run performed with MPI-OM that is forced with
the atmospheric variables from ERA-20C (2 m air and dewpoint temperature,
precipitation, cloud cover, downward shortwave radiation, 10 m wind speed and
surface wind stress). For a spin up, the ocean model performed 5 prior cycles.

The initial conditions are taken from the three-dimensional atmospheric and
ocean fields of the assimilation experiments. 10 ensemble members of 6 month
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hindcast simulations are initialised in May every year from 1902-2008. The en-
semble members are generated by small perturbations of the atmospheric state
by disturbing the diffusion coefficient in the uppermost layer.

A similar set of experiments with the NOAA 20th century data has been
performed to study the multidecadal variations in the North Atlantic (Müller
et al., 2015).

2.2.3 Analysis

In this study "summer" is defined as the July-August (JA) mean, which is in
accordance with previous studies by Folland et al. (2009) and Bladé et al. (2012),
who point out that for Europe the temporal variability in June deviates from the
variability in July and August.

We perform a cluster analysis on the JA mean of ERA-20C 500 hPa geopotential
height (Z500) anomaly in the domain [25◦ − 80◦N, 70◦W−40◦E] for the time-
period 1900-2010. We chose to assess the mean of each summer instead of daily or
monthly data to reduce within-season variations and to identify the one dominant
mechanism per summer.

With our cluster approach we allow for the spatial pattern of the clusters to
vary over time and can identify the one cluster that dominates each year. For
this, a k-means cluster algorithm (Michelangeli et al., 1995) is performed for the
first 30 analysed summers (1900-1930) in the ERA-20 reanalysis. The clustering is
carried out in the reduced phase space that is defined by the leading 6 Empirical
Orthogonal Functions (EOF, North et al., 1982), explaining about 80% of the total
variance of the dataset. We reduce the phase space before clustering, because this
work focuses on large scale structures and higher order EOFs account mainly for
smaller spatio-temporal scales. In agreement with previous works, the optimal
partition is obtained for k = 4 (e.g., Cassou et al., 2005; Cattiaux et al., 2013).
Higher order clustering results in similar regimes with the four dominant patterns
split into more than one cluster per mechanism. Each of the four clusters groups
the summers with similar spatial patterns. Therefore, their averages represent the
most common spatial patterns for 1900-1930.

For the subsequent summers after 1930, every JA mean of ERA-20C Z500

anomaly in the region [25◦ − 80◦N, 70◦W−40◦E] is attributed to the closest
cluster via a pattern matching algorithm in terms of the root mean square error
(RMSE). For every subsequent summer this pattern matching is only based on the
cluster composites of the prior 30 summers, which allows for the spatial pattern
of the ERA-20C clusters to vary over time.

For the analysis of the hindcasts, we use this yearly deviation of the different
clusters in ERA-20C to assign each of the 10 ensemble members generated by the
model to the closest ERA-20C cluster by the same pattern matching algorithm
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based on the RMSE. The pattern matching for the ensemble members is also
derived against the ERA-20C cluster composites of only the prior 30 years. Since
cluster classification in ERA-20C is done starting 1900, the first year that can
be considered in the hindcast analysis is 1930. All years prior to 1930 are thus
excluded in the hindcast analysis. This allows also for the spatial pattern of the
predicted clusters to vary over time and no future information of the spatial
pattern of the observed clusters is included in the assigning of the ensemble
members to the different clusters.

The hindcast skill of the model is assessed against ERA-20C with the point-
wise detrended Anomaly Correlation Coefficient (ACC, Collins, 2002). We derive
significance via bootstrapping with 500 samples at the 95% confidence level.

To diagnose multidecadal variability of the hindcast skill throughout the 20
th

century, we obtained a time varying ACC by deriving the ACC for single time
series between the model output and ERA-20C for a moving 30-year window.
The resulting ACC for each 30-year window is then depicted in the center time
step of the window, resulting in a time series of ACC.

2.3 spatio-temporal variability of the clusters

Assessing the mechanisms that influence European summer climate on seasonal
timescales using the evolved cluster analysis with ERA-20C data for 1900-2010

results in four clusters (Fig. 2.1a-d). The Z500 composites show the spatial pattern
of the four dominant mechanisms over the entire 20th century. Two of the clusters
depict a more meridional pressure gradient, that can be associated with the
summer NAO in its positive and negative phase (Fig. 2.1a (NAO+) and 2.1b
(NAO-)). A slight spatial asymmetry can be detected between the two phases in
the southern node of the two NAO clusters. NAO+ has its highest variability over
Scandinavia and NAO+ and over Great Britain. The other two clusters exhibit a
more zonal pressure gradient with similarities to the East Atlantic pattern (EA,
Wallace and Gutzler, 1981; Barnston and Livezey, 1987), the Atlantic Low (Cassou
et al., 2005) and the summer East Atlantic mode (SEA, Wulff et al., 2017). Those
zonal pressure difference (PD) patterns show strong spatial asymmetries in both
the magnitude and spatial distribution. While in its positive phase, the PD depicts
two nodes that are located over the eastern North Atlantic and northern Europe
(Fig. 2.1c (PD+)), the negative phase of the PD results in three alternating nodes,
two over the North Atlantic and one over Europe (Fig. 2.1d (PD-)).

We assess the model output by the mean over all ensemble members assigned
to one of the clusters (Fig. 2.1e-h). Compared to the observed clusters (cf. Fig.
2.1a-d), the spatial patterns of those averaged modelled clusters demonstrate that
the model is able to represent each cluster, both in the overall spatial structure, as
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Figure 2.1: a-d The spatial patterns of the four clusters derived with the cluster analysis in
ERA-20C for 1900-2010, depicted as the composites over the yearly occurrence of the
observed clusters for July-August (JA) means of Z500 anomaly. e-h Mean over the
Z500 anomaly of all ensemble members generated by MPI-ESM-MR that are assigned
to the corresponding cluster in 1930-2008.
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well as in magnitude. Only for PD- the mean over all ensemble members results
in slightly more pronounced alternating nodes than for the observed cluster.

We further consider the temporal distribution of the clusters throughout the
20

th century. We investigate this in ERA-20C by the yearly distribution of the
clusters (Fig. 2.2a) and in the model output by the number of ensemble members
assigned to each cluster (Fig. 2.2b). The yearly distribution of the clusters observed
in ERA-20C shows that NAO+ and PD- are more dominant in the first half of the
century, while NAO- and PD+ occur more often in the second half. The temporal
distribution of the different ensemble members assigned to the one of the clusters
(cf. Fig. 2.2b) reveals that, in most years, every cluster is represented by the model,
but the number of ensemble members assigned to the different clusters varies
over time. NAO+ is reproduced by more ensemble members in the beginning
and mid of the century, and NAO- more in the second half of the century. In the
model, PD+ is represented by more ensemble members in the first half of the
century, and only a low number of ensemble members reproduce PD- over the
whole timespan.

However, while we show in the observations that each summer can be assign to
one dominant observed cluster (cf. Fig. 2.2a), the model predicts several different
clusters per summer (cf. Fig. 2.2b). To evaluate the model prediction, we thus
have the option to either consider multiple clusters per summer and therefore
all ensemble members in all clusters (option 1), or to restrain the ensemble to
one dominant cluster per summer. We can find the one dominant cluster per
summer in the model (option 2) or in the observations (option 3). For option 2,
to find the dominant cluster in the model, we use the cluster that is predicted
by the model through the most ensemble members in a particular summer. For
example, in the first considered year 1930, the NAO+, PD+ and PD- clusters are
each reproduced by one ensemble member, while seven ensemble members are
representing NAO- (cf. Fig. 2.2b). The model is therefore predicting NAO- to
be the dominant cluster in 1930. For option 3, the dominant cluster is chosen in
comparison to observations. For 1930 this is the PD- cluster, which is reproduced
by one ensemble member in the model (cf. Fig. 2.2a). The number of ensemble
members in the dominant predicted (option 2) or dominant observed (option 3)
cluster varies for every summer as depicted in Fig. 2.2b, while the number of
ensemble members in all clusters (option 1) is for every summer equal to ten.

If we now consider the ensemble members for those three options, meaning
for every summer either all members (option 1), the members in the predicted
cluster (option 2), or the members in the observed cluster (option 3), we have
three options for which we can analyse the frequency of occurrence of ensemble
members in particular clusters. We do this in comparison to the frequency of
the observed clusters, which is derived by the number of years that are assigned
to a particular cluster (Fig. 2.2c). We thus compare the frequency of ensemble
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Figure 2.2: a Occurrence of the four different clusters in ERA-20C for 1900-2010 indicated by
vertical bars. b Counted numbers of the ensemble members generated by MPI-ESM-
MR that are assigned to one of the ERA-20C clusters by a patter-matching algorithm
for 1930-2008. c Frequency of the ensemble members in each cluster compared to the
frequencies of years the clusters are observed in ERA-20C, including linear regression.
The frequencies of the ensemble members are derived for the ensemble members in all
clusters (option 1, grey), for the ensemble members in the predicted dominant clusters,
which are only the members in the cluster with the highest number of ensemble
members in each year (option 2, red), and for the ensemble members in the observed
dominant cluster, which are only the members in the cluster that is observed in each
year (option 3, blue).
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members in particular clusters to the frequency of years that those clusters are
observed.

Regarding the number of ensemble members in all clusters (option 1), most
ensemble members represent NAO-, the least PD-, and about equal NAO+ and
PD+ (Fig. 2.2c, grey). This frequency of all ensemble members in all clusters
approximately agrees with the frequency of the yearly distribution of the observed
clusters. Assessing the frequency of only the ensemble members in the predicted
dominant clusters (option 2), the proportions deviate from the observed yearly
frequency for both PD clusters, where PD+ is slightly over- and PD- slightly
under-represented (Fig. 2.2c, red). The frequency of ensemble members in the
observed dominant clusters (option 3) shows the frequency of the ensemble
members that agree with the observed clusters for individual summers (Fig. 2.2c,
blue). This reveals that the ensemble members in the NAO- cluster most often
agree with the observations, while PD- is the cluster for which predicted and
observed dominant clusters match the least.

Comparing the frequencies of the different options of ensemble groups to the
observed yearly frequencies of the clusters, we can see that the data points for all
three mentioned options are approximately located on one line (cf. Fig. 2.2c). This
demonstrates that the ordering of the frequencies of the different clusters between
modelled and observed clusters agree. The incline, however, demonstrates that
the frequencies are closest to observation for the ensemble members in all clusters
(option 1), while for the members in the predicted clusters (option 2) and in the
observed clusters (option 3) the frequencies deviate stronger from the observed
yearly distribution of the clusters.

If we assume that the model predicts one cluster per year through the cluster
that is represented by the highest number of ensemble members in that year
(option 2), we can further compare the predicted to the observed cluster in every
year. This results in model and observations agreeing on the dominant cluster in
28 out of 79 investigated years, according to about one third of all years. Thus, the
model is able to represent both the spatial appearance and the overall frequency
of occurrence of the observed clusters, but is not able to predict the timing of the
clusters for individual summers.

