Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis

MPG-Autoren
/persons/resource/persons212815

Proxauf,  Bastian
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;
IMPRS for Solar System Science at the University of Göttingen, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103925

Gizon,  Laurent
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160271

Löptien,  Björn
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons129829

Schou,  Jesper
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103834

Birch,  Aaron
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Proxauf, B., Gizon, L., Löptien, B., Schou, J., Birch, A., & Bogart, R. S. (2020). Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis. Astronomy and Astrophysics, 634: A44. doi:10.1051/0004-6361/201937007.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-B940-2
Zusammenfassung
Context. Global-scale equatorial Rossby waves have recently been unambiguously identified on the Sun. Like solar acoustic modes, Rossby waves are probes of the solar interior.

Aims. We study the latitude and depth dependence of the Rossby wave eigenfunctions.

Methods. By applying helioseismic ring-diagram analysis and granulation tracking to observations by HMI aboard SDO, we computed maps of the radial vorticity of flows in the upper solar convection zone (down to depths of more than 16 Mm). The horizontal sampling of the ring-diagram maps is approximately 90 Mm (∼7.5°) and the temporal sampling is roughly 27 hr. We used a Fourier transform in longitude to separate the different azimuthal orders m in the range 3 ≤ m ≤ 15. At each m we obtained the phase and amplitude of the Rossby waves as functions of depth using the helioseismic data. At each m we also measured the latitude dependence of the eigenfunctions by calculating the covariance between the equator and other latitudes.

Results. We conducted a study of the horizontal and radial dependences of the radial vorticity eigenfunctions. The horizontal eigenfunctions are complex. As observed previously, the real part peaks at the equator and switches sign near ±30°, thus the eigenfunctions show significant non-sectoral contributions. The imaginary part is smaller than the real part. The phase of the radial eigenfunctions varies by only ±5° over the top 15 Mm. The amplitude of the radial eigenfunctions decreases by about 10% from the surface down to 8 Mm (the region in which ring-diagram analysis is most reliable, as seen by comparing with the rotation rate measured by global-mode seismology).

Conclusions. The radial dependence of the radial vorticity eigenfunctions deduced from ring-diagram analysis is consistent with a power law down to 8 Mm and is unreliable at larger depths. However, the observations provide only weak constraints on the power-law exponents. For the real part, the latitude dependence of the eigenfunctions is consistent with previous work (using granulation tracking). The imaginary part is smaller than the real part but significantly nonzero.