2.4 sesonal hindcast skill

Hindcast skill of an ensemble-based prediction system is usually assessed by
taking the mean over all ensemble members. Comparing this ensemble mean
to reanalysis data in the North-Atlantic-European sector for the summer season
results in significant skill in the tropical region and some parts of the North
Atlantic (option 1, Fig. 2.3a). However, significant seasonal summer hindcast skill
is not achieved over Europe.
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Figure 2.3: (left column) Hindcast skill depicted by the Anomaly Correlation Coefficient (ACC)
for Z500 anomaly in summer (JA) comparing the model predictions of MPI-ESM-
MR to ERA-20C for different ensemble means. Black dots show significance at the
95% confidence level. (right column) Averaged Z500 anomaly in Europe in the area
[35◦ − 70◦N, 10◦W−30◦E] for all ensemble members (grey circles), selected members
(filled grey dots), and their mean (coloured lines) in comparison to ERA-20C (black
line), including correlation values. Ensemble means are taken over a-b all ensemble
members in all clusters for 1902-2008 (option 1), c-d ensemble members selected for
the predicted dominant clusters for 1930-2008 (option 2), and e-f ensemble members
selected for the observed clusters for 1930-2008 (option 3).
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To investigate the reason for this low skill, we analyse the hindcast skill over
Europe in more detail by evaluating the hindcasts for averaged Z500 anomaly in
the area [35 − 70◦N, 10◦W-30◦E] for all individual ensemble members (Fig. 2.3b).
The values for Z500 that are predicted by the individual members are spread out
over a large range of possible values of both positive and negative sign in each
year. If, as in usual predictions, a mean is taken over all ensemble members to
assess the hindcast skill, the impact of the high spread of the ensemble results in
a low variability of the ensemble mean (std=6.6 m) compared to the variability in
the reanalysis (std=16.1 m, Fig. 2.3b). Nevertheless, most values of the reanalysis
lie within the spread of all ensemble members, indicating that the range of
observations is contained within the rang of the ensemble. However, the observed
values for Z500 are not achieved by taking the mean over all ensemble members.

Different ensemble members predict different clusters for one summer and the
different clusters have different imprints on Z500 over Europe (Figs. 2.2b and 2.1a-
d). To avoid averaging over different clusters that individually have a different
impact on Z500 over Europe, we now consider only ensemble members in one
cluster in each year. For every year considered, we predict the one dominant
cluster by the cluster that contains the highest number of ensemble members
(option 2). We then form a new ensemble mean over only the members in this
cluster. Such a yearly selection does not result in significant hindcast skill over
Europe (Fig. 2.3c), but in less ensemble spread and thus higher variability of the
mean over the ensemble members (std=10.4 m, Fig. 2.3d).

If we instead select only those ensemble members that are assigned to the
observed dominant cluster for every year (option 3), the ensemble mean formed
over only those ensemble members results in significant hindcast skill over large
parts of Europe and the North Atlantic (Fig. 2.3e). The average over Europe then
shows a significant correlation (r=0.66) that is much higher compared to the
mean over all ensemble members (r=0.35) and a variability (std=14.2 m) that is
comparable to the variability of the reanalysis (std=16.1 m, Fig. 2.3f). The model is
therefore able to achieve significant seasonal hindcast skill for European summers,
if the cluster predicted by the model agrees with the observed dominant cluster
in every summer.

2.4.1 Cluster dependency of the hindcast skill

We assess the hindcast skill of the model in the individual clusters by separating
the ensemble members into all four clusters in every year and form a mean
over all ensemble members in each cluster. We further assign each year to one
cluster predicted by the model (option 2) and consider for each cluster only
those predicted years. Such a prediction results in strong spatial differences for
the hindcast skill of the individual clusters and reveals the areas in which the
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Figure 2.4: ACC for JA mean Z500 anomaly comparing the model predictions of MPI-ESM-MR to
ERA-20C for the ensemble members grouped for the different clusters for 1930-2008.
ACC is shown by yearly deviation for the ensemble members in the predicted dominant
clusters (option 2, left column), and in the observed dominant clusters (option 3, right
column). The numbers in brackets indicate in how many of the considered years the
respective cluster was chosen to be dominant. Black dots show significance at the 95%
confidence level.
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model most likely achieves skill if it predicts a certain cluster (Fig. 2.4a-d). If the
model predicts a NAO+, significant skill is achieved over large parts of the North
Atlantic and in northern Europe, while for NAO- skill is mainly obtained in the
tropics. For PD+ hindcast skill is only visible in single spots in the western North
Atlantic and parts of eastern Europe. With PD- hindcast skill is achieved in large
parts of the North Atlantic and in parts of northern Europe.

We can compare these results to the skill of the ensemble mean of the individual
clusters divided into the years in which the clusters are observed in ERA-20C
(option 3), which represent the skill that the model can maximally achieve in the
years that are dominated by one of the mechanisms. Additionally they show the
regions in which each cluster influenced the hindcast skill. Generally the hindcast
skill is highest in the areas of highest variability of the different clusters (cf. Figs.
2.4e-h and 2.1). For NAO+ and NAO- these areas are over Greenland, the central
North Atlantic and northern Europe, while NAO- also achieves significant skill
over central Europe, which is in accordance with the location of the southern
node of NAO-. With PD+, significant skill is also obtained in the two nodes of
highest variability, resulting in hindcast skill over central Europe and large parts
of the North Atlantic. For PD-, skill is only achieved in small parts in the North
Atlantic and over Europe, not agreeing with the location of the nodes of PD-. All
in all, these results reveal that the model can most likely achieve hindcast skill
over Europe in the years that are dominated by NAO- or PD+, while hindcast
skill over the North Atlantic can be achieved in years dominated by any of the
clusters, except for PD-.

2.4.2 Temporal variability of the hindcast skill

We investigate the temporal variability of the hindcast skill over Europe for the
three prior analysed cases (Fig. 2.5a). This analysis reveals that the hindcast
skill changes over time with an abrupt skill change in 1970. The mean ACC
over the ensemble members in all clusters (option 1) is decreasing until 1970,
where the skill suddenly increases and stays roughly constant. The skill of the
ensembles members in the predicted clusters (option 2) also decreases until 1970.
This contrasts with the skill of the ensemble members in the observed clusters
(option 3), which stays about constant until 1970. After 1970, the hindcast skill
for the ensemble members of the predicted clusters is thus lower, while the
skill for the ensemble members in the observed clusters is higher after 1970. This
demonstrates that the model is more capable of predicting the observations before
1970 then afterwards.

However, analysing the spatial variance of the skill before and after the skill
change in 1970 separately (Fig. 2.5b-e) shows that the model by itself is not able
to achieve significant hindcast skill over Europe in either of the time periods.
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Figure 2.5: a Time dependency of the hindcast skill of averaged Z500 anomaly in Europe in the
area [35◦ − 70◦N, 10◦W−30◦E] shown by the evolution of the ACC in 1930-2008 for
the mean over the ensemble members in all clusters (option 1, grey), the mean over
the members in the predicted clusters (option 2, red), and the mean in the observed
clusters (option 3, blue). Values are derived using a 30-year moving window and
depicted in the center of the considered timespan. b-g ACC for each of those ensemble
means in 1930-1970 (left column) and 1970-2008 (right column). Black dots show
significance at the 95% confidence level.
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Significant hindcast skill over Europe is only achieved for the ensemble mean in
the observed clusters (Fig. 2.5f-g).

All plots reveal spatial differences in hindcast skill before and after 1970,
confirming that the hindcast skill in some regions is time-dependent. For the
ensembles in all clusters (option 1, Fig. 2.5b-c) this difference is strongest in the
North Atlantic, where the model is able to achieve significant hindcast skill after,
but not before 1970. For the predicted clusters (option 2, Fig. 2.5d-e), significant
skill is obtained in eastern Europe, but only before 1970. After 1970 significant
skill can only be achieved in the tropical region. Compared to the hindcast skill of
the predicted clusters individually (cf. Fig. 2.4a-d), the spatial appearance before
1970 is closest to the hindcast skill of the PD+ cluster, while after 1970 the spatial
pattern resembles the skill of the NAO- cluster. These results concur with the
distribution of the ensemble members in the different clusters over time (cf. Fig.
2.2b), since PD+ is the predicted dominant cluster in most years before 1970, and
NAO- after 1970.

Assessing the skill of the ensemble members in the observed dominant clusters
(option 3, Fig. 2.5f-g), the patterns of significant skill also vary over time. The
distribution of the observed cluster over time (cf. Fig. 2.2a) shows that before 1970,
NAO+ and PD- were the dominating clusters, and NAO- and PD+ afterwards.
In comparison to Fig. 2.4e-h that depicts the areas where these clusters have the
highest impact on the hindcast skill, we see that the hindcast skill before 1970

resembles the skill structure of NAO+ and PD-, and after 1970 the skill structure
of NAO- and PD+. The higher skill over Europe after 1970 (cf. Fig. 2.5a, blue) can
thus be explained by the dominance of NAO- and PD+ in this period of time,
that both show a higher hindcast skill over central Europe than NAO+ and PD-
(cf. Fig. 2.4e-h), which dominate the time before 1970. The temporal variability
of the hindcast skill is thus strongly influenced by the clusters that dominate a
certain period of time.

2.4.3 Grouping of clusters

Examining the imprint of the different clusters on European summer temperature
shows that both NAO phases influence Europe via a north-south dipole, while
both PD phases show an east-west dipole (Fig. 2.6a-d), which is both in agreement
with findings of Bladé et al. (2012) for the NAO and Neddermann et al. (2019)
for the PD. A spatial asymmetry can be detected for both the NAO and PD
clusters. NAO+ shows a north-south gradient of higher amplitude than NAO-,
especially in southern Europe. PD- has a higher imprint on the temperature in
eastern Europe than PD+, but influences all of Europe with the same temperature
anomaly, while PD+ shows a temperature imprint of different sign on western
than on eastern Europe.
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Figure 2.6: a-d The spatial patterns of the four clusters derived with the cluster analysis in
ERA-20C for 1900-2010, depicted as the composites over the yearly occurrence of the
observed clusters for JA means of temperature anomaly. e ACC for JA Z500 anomaly
comparing the model predictions of MPI-ESM-MR to ERA-20C for ensemble members
selected for the two groups of clusters (i.e. NAO+ & PD- and NAO- & PD+). Black dots
show significance at the 95% confidence level. f Averaged Z500 anomaly in Europe in
the area [35◦ − 70◦N, 10◦W−30◦E] for the selected ensemble members (grey circles)
and their mean (green line) in comparison to ERA-20C (black line), including the
correlation between both.



2.5 discussion 33

Comparing the imprint of all clusters on the temperature and Z500 anomalies
in northern Europe (cf. Fig. 2.6a-d and Fig. 2.1a-d) and their temporal distribution
over the whole century (cf. Fig. 2.2a) for ERA-20C, two groups of clusters seem to
coincide with each other. While NAO+ and PD- both show a positive Z500 and
temperature anomaly imprint on northern Europe and are more dominant in the
first half of the century, NAO- and PD+ influence Europe with negative Z500 and
temperature anomalies and dominate the second half of the century. Comparing
the temporal distribution of our four clusters to the temporal variability of the
averaged temperature and Z500 over Europe (not shown), we find a similarly
strong agreement between warm temperature and positive Z500 anomaly for
NAO+ and PD- and the opposite for NAO- and PD+. Both the temperature and
Z500 time series also show the multidecadal trend identified in the temporal
distribution of the clusters.

This agreement of the two cluster groups discloses the potential of combining
two clusters for the hindcast analysis, implying the possibility of a fourth option
of grouping the ensemble members for predicting European summers. In such a
prediction the observed group of dominant clusters is known in advance and only
ensemble members from the two dominant clusters are chosen for the hindcast
analysis (option 4). Such a prediction results in a hindcast skill that is significant
over large parts of northern Europe (Fig. 2.6e). For the mean over Europe a similar
correlation and variability is achieved as for the prediction that takes all four
clusters individually (cf. r=0.62, std=11.2 m, Fig. 2.6f and r=0.66, std=14.2, Fig.
2.3f). Through this grouping of two clusters, the problem of predicting clusters
can therefore be reduced to two instead of four options, while resulting in similar
hindcast skill for European summer climate.

2.5 discussion

We show here that, despite the fact that various mechanisms are influencing
European summers, the dominant mechanism of European summer climate can
be explained by either of the four considered mechanisms - a meridional pressure
gradient, known as the North Atlantic Oscillation, and a zonal pressure gradient,
both in their positive and negative phases.

We consider only large scale structures by using a cluster analysis of data
filtered with the first 6 dominant EOFs. For smaller scale structures, higher order
EOFs would have to be considered, as well as higher order clusters. However,
we find that higher order clustering results in similar clusters with the four
dominant patterns split into more than one cluster per mechanism. The diversity
in the spatial appearance of the patterns in higher order clustering that show
the same mechanism probably resemble the variety of spatial appearances of
the clusters over time. The variation of the spatial appearance of the different
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clusters over time are considered through our cluster analysis approach, that
allows for such spatio-temporal variations of the considered mechanisms. Thus,
we find that four clusters represent the dominating seasonal summer patterns in
the North-Atlantic-European sector.

While previous work examine cluster analysis for European summers with
daily data (e.g., Cassou et al., 2005; Boé et al., 2009; Cattiaux et al., 2013), we show
here that a cluster analysis in this area is possible with seasonal summer means.
Such an analysis discloses the possibility of finding the one dominant mechanism
per season. Compared to the cluster analysis with daily data by Cassou et al.
(2005), all clusters show strong similarities, where our PD+ cluster agrees to their
Atlantic Ridge and our PD- to their Atlantic Low pattern.

Since our cluster approach considers only JA means to concentrate on the one
dominant cluster per European summer, we assume that only one mechanism is
present in every summer. Nevertheless, we show here that even with this assump-
tion, significant hindcast skill can be achieved over large parts of Europe and
the North Atlantic (Fig. 2.3e). This demonstrates that the problem of predicting
European summers could be simplified to predicting which of the four clusters is
going to dominate the following summer.

Comparing the cluster analysis in ERA-20C and in the different ensemble
members of the model, we show here that the model is able to represent the
spatial appearance of the four different clusters (Fig. 2.1) and also resembles the
overall frequency of the different clusters observed over time (Fig. 2.2c). Thus, the
model is able to reproduce the statistics of the observed climate patterns.

However, the timing of the prediction of the clusters only agrees with the
observations in about one third of the years, thus being only slightly better than
predicting the dominant cluster by chance. If ensemble members are then selected
for the dominant predicted cluster (option 2), the predicted cluster disagrees with
the observed clusters in the majority of the years. Such a prediction therefore
leads to Z500 values that disagree with the observations and is not resulting
in hindcast skill over Europe (Fig. 2.3c). Nevertheless, significant hindcast skill
would be achieved if the timing of the predicted cluster agrees with the timing of
the observed cluster (Fig. 2.3e). We thus find that the model is generally able to
represent the physical mechanisms necessary to achieve significant hindcast skill
over large parts of the North-Atlantic-European sector.

This cluster analysis further allows us to divide the hindcast skill into the
skill of the model for the different clusters (Fig. 2.4). Our analysis can thus be
used to determine in which areas the seasonal hindcast skill is influenced by
the individual physical processes. For the patterns analysed here, we show that
the hindcast skill is mainly influenced in the areas of highest variability of the
clusters (cf. Fig. 2.1), which holds for all clusters, but PD-. The deviation for PD-
could result from differences of the spatial structure between the observed and
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predicted PD- (cf. Fig. 2.1d and 2.1h) and from the low number of ensemble
members representing PD- (cf. Fig. 2.2b).

Most previous studies assume that the hindcast skill is constant over time. We
show here that the hindcast skill of Z500 in the North-Atlantic-European sector
varies over time for all the three considered options of ensemble refinement (Fig.
2.5a). Future work that analyse hindcast skill for time periods that cover multiple
decades should thus consider hindcast skill independently for different time peri-
ods. The analysis of the time dependency further reveals that the spatial pattern
of significant hindcast skill depends on the ability of the model to predict certain
mechanisms and how pronounced these mechanisms were in the considered
period of time.

Generally, the skill for the ensemble mean is strongly influenced by the domi-
nant mechanism present in the observations and significant skill over Europe is
only obtained when the ensemble members are selected to match this dominant
mechanism (option 3 and 4). Therefore, in a real forecast setup, the observed
dominant mechanism would have to be known in advance to achieve hindcast
skill over Europe. This means that precursors for each cluster would be required.
Recently, Totz et al. (2017) show that a clustering approach can be used to find
precursors for certain precipitation regimes in winter. A similar approach could
be applied to detect precursors for the analysed mechanisms here.

Another option to finding precursors for all clusters is to reduce the number of
possible choices. We show here that even if only the group of clusters is known
in advance (i.e. NAO+ & PD- and NAO- & PD+), significant skill can be achieved
over northern Europe (option 4, Fig. 2.6e). This demonstrates that the problem of
predicting one of four clusters can be reduced to predicting the group of clusters
and thus lower the number of possible choices from four to two. Note that we
only consider the sign and not the magnitude of the clusters. Therefore, such a
prediction would mean to predict the sign of either of the two mechanisms for the
following summer, so either if the NAO or if the PD is going to be in its positive
or negative phase. Recent studies show that such a prediction is possible for both
the NAO (Düsterhus et al., under review) and the PD in summer (Neddermann
et al., 2019) and thus discloses the possibility of a skilful prediction with this
approach.

We further find that the sign of the Z500 and temperature anomalies over
Europe also agrees with the occurrence of the different clusters over time. Most
years with a positive temperature and Z500 anomalies over Europe coincide
with NAO+ and PD- and negative anomalies with NAO- and PD+. Cassou et
al. (2005) found similar results for their cluster analysis, based on daily data.
Their counterparts to our NAO+ and PD- both favour extremely warm days over
Europe, while the counterparts to NAO- and PD+ favour extremely cold days.
We thus find that also on seasonal timescales two clusters seem to have a similar
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impact on European summers, both in their Z500 and temperature imprint. This
agreement of Z500 and temperature anomalies with the cluster groups discloses
the possibility that predicting the sign of the Z500 or temperature anomalies over
Europe could also be used to anticipate the group of clusters for the following
summer. For such a prediction, precursors would be needed for either of the two
variables, while only the sign of the anomalies and not the magnitude would
have to be known in advance.

However, the assumption of the similar imprint of two cluster groups on the
temperature and Z500 over Europe is only valid for some regions in Europe,
mainly the northern part (Fig. 2.6a-d). Therefore, the achievement of significant
skill through such a selection is constrained to those regions (Fig. 2.6e). Neverthe-
less, for the mean over Europe a similar correlation and variability is achieved as
for the prediction that takes all four clusters into account (cf. Figs. 2.6f and 2.3f).

Most previous studies assess the skill of an ensemble hindcast by the mean
over all ensemble members. However, such an approach is not leading to skilful
seasonal predictions fur European summer climate. We show here that a mean
over all ensemble members over Europe is a mean over different physical mecha-
nisms that predict different Z500 values for European summers, thus leading to a
high spread of the ensemble and an ensemble mean of lower variability as the
observations (Fig. 2.3b). The problem of a too large ensemble spread demonstrates
that the signal of the ensemble mean is too low, while the noise is too high. This
has been shown in previous studies for different ensemble prediction systems
as well (e.g., Ho et al., 2013; Eade et al., 2014). Opposed to previous work that
assumes that the skill of a model increases with an increasing number of ensemble
members (e.g., Murphy, 1990; Scaife et al., 2014), we present an approach in which
we concentrate on a physically consistent analysis by refining the ensemble with
the physical process the individual members are representing. In this approach a
new mean is formed over only those ensemble members that represent the same
physical process. This approach combines clustering with ensemble predictions
and offers the possibility to compromise between the advantage of condensing
forecast into using a few ensemble members against the disadvantage of losing
information associated with the full ensemble. Our approach thus amplifies the
signal, while suppressing the noise, and leads to significant seasonal hindcast
skill of seasonal summer climate over Europe and the North Atlantic, given that
the dominant cluster is known a priori.

2.6 summary and conclusions

We assess the ERA-20C reanalysis to investigate the dominant mechanisms in
European summers on seasonal timescales. We use a cluster analysis that allows
for the spatial pattern of each cluster to vary over time and assign the dominating
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cluster to each year. We compare this analysis to 10 ensemble members generated
using MPI-ESM-MR by assigning each ensemble member in every year to one of
the examined clusters.

From this analysis we conclude:

• Seasonal European summers are dominated by four different clusters
throughout the 20

th century (Fig. 2.2a): (i) The North Atlantic Oscillation
in its positive and negative phase (NAO+ and NAO-), with a meridional
pressure gradient and an imprint on northern and southern European tem-
perature (Figs. 2.1a-b and 2.6a-b) and (ii) a zonal pressure gradient with a
stronger asymmetry in its positive and negative phase (PD+ and PD-) with
an imprint on central European temperature (Figs. 2.1c-d and 2.6c-d).

• The model is able to represent the spatial pattern (Fig. 2.1e-h) and the
overall observed distribution of the different clusters (Fig. 2.2c).

• The model shows no hindcast skill over Europe, if the skill is examined
for the mean over all ensemble members (Fig. 2.3a). Individual ensemble
members predict different clusters for one summer (Fig. 2.2b) and thus a
variety of different Z500 values for Europe, which may cancel each other
out. The high spread of the ensemble members results in a much lower
variability of the ensemble mean than of the observed values (Fig. 2.3b).

• The ensemble mean variability can be adapted through grouping the en-
semble members according to the cluster they represent and forming a
new ensemble mean over members in one cluster (Fig. 2.3d,f). Yet, a skilful
prediction is only achieved if the chosen predicted cluster agrees with the
observed one. Such a prediction, however, results in significant hindcast
skill over large parts of Europe and the North Atlantic (Fig. 2.3c,e).

• The different clusters influence the hindcast skill in different regions in the
North-Atlantic-European sector (Fig. 2.4), mainly agreeing with the regions
of highest variability of the individual clusters (Fig. 2.1).

• NAO+ and PD-, as well as NAO- and PD+ show a similar influence on
Z500 and temperature anomalies in northern Europe and have a similar
multidecadal appearance (Figs. 2.1a-d, Fig. 2.6a-d and 2.2a). Grouping those
clusters leads to improved hindcast skill over large parts of northern Europe
(Fig. 2.6e-f).

• Hindcast skill over the North-Atlantic-European sector differs over time with
a sudden change in skill in 1970, resulting in different spatial appearances
of the skill before and after 1970 (Fig. 2.5).

We show here that the ensemble generated by the seasonal climate prediction
system of the MPI-ESM-MR is overall able to represent the dominant mechanisms
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of seasonal European summers. So far, hindcasts were not skilful for European
summers, because the dominant cluster predicted by the model mostly disagrees
with the observed cluster in time. However, we find that if the timings agree with
each other, significant seasonal hindcast skill for European summers is achieved.
We therefore demonstrate that the model is capable of skilfully predicting Eu-
ropean summers, if the dominant physical process that influences European
summers is considered.
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abstract

We improve seasonal hindcast skill of European summer climate in an ensemble
based coupled seasonal climate prediction system by selecting individual ensem-
ble members based on their respective consistent chain of processes that describe
a physical mechanism. This mechanism is associated with the second mode of
seasonal climate variability in the North-Atlantic-European sector and is contrary
to the summer North Atlantic Oscillation. We initially analyse the mechanism
in the ERA-Interim reanalysis and then test the influence of the mechanism on
European hindcast skill in an initialised coupled seasonal climate model. We show
that the mechanism originates in the tropical North Atlantic in spring, where
either warm or cold sea surface temperature anomaly (SST) is connected with the
European climate by an upper-level wave-train. This wave-train is accompanied
by a zonal pressure gradient, that in turn influences the climate over central
Europe in the following summer. We analyse the seasonal summer hindcast skill
in a mixed resolution hindcast ensemble simulation generated by MPI-ESM, with
30 members starting every year in May. While the mean over the full ensemble
shows no seasonal hindcast skill in summer, we achieve significant hindcast
skill through forming a new mean over subselected ensemble members. For this
selection, we test every ensemble member for the proposed consistent chain of
connections between the wave-train, the zonal pressure gradient and their impact
on European summer temperature, and find that the processes that describe the
mechanism are not represented in every ensemble member. Due to its influence
on European summer climate, we use the condition of the persistent spring SST
to anticipate the phase of the mechanism in each considered year. We thus use
statistical relations to select ensemble members generated by a dynamical predic-
tion system. With this approach, we significantly enhance the seasonal hindcast
skill and the reliability of the hindcasts in the North-Atlantic-European sector,
especially in the areas where the mechanism is showing a prominent signal. Since
we only use knowledge that would be available in a real forecast setup, this
approach can potentially be applied in operational ensemble prediction systems.
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3.1 introduction

Current state-of-the-art prediction systems show seasonal predictability in various
areas, including large parts of the North Atlantic, but their prediction skill for
European climate is still very limited, particularly during the summer season (e.g.,
Arribas et al., 2011; Baehr et al., 2015). Seasonal climate predictions often lack
an understanding of the physical processes (Doblas-Reyes et al., 2013) and while
seasonal European winter climate is mainly dependent on the phase of the North
Atlantic Oscillation (NAO) (Hurrell, 1996), various mechanisms are influencing
the summer climate in Europe on seasonal timescales (e.g., Cassou et al., 2005). As
shown by previous works (Domeisen et al., 2015; Dobrynin et al., 2018), improved
seasonal hindcast skill can be achieved if driving mechanisms are included
into the prediction through the selection of ensemble members via physical
criteria. Here, we improve seasonal summer hindcast skill in an ensemble based
seasonal climate prediction system, by selecting individual ensemble members
for a mechanism that connects areas of high predictability in the tropical North
Atlantic with the summer climate over Europe.

In the North-Atlantic-European sector, the tropical North Atlantic is a major
source of low-frequency climate variability and has in turn a strong influence on
seasonal variability in the tropics and mid-latitudes (e.g., Marshall et al., 2001).
The high persistence of tropical sea surface temperature (SST) during spring and
summer leads to high seasonal summer prediction skill in the tropical region.
Due to the strong influence of tropical forcing on seasonal mid-latitudinal climate
variability, seasonal predictability in the mid-latitudes then often originates from
the seasonal predictability and persistence of tropical regions (e.g., Palmer and
Anderson, 1994).

In summer, warm SST in the tropical North Atlantic lead to extra convective
heating in the atmosphere, which results in strong upper troposphere divergence
in the tropics and convergence in the subtropics, acting as a Rossby wave source
(e.g., Bjerknes, 1966; Hoskins and Ambrizzi, 1993; Gastineau and Frankignoul,
2015). For such low-latitudinal sources, the resulting waves usually propagate
polewards and eastwards (Hoskins and Karoly, 1981). Such an evolving Rossby
wave is known as the circumglobal teleconnection pattern (CGT, Branstator,
2002), which is the leading mode of inter-annual variability of upper-tropospheric
circulation and is associated with the subtropical jet stream wave guide (Ding and
Wang, 2005). The CGT traps signals along its path and, while linking regional
climate variations, has a strong influence on the local climate systems over Europe
and Asia. Branstator and Teng (2017) reveal a strong seasonality of the CGT
and show that, opposed to its winter counterpart, the summertime CGT is not
circumglobal, but rather splits into two separate waves. This is in accordance with
the results of Saeed et al. (2014), who found a wavelike pattern similar to the CGT,
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but narrowed its domain to the North Atlantic and Eurasia. They suggest that
SST in the Gulf of Mexico is the source of the CGT and show that the Eurasian
CGT is related to a wavelike zonal pressure pattern over Europe.

This zonal pressure gradient is related to the second mode of summertime
low-frequency variability in the North-Atlantic-European sector, which is known
as the East Atlantic pattern (Wallace and Gutzler, 1981; Barnston and Livezey,
1987; Iglesias et al., 2014), the Atlantic Low (Cassou et al., 2005) or the summer
East Atlantic mode (SEA, Wulff et al., 2017). For a positive (negative) phase of
the CGT, the zonal pressure gradient is associated with anomalous high (low)
pressure over the subtropical North Atlantic and low (high) pressure over central
Europe. Over central Europe, a positive phase of the zonal pressure gradient is
associated with low temperature and enhanced precipitation (Wulff et al., 2017),
while in its negative phase it is connected to European heat waves (Cassou et al.,
2005; Duchez et al., 2016).

Wulff et al. (2017) confirm the connection between the extra-tropical Rossby
wave-train and the zonal pressure gradient and suggest its source in the SST
anomaly in the Caribbean and in the tropical North Pacific by showing that the
tropical SST is leading the extra-tropical patterns by a few month. This temporal
lag arises from the persistence of the SST in the tropical regions. In accordance
with Wulff et al. (2017), we assume that a signal that originates in the tropical
North Atlantic in spring stays there until summer, which is why we focus on SST
in spring, rather than in summer.

The summer North Atlantic Oscillation (SNAO, Folland et al., 2009), which is
the leading mode of North-Atlantic-European atmospheric variability in summer,
is not related to the zonal pressure gradient, since it has a more meridional
pressure pattern and an influence on distinct different regions (e.g., Saeed et al.,
2014). Li and Ruan (2018) find that the SNAO is also connected to a Rossby wave,
but show that its pathway is clearly distinguishable from that of the CGT.

Several studies show potential predictability of the aforementioned zonal wind
or pressure pattern in either prescribed or free model runs. Yasui and Watanabe
(2010) find potential predictability of the CGT in a model run that is driven by
prescribed diabatic heating, while Wulff et al. (2017) find that seasonal hindcast
experiments forced with SST show skill in capturing the zonal pressure gradient.
Saeed et al. (2014) test historical simulations of a global coupled climate model
and show that the proposed wind and pressure patterns can be reproduced by a
coupled climate model.

However, while parts of the mechanism have been captured by free and forced
model runs, the tropical-extratropical teleconnection between spring SST in the
tropical North Atlantic and summer wind, pressure and temperature over Europe
have not yet been tested in a global coupled ensemble based seasonal climate pre-
diction system. Since the mechanism connects areas of high prediction skill with
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seasonal climate over central Europe, it could lead to enhanced prediction skill
of European summers if incorporated into a robust seasonal climate prediction
system. Here, we test such a prediction system for the proposed connection and
further also include this mechanism into the hindcast analysis with the aim to
improve the seasonal hindcast skill of summers over central Europe.

As described, various mechanisms are influencing the summer climate in the
North-Atlantic-European sector on seasonal timescales. Therefore, individual en-
semble members in dynamical seasonal climate prediction systems are dominated
by different physical processes. Hindcast analysis are usually conducted with the
mean taken over all generated ensemble members, such that a mean is taken over
the signal of various different physical mechanisms and the signal of individual
mechanisms are then often averaged out. This usually results in an amplitude of
the ensemble mean that is much lower than the amplitude of the observations, as
for instance shown by Baker et al. (2018) for the NAO. Here, the goal is to amplify
the signal of the proposed zonal mechanism by selecting only those ensemble
members in which the described chain of physical processes associated with the
mechanism is represented.

Approaches in which a mechanism is incorporated into the prediction have
already been tested by rejecting or retaining individual ensemble members via
physical or statistical criteria. Domeisen et al. (2015) select only ensemble members
that contain sudden stratospheric warming events and further also years in
which the El Niño-Southern Oscillation happened, and in turn improve seasonal
winter hindcast skill over Europe with this approach. Dobrynin et al. (2018) base
their ensemble selection on known physical links of the winter North Atlantic
Oscillation (WNAO) with the autumn states of the ocean, sea ice, land surface
and stratosphere and Düsterhus et al. (under review) use a similar methodology,
but for the SNAO. This procedure results in enhanced hindcast skill in regions
where the NAO has a strong influence on European climate, which is on northern
and southern, but not on central Europe (e.g., Hurrell, 1995).

Thus, we consider this different pattern of summer climate variability, which
has an impact on central Europe and has not yet been tested in an approach
that includes a mechanism into a seasonal climate prediction. In particular, we
will include the zonal pressure gradient and its physical links into the prediction
analysis by subsampling of ensemble members, which are generated by the
initialised global seasonal climate prediction system MPI-ESM at mixed resolution
and compare the results to ERA-Interim reanalysis data (Dee et al., 2011). While
the studies by Domeisen et al. (2015) and Dobrynin et al. (2018) base their
ensemble selection on individual initial conditions of the ocean or atmosphere,
our selection is based on a chain of physical processes that are part of the analysed
mechanism.
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A brief description of the used data can be found in section 3.2. Since a reliable
representation of the mechanism is crucial for the applied method, the mechanism
is first analysed in the ERA-Interim reanalysis data in section 3.3, followed by
a description of the subsampling method in section 3.4. The effect of ensemble
subsampling on seasonal hindcast skill is then accessed in section 3.5. Section 3.6
provides the discussion, followed by the summary and conclusions in section 3.7.

3.2 model and data

3.2.1 Reanalysis Data

The analysis of the mechanism is carried out with the Interim European Centre
for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim, Dee
et al., 2011) monthly-mean fields from 1982 to 2016. The results are used as a
basis for and in comparison to the model output.

The primary analysed datasets are the monthly-mean skin temperature, sea
level pressure, 500 hPa geopotential height and 200 hPa meridional wind. To
eliminate long-term trends, we linearly detrend all fields. Only monthly data
with respect to the climatological mean are considered.

In accordance with Folland et al. (2009), who show that the seasonal variability
of summer climate in the North-Atlantic–European sector in June deviates from
that in July and August, this study defines "summer" as the July-August (JA)
mean. Nevertheless, the analysed patterns are similar in June-July-August (JJA),
but the link between the individual parts of the mechanism is less pronounced.
Consequently, we would have to adjust for these changes for an analyses in JJA.

3.2.2 Model Setup

We use the dynamical seasonal climate prediction system (Dobrynin et al., 2018)
based on the global Max Planck Institute Earth System Model at mixed resolution
(MPI-ESM-MR) in the version as used for the CMIP5 simulations (Giorgetta et al.,
2013). The model consists of the atmospheric component ECHAM6 (Stevens
et al., 2013) with 200 km (1.875◦) horizontal resolution and 95 vertical levels up to
0.01 hPa, coupled to the ocean component MPI-OM (Jungclaus et al., 2006) with a
horizontal resolution of 40 km (0.4◦) and 40 vertical layers.

To initialise the model, full-field nudging is used as an assimilation technique.
The nudging is performed by Newtonian relaxation towards reanalysis data.
In the atmosphere, vorticity, divergence, temperature and surface pressure are
nudged towards ERA-Interim with a relaxation timescale of one day. In the ocean,
the ECMWF Ocean reanalysis System (ORA-S4, Balmaseda et al., 2013) is used
for nudging of temperature and salinity with a relaxation timescale of 10 days.
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Sea ice concentration is nudged towards the observational National Snow and
Ice Data Center (NSIDC) sea ice concentration data (Fetterer et al., 2002) with an
effective relaxation time of 20 days (Tietsche et al., 2013).

From the assimilation experiments, 30 ensemble members are initialised with
slightly different initial conditions on the first of May each year from 1982 to 2016

(35 years). In the ocean, each ensemble member is perturbed using bred vectors
with a vertically varying norm (Baehr and Piontek, 2014). In the atmosphere, the
diffusion coefficient in the uppermost layer is slightly disturbed.

3.2.3 Analysis

To identify the principle mode of variations in single fields, we calculate the
empirical orthogonal functions (EOF) of the spatial variations from the fields
by using their anomaly covariance matrix (North et al., 1982). In case coupled
modes of variations between two fields are considered, we evaluate them with the
singular value decomposition (SVD) of the covariance matrix of the two analysed
fields (Bretherton et al., 1992). To derive sign definite regime patterns, we further
use the k-means cluster algorithm (Michelangeli et al., 1995) on the JA mean for
the 35 analyzed summers.

Covariability between time series and a field is further derived through point-
wise correlation. Significance of point-wise correlation is calculated via bootstrap-
ing at the 95% confidence level using 500 samples.

The hindcast skill of the model output against the ERA-Interim data is assessed
with the point-wise detrended Anomaly Correlation Coefficient (ACC, Collins,
2002). To account for the uncertainty of the ACC in the temporal dimension,
we apply cross-validation by leaving out one year in the analyzed period 1982-
2016. The ACC is calculated for every cross-validated iteration between the
reforcasted and reanalyzed fields and shown as the mean over all cross validated
iterations. Significance is derived for every iteration via bootstraping at the 95%
confidence level using 500 samples and depicted only for those regions that
shown significance in every cross-validated iteration.

To further evaluate the hindcast skill, reliability diagrams (Wilks, 2011) are
used. Reliability diagrams are a tool to quantify statistical reliability and show for
a specified event the accordance between the observed relative frequency of the
event and its forecasted probability. Here, we quantify events that lie above the
climatology in the investigated region. For this, the analysed data are divided into
ten different categories in dependence on the forecast probabilities of these events.
Error bars are derived for every category via bootstrapping with 500 samples at
the 95% confidence level.
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Figure 3.1: a Schematic representation of the proposed physical mechanism analysed in the
ERA-Iterim reanalysis in 1982-2016. b (I.) The signal of the mechanism starts in
the tropical North Atlantic in spring, where SST anomaly is the source of strong
convection, depicted by the first EOF of SST anomaly in April in the region [10◦S−15◦N,
80◦W−20◦W], which explains 41.2% of the total SST variance. c (II.) The strong
convection induces a summertime wave-train, specified by the first EOF of 200 hPa
meridional wind (Vwind) in JA in the region [10◦N−70◦N, 90◦W−40◦E], explaining
22.4% of the total variance. d The principal component associated with this first EOF
of 200 hPa meridional wind in JA (PC1 Vwind), pointwise correlated with SST in
April confirms this relation. e (III.) The wave-train is accompanied by a zonal SLP
gradient, indicated by the pointwise correlation between PC1 Vwind and the SLP in
JA. (IV.) This in turn has an influence on the summer climate over Europe as shown by
the pointwise correlation of PC1 Vwind with f surface temperature in JA and g total
precipitation (TP) in JA. Dots represent significance at the 95% confidence level.
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3.3 physical mechanism

We describe a physical mechanism connecting SST in the tropical North Atlantic
in spring and surface temperature over Europe in summer (Fig. 3.1a). SST in the
tropical North Atlantic show high persistence, such that a signal is apparent in the
SST from spring until summer. In the tropical North Atlantic, the main SST vari-
ability in spring lies in the latitudinal band between 0◦ − 20◦N (Fig. 3.1b). Warm
SST in this area is the source of strong convection in the tropical region, which act
as a Rossby wave source that induces a tropical-extratropical teleconnection (e.g.,
Gastineau and Frankignoul, 2015). Following Saeed et al. (2014), we associate
the resulting Rossby wave with the first EOF over the North-Atlantic-European
sector in July-August (JA). Here, we specify the EOF by narrowing it to the
region of interest [10◦ − 70◦N, 90◦W−40◦E] (Fig. 3.1c). This results in a wavelike
structure similar to the CGT (Branstator, 2002; Ding and Wang, 2005; Saeed et al.,
2014), with four prominent alternating patterns extending from North America
to eastern Europe at a latitudinal band corresponding to the latitudinal extend of
the subtropical jet stream.

The forcing region of the wave-train is characterized in a pointwise correlation
analysis between the temporal variability of the wave-train and SST in the North
Atlantic (Fig. 3.1d), resulting in a significant correlation in the same region as the
highest variability can be seen in the leading EOF of SST in the tropical North
Atlantic in April (cf. Fig. 3.1b).

The wave-train has a strong influence on the summer climate in the North-
Atlantic-European sector. It is accompanied by a zonal pressure gradient having
a positive pressure pattern over the northern North Atlantic and a negative one
over eastern Europe (Fig. 3.1e), which is in accordance with previous findings
(Saeed et al., 2014; Wulff et al., 2017). The zonal wind and pressure structures in
turn influence the summer temperature and precipitation over central Europe
(Fig. 3.1f and 3.1g).

The SST signal, that is the source signal of this mechanism, is moving from
the eastern and central tropical North Atlantic in spring to the western tropical
North Atlantic and North America in summer (cf. Figs. 3.1d and 3.1f). The strong
SST anomaly in the western tropical Pacific in JA is then accompanied by low
pressure and high total precipitation anomalies in this region (Figs. 3.1e and 3.1g),
which is characteristic of a Gill-type response to the diabatic forcing within the
Caribbean region (see e.g. Hodson et al. (2010) for details).

The zonal pressure gradient (Fig. 3.1e) is related to the second EOF of SLP in
JA (Fig. 3.2a), explaining about 20% of the low-frequency pressure variability in
summer. In its negative phase the patterns of the zonal pressure gradient are
similar to the known East Atlantic pattern (Wallace and Gutzler, 1981; Barnston
and Livezey, 1987; Iglesias et al., 2014), Atlantic Low pattern (Cassou et al., 2005)
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Figure 3.2: a The second EOF of SLP in JA in the region [25◦N−80◦N, 70◦W−40◦E], explaining
about 19.2% of the total variance. b The associated principal component of the second
EOF of SLP in JA, pointwise correlated with surface temperature in JA. c The first EOF
of SLP in JA in the region [25◦N−80◦N, 70◦W−40◦E], which explains about 30.7% of
the total variance. d The associated principal component of the the first EOF of SLP in
JA, pointwise correlated with surface temperature in JA. The patterns are computed
using the ERA-Iterim reanalysis in 1982-2016. Dots represent significance at the 95%
confidence level.
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or summer East Atlantic mode (SEA; Wulff et al., 2017). The influence of the zonal
EOF pattern on European summer temperature is in strong agreement with the
influence of the proposed wave-train mechanism (cf. Figs. 3.2b and 3.1f).

The zonal pressure gradient associated with the second EOF of SLP is contrary
to the meridional pressure gradient of the first EOF, which explains about 30%
of the low-frequency pressure variability in summer (Fig. 3.2c) and is associated
with the SNAO (Folland et al., 2009). Its imprint on Europe is indicated by a
north-south dipole with influence on northern and southern, but not on central
Europe (Fig. 3.2d), which resembles the findings of Folland et al. (2009) and Bladé
et al. (2012).

3.4 ensemble subsampling

Based on the analysis of the proposed mechanism in the ERA-Interim reanalysis,
we characterise the mechanism by four individual parts, namely (I.) the SST in the
tropical North Atlantic in April and (II.) the wave-train, (III.) the zonal pressure
gradient and (IV.) the temperature anomalies over central Europe in JA (Fig. 3.1a),
and are now looking for a consistent representation of all parts in individual
ensemble members. To comparably identify the chain of physical relations in
individual members, i.e. in 30 ensemble members and in each of the 35 analysed
summers, we divide the mechanism into its individual parts, while we define
each part in a way that it can be distinguished in single ensemble members at
selected points in time:

I. April SST The origin of the signal, which is either anomalous high or low
SST anomaly in the tropical North Atlantic in April. Based on the correlation
analysis between the wave-train and the SST anomaly in spring (Fig. 3.1d),
SST is averaged in the area [0◦ − 15◦N, 80◦W−20◦W].

II. JA wave-train The wave-train in JA, which we so far defined by an EOF
pattern (Fig. 3.1c). To identify the sign definite patterns of the wave-train,
we perform a cluster analysis on the 200 hPa meridional wind JA means
taken from ERA-Interim in the domain [10◦N−70◦N, 90◦W−40◦E] for the
investigated 35 years. The analysis is conducted with k = 2, resulting in a
positive and negative wave-train cluster (Figs. 3.3a and 3.3b, respectively),
while the positive cluster occurred in 17 and the negative one in 18 years (Fig.
3.3c). There is a good agreement between the cluster and the EOF analysis,
both for the patterns (cf. Figs. 3.3b and 3.1c, patterncorrelation of ±87.1%)
and occurrences (Fig. 3.3c), all in all confirming that the cluster analysis
sufficiently represents the wave-train. To check if individual ensemble
members represent either the positive or negative wave-train phase in the
considered year, a pattern-matching algorithm in terms of the root-mean-
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Figure 3.3: a Positive and b negative wave-train cluster derived by the k-mean algorithms for
ERA-Interim 200 hPa meridional wind in the area [10◦N−70◦N, 90◦W−40◦E] in 1982-
2016. The patterncorrelation with the wave-train EOF pattern (Fig. 3.1c) is ±87.1%. c
Frequency of the cluster over the whole period for the positive (red, frequency 48.6%)
and the negative cluster (blue, frequency 51.4%), compared the principal component
(PC) associated with the wave-train (black line).
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square difference is used to assign each ensemble member to the closest
cluster.

III. JA SLP index The zonal pressure gradient in JA. Based on the zonal pres-
sure pattern of the second EOF of SLP in JA (Fig. 3.2a) and on the correlation
pattern of the wave-train with the SLP (Fig. 3.1e), the zonal pressure gradient
is defined via an index as the normalized difference between the detrended
summer SLP averaged in a region over the North Atlantic [40◦N−60◦N,
40◦W−10◦W] and a region over Europe [40◦N−60◦N, 10◦E−40◦E]. The SLP
index is in good agreement with the the second SLP EOF in ERA-Interim
(correlation of 74.4%, not shown), approving that the SLP index can be used
to represent the zonal pressure gradient.

IV. JA EuST The European surface temperature anomaly in JA. On the basis of
the correlation analysis between the wave-train and temperature anomaly
over Europe in summer (Fig. 3.1f), the temperature is averaged over a region
in central Europe [35◦N−55◦N, 0◦ − 20◦E].

A schematic overview of this selection process can be found in Fig. 3.4. The
summertime part of the mechanism, namely the wave-train cluster (II.), the sign
of the SLP index (III.) and the sign of the averaged temperature anomaly over
central Europe (IV.), all in JA, can now be tested in the 30 hindcast ensemble
members in every of the 35 analysed summers, with the aim to identify those
members, that represent this entire chain of processes. Based on the correlation
analysis in ERA-Interim (Fig. 3.1), the positive (negative) phase of the mechanism
in summer corresponds to a positive (negative) wave-train cluster, a positive
(negative) SLP index and a negative (positive) temperature anomaly over Europe.
In accordance with these observations we thus assume that the mechanism is only
physically represented in those ensemble members, in which the signs of all three
summer criteria are consistent to each other, either for the negative or for the
positive phase. In the practical way we check the sign of each summertime criteria
in every ensemble member in every considered year and verify the consistency
of the signs of all three criteria. We can then categorise the individual ensemble
members into the ones that predict a positive mechanism, the ones that predict a
negative mechanism and the ones in which the signs of the three summer criteria
are not consistent to each other and thus do not represent the mechanism. This
analysis of consistency can be conducted within the hindcast setup for every
individual summer without using observational information. However, while
the consistency of the summertime mechanism can be tested within the hindcast
setup, this analysis does not provide the information on the phase of the observed
mechanism in each considered year.

Therefore, to determine if the mechanism in each considered year is in its
positive or negative phase, we use the observed successive relation between the
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Figure 3.4: Schematic representation of the subsampling method for 30 ensemble members se-
lected for the proposed mechanism in 1982-2016 in one of the considered years. The
proposed mechanism as depicted in Fig. 3.1a and described in section 3.3, is based on
observations in 1982-2016 and is depicted here on the left. We divided the physical
mechanism into four steps and use it as a guideline for the ensemble selection shown
on the right. In every considered year we start with the JA output of the 30 ensemble
members generated by MPI-ESM-MR in May and use the sign of ERA-Interim April
SST (I.) to anticipate the sign of the JA wave-train (II.) and only select those ensemble
members in which the sign predicted for the JA wave-train agrees with this anticipated
sign. Those such selected ensemble members are then individually tested if their
predicted sign of the JA SLP index (III.) agrees with the sign of the JA SLP index
anticipated by the sign of ERA-Interim April SST. The remaining ensemble members
are then in a last step checked for their sign of JA European surface temperature (EuST,
IV.) and only those members are kept in which this predicted sign agrees with the
anticipated sign. The mean over those remaining ensemble members is then taken as
the selected ensemble mean in the considered year. The depicted selection procedure
is repeated for every considered year, while the quantity of the remaining selected
ensemble members varies and is listed in Table 3.1. The ensemble mean formed over
the selected members in all years is termed "selected ensemble" (see e.g. Fig. 3.5).
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SST in the tropical North Atlantic in April and the mechanism in summer (Fig.
3.1d), which includes a lag of a few month. For this, we take the sign of the SST
anomaly in April, which is before the initialisation of the ensemble prediction
system, from observations and use it to anticipate the corresponding phase of
the mechanism. According to the observed positive correlation between spring
SST and the mechanism (Fig. 3.1d), we assume that for a positive (negative) SST
anomaly in April the mechanism in the considered year is positive (negative).

Following this procedure (cf. Fig. 3.4), each year is considered individually and
an ensemble member is only retained if the sign of all three summertime criteria
agree with the sign anticipated by tropical SST that is observed in April in the
examined year. This results in an ensemble size of 2 to 13 out of 30 ensemble
members per year (Table 3.1), while in one year (2016) none of the ensemble
members fulfil all criteria, where we use the mean of the full ensemble. In all
other analysed years we then derive an ensemble mean by taking a mean over
the selected rather than the full ensemble.

Comparing the individual selection criteria in both the full and the selected
ensemble (Fig. 3.5) demonstrates that before the selection, the individual ensemble
members are spread over the whole range of values, resulting in a small temporal
variability of the full ensemble mean (Figs. 3.5a-b). Through the selection process,
the ensemble spread is reduced in every year, which then also results in higher
temporal variability for the selected ensemble mean. Moreover, the values, that
are obtained in the selected, compared to the full ensemble mean, are in better
agreement with the observed values (Figs. 3.5c-d). While the linear regression
of the full ensemble results in a slope around zero and thus deviates strongly
from ERA-Interim, the linear regression of the selected ensemble shows a positive
slope of about 0.45 and 0.35, which is much closer to the line of perfect linear
regression, that accords to equal values of ERA-Interim and the ensemble mean.
In summary, the selection process yields a significant increase of correlation from
no or negative correlation to about 47% for the SLP index and 34% for European
surface temperature.

As shown in section 3.3, the proposed mechanism consists of a chain of pro-
cesses including the wind, pressure and temperature systems over Europe and
the North Atlantic. We assume here that the mechanism is only physically repre-
sented in those ensemble members that show all parts of this mechanism, which is
practically determined through the listed criteria. Those ensemble members that
do not fulfill the criteria, meaning that the sign of the three summertime criteria
are not consistent to each other and do not agree with the sign of the observed
spring SST, are thus rejected. We assume that these rejected ensemble members
do not represent the physical processes of the proposed mechanism, but rather of
other mechanisms that influence European summers on seasonal timescales and
could still be important for the representation of those mechanisms.
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year predicted # ensemble wind cluster SLP index hit with
phase members hit hit both

1982 - 10 o o o
1983 + 10 x x x
1984 - 10 x o o
1985 - 8 x x x
1986 - 10 x o o
1987 + 7 x x x
1988 + 6 o o o
1989 - 8 x o o
1990 + 4 o o o
1991 - 10 x x x
1992 - 4 x x x
1993 + 11 x x x
1994 - 7 x x x
1995 + 11 o o o
1996 + 7 o x o
1997 + 4 x o o
1998 + 3 x x x
1999 - 13 o x o
2000 + 10 x x x
2001 - 12 o x o
2002 - 13 o o o
2003 - 8 x x x
2004 + 11 o o o
2005 + 2 o x o
2006 + 4 x x x
2007 + 3 x x x
2008 - 10 x x x
2009 - 7 x x x
2010 + 7 x x x
2011 + 8 x x x
2012 - 10 x x x
2013 - 3 x x x
2014 - 4 x o o
2015 - 12 x x x
2016 + 0 o o o

# hits 24 23 19

Table 3.1: Overview over the phase of the mechanism in the analysed years (second column)
anticipated by the sign of the April SST anomaly in the area [0◦ − 15◦N, 80◦W−20◦W]
taken from ERA-Interim in 1982-2016. "+" indicates an anticipated positive and "-" an
anticipated negative phase. (third column) The number of selected ensemble members
from MPI-ESM and (fourth column) if the chosen phase coincides with the ERA-Interim
phase of the wind cluster, (fifth column) with the ERA-Interim phase of the SLP index
or (last column) with both, the ERA-Interim phase of the wind cluster and of the SLP
index. "x" represents a correctly determined phase, "o" an incorrectly determined one,
while in the last row the actual number of hits are summed up.
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Figure 3.5: a-b: Comparison between ERA-Interim (black lines) and the ensemble mean
over the full (grey lines) or the selected ensemble (red lines) from MPI-ESM in
1982-2016 including the mean and range (indicated in parentheses) leave-one-
out cross-validated correlation values. Dots indicate the value of all ensemble
members and full dots the ones of criterion selected ensemble members. c-d:
Scatterplots of ERA-Interim compared to the ensemble mean of MPI-ESM
in 1982-2016 over the full (grey dots) or the selected ensemble (red dots)
including linear regression. The mean and range (indicated in parentheses
and by shading) leave-one-out cross-validated linear regression slopes are
derived for the full ensemble (grey line) and for the selected ensemble (red
line). The black line indicates perfect linear regression. Plots depict a,c the
SLP index defined as the difference in JA SLP between the North-Atlantic
[40◦N−60◦N, 40◦W−10◦W] and Europe [40◦N−60◦N, 10◦E−40◦E] and b,d
the temperature anomaly in Europe in JA averaged in the area [35◦N−55◦N,
0◦ − 20◦W].
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Figure 3.6: Anomaly Correlation Coefficient (ACC) derived without cross-validation for (first row)
surface temperature and derived as the mean over all leave-one-out cross-validated
correlation values for (second row) surface temperature, (third row) SLP and (forth row)
500 hPa geopotential height (Z500) in summer (JA), comparing the model predictions
of MPI-ESM to ERA-Interim in 1982-2016. The ensemble mean is taken over a-d the full
ensemble and e-h the selected ensemble. Dots shows significance at the 95% confidence
level, hatching represents areas in which significance is reached in every leave-one-out
cross-validated iteration.
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3.5 seasonal hindcast skill

The subselection of the ensemble members allows to build a new ensemble
mean for any of the simulated fields. We quantify the hindcast skill for surface
temperature, SLP and 500 hPa geopotential height (Z500) in the North-Atlantic-
European sector for the mean over the subselected ensemble and compare it to the
hindcast skill for the full ensemble mean (Fig. 3.6). For surface temperature, the
full ensemble shows hindcast skill mainly over the North Atlantic and Greenland
(Fig. 3.6a-b). The SLP prediction for the full ensemble shows significant skill in
the tropical North Atlantic and over parts of northern Europe and Arabia (Fig.
3.6c), while for Z500 hindcast skill can only be achieved in the tropical belt (Fig.
3.6d). Neither of the fields achieve significant hindcast skill over central Europe.

With the ensemble selection on the other hand, surface temperature, SLP and
Z500 show significant hindcast skill over central Europe (Fig. 3.6e-h), agreeing
with the area where the proposed mechanism shows significant imprint on
seasonal European summer climate (cf. Figs. 3.1e-g and 3.2b). For SLP and Z500,
improved skill can also be achieved over the areas of the North Atlantic where the
zonal pressure gradient is located (Fig. 3.1e). Other areas in the North-Atlantic-
European sector stay at about the same hindcast skill. A slight decrease in ACC
can only be found over Greenland and over parts of Scandinavia and Great
Britain, which are the areas where the SNAO has its biggest influence (cf. Fig.
3.2d and Bladé et al. (2012)).

To further analyse the robustness of the significant hindcast skill, we, aside from
deriving the significant hindcast skill for all analysed years (Fig. 3.6a and 3.6e),
also derive the hindcast skill that is significant in all cross-validated iterations
(Fig. 3.6b and 3.6f). Due to the higher statistical robustness of the cross-validated
hindcast skill, we restrict all further ACC plots to the ones including cross-
validation.

Additionally, we evaluate the influence of the chosen phase of the mechanism
on the ACC (Fig. 3.7). So far, we determined the phase of the mechanism by the
observed sign of spring SST in the tropics. In every analysed year, we divide the
30 ensemble members into the ones that include a positive mechanism, the ones
that include a negative mechanism, and the ones do not contain the mechanism
at all. Each of these three categories contains a different number of ensemble
members every year. Instead of choosing the phase of the mechanism by the
observed sign of spring SST in the tropics in every year, we could thus chose
either the positive or negative phase, depending on which one contains more
ensemble members in the respective year. However, the hindcast skill achieved
with this procedure shows no improvement compared to the full ensemble (cf.
Figs. 3.7a and 3.6d).
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a b

c d

Figure 3.7: Anomaly Correlation Coefficient (ACC) for 500 hPa geopotential height (Z500) in
summer (JA) comparing the model predictions of MPI-ESM to ERA-Interim in 1982-
2016 derived as the mean over all leave-one-out cross-validated correlation values. a
The ensemble members are selected by all three selection criteria (wave-train cluster,
SLP index and averaged temperature anomaly), while the phase of the mechanism
in each considered year is determined by the phase that contains the majority of
ensemble members. b-d The phase of the mechanism is anticipated by April SST in the
tropical Atlantic, while the ensemble members are selected by a subset of criteria: b
the wave-train, c the temperature or d both the wave-train and the temperature criteria.
Hatching represents areas in which significance is reached in every leave-one-out
cross-validated iteration.
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The largest impact on the hindcast skill is thus made by the selected phase
of the mechanism in the considered years. If chosen by the phase that contains
the majority of ensemble members (as in Fig. 3.7a), the phase is only correctly
determined in 11 out of 35 years for both the wave-train cluster and the SLP
index, and in 15 or 17 years for either of the criteria (Table 3.2). This "hit rate"
improves if the phase of the mechanism is anticipated by observed spring SST
in the tropical North Atlantic, such that 19 out of 35 years for both and 24 or
23 years for either of the wave-train cluster or SLP index criteria are correctly
determined (Table 3.1).

If the phase of the mechanism is determined by spring SST, we can also evaluate
the influence of the different selection criteria, namely the wave-train cluster, the
SLP index or the European temperature anomaly, on the ACC (Figs. 3.7b-d). Here,
also those ensemble members are retained in which only one or two of the three
summertime criteria agree with the anticipated sign. In such an analysis, we find
that improvements in the hindcast skill can be achieved with already one out of
the three criteria. Including only the wave-train cluster into the prediction results
in improved hindcast skill in the areas where the wave-train has its prominent
patterns (Fig. 3.7b). If the temperature over Europe is the only included criterion,
then the hindcast skill is stronger improved over central Europe (Fig. 3.7c), while
a combination of the wave-train cluster and the European temperature criterion
shows improved hindcast skill over larger areas of Europe (Fig. 3.7d). Including
the SLP index as a third criterion then only slightly improves the hindcast skill
over Europe (Fig. 3.6h). The small changes on ACC between the embedding of
the different criteria is consistent with our analysis in section 3.3, since we find
that all three criteria are part of the same mechanism and should consequently
show similar influence on the hindcast skill.

To further evaluate the improved reliability over central Europe, we examine
reliability diagrams of temperature and Z500 over central Europe (Fig. 3.8). If
reliability diagrams of the full ensemble are compared to the selected ensemble,
improvements are achieved through subsampling by getting closer to the line of
perfect reliability and thus resulting in more reliable hindcasts. This coincides
with the findings in Fig. 3.5, in which we show that both, the variability and the
values of the selected ensemble agree much better with ERA-Interim than the
ones of the full ensemble. Further, the distribution, which expresses the frequency
of each possible forecast probability, is more equally dispersed for the selected
than for the ensemble mean. The frequency of possible forecasts probability by the
full ensemble deviates rarely from the average value of a forecasts. The selected
ensemble mean on the other hand also shows extreme forecasts and thus results
in more confident forecasts. This higher number of events for extreme forecast
probabilities of the selected ensemble compared to the full ensemble also results
in smaller errors.
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year predicted # ensemble wind cluster SLP index hit with
phase members hit hit both

1982 + 11 x x x
1983 + 10 x x x
1984 - 10 x o o
1985 + 10 o o o
1986 + 15 o x o
1987 - 8 o o o
1988 + 6 x o o
1989 - 8 x o o
1990 - 6 x x x
1991 - 10 x x x
1992 + 9 o o o
1993 + 11 x x x
1994 + 10 o o o
1995 + 11 o o o
1996 + 7 o x o
1997 - 18 o x o
1998 - 12 o o o
1999 - 13 o x o
2000 + 10 x x x
2001 - 12 o x o
2002 - 13 o o o
2003 + 11 o o o
2004 + 11 o o o
2005 - 12 x o o
2006 - 10 o o o
2007 - 8 o o o
2008 - 10 x x x
2009 + 11 o o o
2010 - 8 o o o
2011 + 8 x x x
2012 - 10 x x x
2013 + 12 o o o
2014 + 15 o x o
2015 - 12 x x x
2016 - 8 x x x

# hits 15 17 11

Table 3.2: As in Table 3.1, but with the phase of the mechanism anticipated by the phase that
contains the majority of ensemble members in MPI-ESM.
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Figure 3.8: Reliability diagrams comparing the mean over the full (grey) and the selected (red)
ensemble of MPI-ESM to ERA-Interim in 1982-2016 for a temperature and b Z500

in the area [35◦N−55◦N, 0◦ − 20◦W]. The diagonal line indicates perfect reliability,
meaning that the observed relative frequency of the considered event accords perfectly
with its forecasted probabilities. The shaded grey box is set by the vertical line, that
marks the climatological probability of the event in the forecasts and observations,
and by the "no-skill" line. Points that lie inside the grey box contribute positively to
the forecast skill, based on the climatological reference. Vertical lines show the error
bootstrapped at the 95% confidence level. The histograms depict the distribution of
the data.

According to our analysis in Fig. 3.7, the cruical step of our approach seems
to be the anticipated phase of the mechanism. When estimated by the observed
spring SST anomalies, the sign of the SLP index is only determined correctly in 23

out of 35 years (Table 3.1). If this estimation would be accurate for all evaluated
years, a theoretically "perfect" ensemble selection could be achieved. In such a
perfect analysis we use the same three criteria for the selection of the ensemble
members, except that the phase of the mechanism in the individual years is
not anticipated by spring SST, but chosen by the sign of the SLP index in JA in
ERA-Interim in the same year. Therefore, in this perfect analysis we are using
information from the observations that occurred after the initialisation of the
ensemble members, which is thus not feasible in a real forecast setup, but still of
interest for reference.

The increase of the hindcast skill in this perfect analysis is in similar regions
as for the ensemble selection (cf. Figs. 3.9a-b and 3.6f,h), but slightly more
pronounced. The biggest improvement is found in the area in which the western
part of the zonal pressure gradient is located (cf. Fig. 3.1e), where significant
hindcast skill for Z500 is achieved in the perfect analysis. The perfect selection
represents the hindcast skill that can be expected from an analysis in which the
mechanism is perfectly predicted by the model and confirms our findings that
the hindcast skill can be significantly improved in the areas where the mechanism
is showing a prominent signal in the observations.
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Figure 3.9: Hindcast skill for the "perfect" ensemble selection derived with the known state of the
SLP index. a-b Anomaly Correlation Coefficient (ACC) for a surface temperature and b
500 hPa geopotential height (Z500) in summer (JA), comparing the model predictions of
MPI-ESM to ERA-Interim in 1982-2016 derived as the mean over all leave-one-out cross-
validated correlation values. Hatching represents areas in which significance is reached
in every leave-one-out cross-validated iteration. c-d Reliability diagrams comparing
the mean over the selected (red) and the perfect (blue) ensemble of MPI-ESM to
ERA-Interim in 1982-2016 for c temperature and d Z500 in the area [35◦N−55◦N,
0◦ − 20◦W]. Vertical lines show the error bootstrapped at the 95% confidence level.
The histograms depict the distribution of the data.
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To ascertain the reliability that could maximally be achieved by including the
proposed mechanism into the prediction, we examine the reliability diagrams of
the perfect ensemble selection (Fig. 3.9c-d). For the temperature, the reliability
diagram of the perfect ensemble is almost identical to the one of the selected
ensemble. For Z500, the reliability diagram of the perfect ensemble is closer to
the line of perfect reliability, especially for the extreme forecast probabilities,
while the distribution of the probabilities stays at about the same level of forecast
confidence. These reliability diagrams demonstrate that the reliability that can
maximally be achieved by including our mechanism into the prediction is limited.

Altogether we achieve better hindcast skill and reliability from an analysis
that uses an area of high prediction skill and high persistence as a predictor for
a mechanism that influences European summer climate on seasonal timescales.
The mechanism is included into the prediction by subselection of ensemble
members through successive criteria based on the physical variables that define
the proposed mechanism.

3.6 discussion

Our ensemble selection shows improved hindcast skill that is consistent through-
out all analysed fields (Fig. 3.6e-h). Such a consistency in hindcast skill is not
achieved in a hindcast analysis that uses the mean over all ensemble members
(Fig. 3.6a-d). We claim that this inconsistency occurs for the full ensemble mean,
since a mean is taken over various different physical mechanisms, while in our
analysis ensemble members are selected for just one mechanism. Since various
mechanisms are influencing the summer climate in the North-Atlantic-European
sector on seasonal timescales, the model only predicts the chain of processes of
the proposed mechanism in certain ensemble members, which is why we select
only those ensemble members that contain the successive physical relations. We
assume that all rejected ensemble members represent other mechanisms and
could still be important for the analysis of those.

We further show that the spread of the full ensemble is too large and the mean
over the full ensemble thus results in a variability much lower than the observed
one (Fig. 3.5). This problem of a too large ensemble spread demonstrates that
the signal of the ensemble mean is too low, while the noise is too high, and has
been shown in previous studies for different ensemble prediction systems as
well (e.g., Ho et al., 2013; Eade et al., 2014). Here we present an approach that
reduces the ensemble spread through a selection of the ensemble members based
on a prominent seasonal summer pattern and thus amplifies the signal, while
suppressing the noise of seasonal summer climate over Europe and the North
Atlantic.
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However, the reliability diagrams in Fig. 3.8 demonstrate that only limited
reliability can be achieved with our approach. Here, the limits of our method be-
come apparent that probably arise from the mechanism explaining only a fraction
of the variability of seasonal European summer climate and other mechanisms
being prominent during European summers as well. Our method is based on
only one of the mechanisms that are influencing European summer climate on
seasonal timescales, such that the skill achieved by including our mechanism into
the prediction has a natural limit. With our approach we further assume that the
mechanism is present in every of the analysed years, which is not the case for all
years, since various mechanisms are influencing the summer climate in Europe on
seasonal timescales. Including additional mechanisms into the prediction analysis
is thus a way to extent our method that could further affect the seasonal hindcast
skill over Europe.

The most prominent mechanism in summer is the SNAO. We show that it
differs from our proposed mechanism and that it also influences different areas
over Europe (Fig. 3.2). While we find decreased hindcast skill over Greenland and
parts of northern Europe, Düsterhus et al. (under review) show that, if the SNAO
is included into the prediction, the hindcast skill can be improved in exactly those
areas. Since Greenland and northern Europe are areas that are influenced by the
SNAO, this underlines our finding that with our approach improved hindcast
skill is found in areas where the mechanism, that is included into the prediction,
shows pronounced influence.

To achieve improvements in the hindcast skill over areas that are related to
either of the two mechanisms, an analysis could be tested that combines both the
SNAO and the zonal mechanism.

Further, it could be tested how big the influence of strong SNAO years are on
the hindcast skill achieved here, meaning to analyse in which years the SNAO is
prominent and how big the effect of those years are on the hindcast skill. Such a
yearly selection has already been done by Domeisen et al. (2015) and could, apart
from excluding strong SNAO years, also be applied for only those years in which
our mechanism is the dominant one.

The East Atlantic pattern has in its positive phase a negative pressure anomaly
over the subtropical North Atlantic and a positive anomaly over Europe and
depicts a similar structure than the SLP difference shown here, but in the opposite
phase. However, the index of the East Atlantic pattern as defined by the National
Weather Service Climate Prediction Center via Rotated Principal Component
Analysis of 500 hPa geopotential height in the northern hemisphere if averaged
for July and August is not related to the here defined SLP index (correlation of
about -0.18).

Wulff et al. (2017) suggest a relation between their zonal mechanism and the
El Niño- Southern Oscillation (ENSO), while Ding and Wang (2005) claim that
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the CGT is independent of ENSO. In this work, the connection of the mechanism
to ENSO is not further analysed, since we restrict our analysis to the North-
Atlantic-European sector. In general, we do not rule out a connection to ENSO.
According to Lau and Nath (2001) and Alexander et al. (2002), SST in different
ocean basins are linked by an "atmospheric bridge", such that SST anomalies in
the North Atlantic in spring and summer are lead by SST anomalies in the tropical
Pacific, which does not disagree with our findings. On the contrary, since ENSO
is leading spring SST in the North Atlantic, which is used here as a predictor, it
even provides the opportunity to use ENSO as a further predictor.

Recent studies further show that summer variability is better represented
in model runs with higher resolution (e.g., Müller et al., 2018). However, our
analysis focuses on large-scale teleconnections and patterns. Therefore, we expect
the analysed patterns and results to be similar in higher resolved model runs.

We only consider mean temperature over the whole summer season, such that
no attention is paid to extreme events. Cassou et al. (2005) and Duchez et al.
(2016) show that the zonal pressure gradient in its negative phase can lead to
European heat waves. This is in agreement with our findings, since our correlation
analysis confirms that the zonal mechanism in its negative phase is accompanied
by warm temperature over Europe (cf. Figs. 3.1f and 3.2b). Additionally, we show
that with our ensemble selection the generated predictions are more reliable for
extreme values than they are in the full ensemble (Fig. 3.8). Thus, including our
mechanism into the prediction of extreme events should potentially lead to useful
prediction skill.

Wu et al. (2016) find that the CGT also exists on interdecadal timescales and
associate it with the Atlantic Multidecadal Oscillation (AMO). This is in agreement
with the findings of Gastineau and Frankignoul (2015) who show that the SST,
that is connected to the zonal pressure gradient, is influenced by the AMO. To
investigate the influence of the AMO on the mechanism and the hindcast skill
analysed in this work, a seasonal hindcast run longer than the available 35 years
would be needed.

The "perfect" ensemble selection shows a hindcast analysis in which the phase
of the mechanism would be known each year in advance, such that it reveals the
hindcast skill that can be expected if the mechanism would be perfectly predicted
by the model (Fig. 3.9). This perfect analysis results in improved skill in those
areas, that are expected to be influenced by the proposed mechanism (cf. Fig.
3.1). The hindcast skill achieved with the anticipated phase of the mechanism is
in good agreement with the perfect prediction and shows improved skill in the
same areas, just less pronounced, so that a consistent improvement in hindcast
skill is found throughout our analysis.
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3.7 summary and conclusions

We assess the summer seasonal hindcast skill of the MPI-ESM-MR ensemble based
seasonal climate prediction system over the North-Atlantic-European sector with
regard to a mechanism that is influencing this region on seasonal timescales. The
proposed mechanism, here analysed in the ERA-Interim reanalysis has its origin
in the tropical North Atlantic in spring, where persistent SST anomaly is the
source of a Rossby wave-train that is accompanied by a zonal pressure gradient
and has in turn influence on European summer climate (Saeed et al., 2014; Wulff
et al., 2017). We show the statistical relation between the different parts of the
mechanism and include the mechanism into the hindcast analysis by selecting only
those ensemble members in which the entire chain of processes is represented.
The selection is thus built on three successive criteria that are based on the physics
that define the mechanism. The starting signal of the mechanism is in the tropical
SST in April, which is before the initialisation of the prediction system and can
thus be used to anticipate the phase of the mechanism in individual years. We
thus use statistical relations to select ensemble members generated by a dynamical
prediction system. Since the indicated statistical relations of the physical processes
are limited, the success of this method is restricted to the degree of the statistical
relations.

From this analysis we conclude the following:

• Seasonal European summer climate variability is in many summers signifi-
cantly influenced by a mechanism, whose signal originates in the tropical
North Atlantic in spring and is transported to central Europe via zonal
wind and pressure systems.

• This mechanism is the second leading mode of seasonal climate variability in
the North-Atlantic-European sector in summer and shows distinct different
characteristics than the SNAO, which are a zonal, instead of a meridional
pressure gradient and an influence on central, instead of on northern and
southern Europe (Fig. 3.2).

• The individual parts of the summertime mechanism can be characterized
by the wave-train cluster, the SLP index and the averaged European sum-
mer temperature. Accounting for the proposed mechanism in the hindcast
analysis by selecting only those ensemble members in which this entire
chain of physical processes is represented, results in the reduction of the en-
semble spread and a better representation of the variability of the proposed
mechanism in the model (Fig. 3.5).

• The crucial step in the hindcast analysis is to anticipate the phase of the
proposed mechanism, which is in most cases falsely anticipated if chosen by
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the phase that contains the majority of ensemble members in the respective
year (Table 3.2).

• In a "perfect" prediction, in which the phase of the mechanism would
be known in every analysed year, we demonstrate the hindcast skill that
could be achieved if the mechanism is proper represented in the dynamical
seasonal climate prediction system (Fig. 3.9). The areas of improved hindcast
skill coincide with the areas in which the mechanism is influencing the
North Atlantic-European climate on seasonal timescales (Fig. 3.1).

• Due to the demonstrated influence of tropical spring SST on European
summers (Fig. 3.1), we make use of the high persistence and predictability
of tropical regions and use the observed SST in April to anticipate the phase
of the mechanism in the ensemble system in each year. With this approach
we achieve significantly improved hindcast skill over Europe and parts of
the North Atlantic for surface temperature, SLP and Z500 (Fig. 3.6).

We show an alternative approach, in which the ensemble size, instead of being
further increased, is decreased through ensemble selection based on a chain of
known physical relations. We make use of the influence of high persistent and
predictable spring SST on European summer climate which we expose in a chain
of physical processes to enhance seasonal hindcast skill over central Europe.
Here, we focus on one mechanisms that influences European summer climate
on seasonal timescales and demonstrate that including a mechanism into the
prediction through subsampling of the ensemble by using successive physical
relations is an effective method. This approach could be extended with further
mechanisms or also be applied for other mechanism and allows for improved
predictions in other regions. Since we only use observations in April every year,
which is before the initialisation of the model and knowledge of observations is
not required after the initialisation, this approach can be applied to operational
ensemble prediction systems.
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